subsurface/cochran.c
Lubomir I. Ivanov 85df7ebb02 cochran.c: make cochran_predive_event_bytes() return 0
It seems that an iteration will happen even if the function
returns 0, but this looks like a non-breaking change.

Signed-off-by: Lubomir I. Ivanov <neolit123@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2014-10-28 07:40:27 -07:00

805 lines
23 KiB
C

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "dive.h"
#include "file.h"
#include "units.h"
#include "gettext.h"
#include "cochran_emc.h"
#include "cochran_cmdr.h"
#include "divelist.h"
#include <libdivecomputer/parser.h>
#define POUND 0.45359237
#define FEET 0.3048
#define INCH 0.0254
#define GRAVITY 9.80665
#define ATM 101325.0
#define BAR 100000.0
#define FSW (ATM / 33.0)
#define MSW (BAR / 10.0)
#define PSI ((POUND * GRAVITY) / (INCH * INCH))
// Some say 0x4a14 and 0x4b14 are the right number for this offset
// This works with CAN files from Analyst 4.01v and computers
// such as Commander, Gemini, EMC-16, and EMC-20H
#define LOG_ENTRY_OFFSET 0x4914
enum cochran_type {
TYPE_GEMINI,
TYPE_COMMANDER,
TYPE_EMC
};
struct config {
enum cochran_type type;
unsigned int logbook_size;
unsigned int sample_size;
} config;
// Convert 4 bytes into an INT
#define array_uint16_le(p) ((unsigned int) (p)[0] \
+ ((p)[1]<<8) )
#define array_uint32_le(p) ((unsigned int) (p)[0] \
+ ((p)[1]<<8) + ((p)[2]<<16) \
+ ((p)[3]<<24))
/*
* The Cochran file format is designed to be annoying to read. It's roughly:
*
* 0x00000: room for 65534 4-byte words, giving the starting offsets
* of the dives themselves.
*
* 0x3fff8: the size of the file + 1
* 0x3ffff: 0 (high 32 bits of filesize? Bogus: the offsets into the file
* are 32-bit, so it can't be a large file anyway)
*
* 0x40000: byte 0x46
* 0x40001: "block 0": 256 byte encryption key
* 0x40101: the random modulus, or length of the key to use
* 0x40102: block 1: Version and date of Analyst and a feature string identifying
* the computer features and the features of the file
* 0x40138: Computer configuration page 1, 512 bytes
* 0x40338: Computer configuration page 2, 512 bytes
* 0x40538: Misc data (tissues) 1500 bytes
* 0x40b14: Ownership data 512 bytes ???
*
* 0x4171c: Ownership data 512 bytes ??? <copy>
*
* 0x45415: Time stamp 17 bytes
* 0x45426: Computer configuration page 1, 512 bytes <copy>
* 0x45626: Computer configuration page 2, 512 bytes <copy>
*
*/
static unsigned int partial_decode(unsigned int start, unsigned int end,
const unsigned char *decode, unsigned offset, unsigned mod,
const unsigned char *buf, unsigned int size, unsigned char *dst)
{
unsigned i, sum = 0;
for (i = start; i < end; i++) {
unsigned char d = decode[offset++];
if (i >= size)
break;
if (offset == mod)
offset = 0;
d += buf[i];
if (dst)
dst[i] = d;
sum += d;
}
return sum;
}
#ifdef COCHRAN_DEBUG
#define hexchar(n) ("0123456789abcdef"[(n) & 15])
static int show_line(unsigned offset, const unsigned char *data,
unsigned size, int show_empty)
{
unsigned char bits;
int i, off;
char buffer[120];
if (size > 16)
size = 16;
bits = 0;
memset(buffer, ' ', sizeof(buffer));
off = sprintf(buffer, "%06x ", offset);
for (i = 0; i < size; i++) {
char *hex = buffer + off + 3 * i;
char *asc = buffer + off + 50 + i;
unsigned char byte = data[i];
hex[0] = hexchar(byte >> 4);
hex[1] = hexchar(byte);
bits |= byte;
if (byte < 32 || byte > 126)
byte = '.';
asc[0] = byte;
asc[1] = 0;
}
if (bits) {
puts(buffer);
return 1;
}
if (show_empty)
puts("...");
return 0;
}
static void cochran_debug_write(const unsigned char *data, unsigned size)
{
return;
int show = 1, i;
for (i = 0; i < size; i += 16)
show = show_line(i, data + i, size - i, show);
}
static void cochran_debug_sample(const char *s, unsigned int seconds)
{
switch (config.type) {
case TYPE_GEMINI:
switch (seconds % 4) {
case 0:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
case 1:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
case 2:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
case 3:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
}
break;
case TYPE_COMMANDER:
switch (seconds % 2) {
case 0:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
case 1:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
}
break;
case TYPE_EMC:
switch (seconds % 2) {
case 0:
printf("Hex: %02x %02x %02x ", s[0], s[1], s[2]);
break;
case 1:
printf("Hex: %02x %02x %02x ", s[0], s[1], s[2]);
break;
}
break;
}
printf ("%02dh %02dm %02ds: Depth: %-5.2f, ", seconds / 3660,
(seconds % 3660) / 60, seconds % 60, depth);
}
#endif // COCHRAN_DEBUG
static void cochran_parse_header(const unsigned char *decode, unsigned mod,
const unsigned char *in, unsigned size)
{
unsigned char *buf = malloc(size);
/* Do the "null decode" using a one-byte decode array of '\0' */
/* Copies in plaintext, will be overwritten later */
partial_decode(0, 0x0102, "", 0, 1, in, size, buf);
/*
* The header scrambling is different form the dive
* scrambling. Oh yay!
*/
partial_decode(0x0102, 0x010e, decode, 0, mod, in, size, buf);
partial_decode(0x010e, 0x0b14, decode, 0, mod, in, size, buf);
partial_decode(0x0b14, 0x1b14, decode, 0, mod, in, size, buf);
partial_decode(0x1b14, 0x2b14, decode, 0, mod, in, size, buf);
partial_decode(0x2b14, 0x3b14, decode, 0, mod, in, size, buf);
partial_decode(0x3b14, 0x5414, decode, 0, mod, in, size, buf);
partial_decode(0x5414, size, decode, 0, mod, in, size, buf);
// Detect log type
switch (buf[0x133]) {
case '2': // Cochran Commander, version II log format
config.logbook_size = 256;
if (buf[0x132] == 0x10) {
config.type = TYPE_GEMINI;
config.sample_size = 2; // Gemini with tank PSI samples
} else {
config.type = TYPE_COMMANDER;
config.sample_size = 2; // Commander
}
break;
case '3': // Cochran EMC, version III log format
config.type = TYPE_EMC;
config.logbook_size = 512;
config.sample_size = 3;
break;
default:
printf ("Unknown log format v%c\n", buf[0x137]);
exit(1);
break;
}
#ifdef COCHRAN_DEBUG
puts("Header\n======\n\n");
cochran_debug_write(buf, size);
#endif
free(buf);
}
/*
* Bytes expected after a pre-dive event code
*/
static int cochran_predive_event_bytes(unsigned char code)
{
int x = 0;
int gem_event_bytes[15][2] = {{0x00, 10}, {0x02, 17}, {0x08, 18},
{0x09, 18}, {0x0c, 18}, {0x0d, 18},
{0x0e, 18},
{-1, 0}};
int cmdr_event_bytes[15][2] = {{0x00, 16}, {0x01, 20}, {0x02, 17},
{0x03, 16}, {0x06, 18}, {0x07, 18},
{0x08, 18}, {0x09, 18}, {0x0a, 18},
{0x0b, 20}, {0x0c, 18}, {0x0d, 18},
{0x0e, 18}, {0x10, 20},
{-1, 0}};
int emc_event_bytes[15][2] = {{0x00, 18}, {0x01, 22}, {0x02, 19},
{0x03, 18}, {0x06, 20}, {0x07, 20},
{0x0a, 20}, {0x0b, 20}, {0x0f, 18},
{0x10, 20},
{-1, 0}};
switch (config.type) {
case TYPE_GEMINI:
while (gem_event_bytes[x][0] != code && gem_event_bytes[x][0] != -1)
x++;
return gem_event_bytes[x][1];
break;
case TYPE_COMMANDER:
while (cmdr_event_bytes[x][0] != code && cmdr_event_bytes[x][0] != -1)
x++;
return cmdr_event_bytes[x][1];
break;
case TYPE_EMC:
while (emc_event_bytes[x][0] != code && emc_event_bytes[x][0] != -1)
x++;
return emc_event_bytes[x][1];
break;
}
return 0;
}
int cochran_dive_event_bytes(unsigned char event)
{
return (event == 0xAD || event == 0xAB) ? 4 : 0;
}
static void cochran_dive_event(struct divecomputer *dc, const unsigned char *s,
unsigned int seconds, unsigned int *in_deco,
unsigned int *deco_ceiling, unsigned int *deco_time)
{
switch (s[0]) {
case 0xC5: // Deco obligation begins
*in_deco = 1;
add_event(dc, seconds, SAMPLE_EVENT_DECOSTOP,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "deco stop"));
break;
case 0xDB: // Deco obligation ends
*in_deco = 0;
add_event(dc, seconds, SAMPLE_EVENT_DECOSTOP,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "deco stop"));
break;
case 0xAD: // Raise deco ceiling 10 ft
*deco_ceiling -= 10; // ft
*deco_time = (array_uint16_le(s + 3) + 1) * 60;
break;
case 0xAB: // Lower deco ceiling 10 ft
*deco_ceiling += 10; // ft
*deco_time = (array_uint16_le(s + 3) + 1) * 60;
break;
case 0xA8: // Entered Post Dive interval mode (surfaced)
break;
case 0xA9: // Exited PDI mode (re-submierged)
break;
case 0xBD: // Switched to normal PO2 setting
break;
case 0xC0: // Switched to FO2 21% mode (generally upon surface)
break;
case 0xC1: // "Ascent rate alarm
add_event(dc, seconds, SAMPLE_EVENT_ASCENT,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "ascent"));
break;
case 0xC2: // Low battery warning
#ifdef SAMPLE_EVENT_BATTERY
add_event(dc, seconds, SAMPLE_EVENT_BATTERY,
SAMPLE_FLAGS_NONE, 0,
QT_TRANSLATE_NOOP("gettextFromC", "battery"));
#endif
break;
case 0xC3: // CNS warning
add_event(dc, seconds, SAMPLE_EVENT_OLF,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "OLF"));
break;
case 0xC4: // Depth alarm begin
add_event(dc, seconds, SAMPLE_EVENT_MAXDEPTH,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "maxdepth"));
break;
case 0xC8: // PPO2 alarm begin
add_event(dc, seconds, SAMPLE_EVENT_PO2,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "PO2"));
break;
case 0xCC: // Low cylinder 1 pressure";
break;
case 0xCD: // Switch to deco blend setting
add_event(dc, seconds, SAMPLE_EVENT_GASCHANGE,
SAMPLE_FLAGS_NONE, 0,
QT_TRANSLATE_NOOP("gettextFromC", "gaschange"));
break;
case 0xCE: // NDL alarm begin
add_event(dc, seconds, SAMPLE_EVENT_RBT,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "rbt"));
break;
case 0xD0: // Breathing rate alarm begin
break;
case 0xD3: // Low gas 1 flow rate alarm begin";
break;
case 0xD6: // Ceiling alarm begin
add_event(dc, seconds, SAMPLE_EVENT_CEILING,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "ceiling"));
break;
case 0xD8: // End decompression mode
*in_deco = 0;
add_event(dc, seconds, SAMPLE_EVENT_DECOSTOP,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "deco stop"));
break;
case 0xE1: // Ascent alarm end
add_event(dc, seconds, SAMPLE_EVENT_ASCENT,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "ascent"));
break;
case 0xE2: // Low transmitter battery alarm
add_event(dc, seconds, SAMPLE_EVENT_TRANSMITTER,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "transmitter"));
break;
case 0xE3: // Switch to FO2 mode
break;
case 0xE5: // Switched to PO2 mode
break;
case 0xE8: // PO2 too low alarm
add_event(dc, seconds, SAMPLE_EVENT_PO2,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "PO2"));
break;
case 0xEE: // NDL alarm end
add_event(dc, seconds, SAMPLE_EVENT_RBT,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "rbt"));
break;
case 0xEF: // Switch to blend 2
add_event(dc, seconds, SAMPLE_EVENT_GASCHANGE,
SAMPLE_FLAGS_NONE, 0,
QT_TRANSLATE_NOOP("gettextFromC", "gaschange"));
break;
case 0xF0: // Breathing rate alarm end
break;
case 0xF3: // Switch to blend 1 (often at dive start)
add_event(dc, seconds, SAMPLE_EVENT_GASCHANGE,
SAMPLE_FLAGS_NONE, 0,
QT_TRANSLATE_NOOP("gettextFromC", "gaschange"));
break;
case 0xF6: // Ceiling alarm end
add_event(dc, seconds, SAMPLE_EVENT_CEILING,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "ceiling"));
break;
default:
break;
}
}
/*
* Parse sample data, extract events and build a dive
*/
static void cochran_parse_samples(struct dive *dive, const unsigned char *log,
const unsigned char *samples, int size,
unsigned int *duration, double *max_depth,
double *avg_depth, double *min_temp)
{
const unsigned char *s;
unsigned int offset = 0, seconds = 0;
double depth = 0, temp = 0, depth_sample = 0, psi = 0, sgc_rate = 0;
int ascent_rate = 0;
unsigned int ndl = 0;
unsigned int in_deco = 0, deco_ceiling = 0, deco_time = 0;
struct divecomputer *dc = &dive->dc;
struct sample *sample;
const struct cochran_cmdr_log_t *log_cmdr = (struct cochran_cmdr_log_t *) log;
const struct cochran_emc_log_t *log_emc = (struct cochran_emc_log_t *) log;
// Initialize stat variables
*max_depth = 0, *avg_depth = 0, *min_temp = 0xFF;
// Get starting depth and temp (tank PSI???)
switch (config.type) {
case TYPE_GEMINI:
depth = (float)(log_cmdr->start_depth[0]
+ log_cmdr->start_depth[1] * 256) / 4;
psi = log_cmdr->start_psi[0] + log_cmdr->start_psi[1] * 256;
sgc_rate = (float)(log_cmdr->start_sgc[0]
+ log_cmdr->start_sgc[1] * 256) / 2;
break;
case TYPE_COMMANDER:
depth = (float)(log_cmdr->start_depth[0]
+ log_cmdr->start_depth[1] * 256) / 4;
break;
case TYPE_EMC:
depth = (float)log_emc->start_depth[0] / 256
+ log_emc->start_depth[1];
temp = log_emc->start_temperature;
break;
}
// Skip past pre-dive events
unsigned int x = 0;
if (samples[x] != 0x40) {
unsigned int c;
while ((samples[x] & 0x80) == 0 && samples[x] != 0x40 && x < size) {
c = cochran_predive_event_bytes(samples[x]) + 1;
#ifdef COCHRAN_DEBUG
printf("Predive event: ", samples[x]);
for (int y = 0; y < c; y++) printf("%02x ", samples[x + y]);
putchar('\n');
#endif
x += c;
}
}
// Now process samples
offset = x;
while (offset < size) {
s = samples + offset;
// Start with an empty sample
sample = prepare_sample(dc);
sample->time.seconds = seconds;
// Check for event
if (s[0] & 0x80) {
cochran_dive_event(dc, s, seconds, &in_deco, &deco_ceiling, &deco_time);
offset += cochran_dive_event_bytes(s[0]) + 1;
continue;
}
// Depth is in every sample
depth_sample = (float)(s[0] & 0x3F) / 4 * (s[0] & 0x40 ? -1 : 1);
depth += depth_sample;
#ifdef COCHRAN_DEBUG
cochran_debug_sample(s, seconds);
#endif
switch (config.type) {
case TYPE_COMMANDER:
switch (seconds % 2) {
case 0: // Ascent rate
ascent_rate = (s[1] & 0x7f) * (s[1] & 0x80 ? 1: -1);
break;
case 1: // Temperature
temp = s[1] / 2 + 20;
break;
}
break;
case TYPE_GEMINI:
// Gemini with tank pressure and SAC rate.
switch (seconds % 4) {
case 0: // Ascent rate
ascent_rate = (s[1] & 0x7f) * (s[1] & 0x80 ? 1 : -1);
break;
case 2: // PSI change
psi -= (float)(s[1] & 0x7f) * (s[1] & 0x80 ? 1 : -1) / 4;
break;
case 1: // SGC rate
sgc_rate -= (float)(s[1] & 0x7f) * (s[1] & 0x80 ? 1 : -1) / 2;
break;
case 3: // Temperature
temp = (float)s[1] / 2 + 20;
break;
}
break;
case TYPE_EMC:
switch (seconds % 2) {
case 0: // Ascent rate
ascent_rate = (s[1] & 0x7f) * (s[1] & 0x80 ? 1: -1);
break;
case 1: // Temperature
temp = (float)s[1] / 2 + 20;
break;
}
// Get NDL and deco information
switch (seconds % 24) {
case 20:
if (in_deco) {
// Fist stop time
//first_deco_time = (s[2] + s[5] * 256 + 1) * 60; // seconds
ndl = 0;
} else {
// NDL
ndl = (s[2] + s[5] * 256 + 1) * 60; // seconds
deco_time = 0;
}
break;
case 22:
if (in_deco) {
// Total stop time
deco_time = (s[2] + s[5] * 256 + 1) * 60; // seconds
ndl = 0;
}
break;
}
}
// Track dive stats
if (depth > *max_depth) *max_depth = depth;
if (temp < *min_temp) *min_temp = temp;
*avg_depth = (*avg_depth * seconds + depth) / (seconds + 1);
sample->depth.mm = depth * FEET * 1000;
sample->ndl.seconds = ndl;
sample->in_deco = in_deco;
sample->stoptime.seconds = deco_time;
sample->stopdepth.mm = deco_ceiling * FEET * 1000;
sample->temperature.mkelvin = C_to_mkelvin((temp - 32) / 1.8);
sample->sensor = 0;
sample->cylinderpressure.mbar = psi * PSI / 100;
finish_sample(dc);
offset += config.sample_size;
seconds++;
}
(void)ascent_rate; // mark the variable as unused
if (seconds > 0)
*duration = seconds - 1;
}
static void cochran_parse_dive(const unsigned char *decode, unsigned mod,
const unsigned char *in, unsigned size)
{
unsigned char *buf = malloc(size);
struct dive *dive;
struct divecomputer *dc;
struct tm tm = {0};
uint32_t csum[5];
double max_depth, avg_depth, min_temp;
unsigned int duration = 0, corrupt_dive = 0;
/*
* The scrambling has odd boundaries. I think the boundaries
* match some data structure size, but I don't know. They were
* discovered the same way we dynamically discover the decode
* size: automatically looking for least random output.
*
* The boundaries are also this confused "off-by-one" thing,
* the same way the file size is off by one. It's as if the
* cochran software forgot to write one byte at the beginning.
*/
partial_decode(0, 0x0fff, decode, 1, mod, in, size, buf);
partial_decode(0x0fff, 0x1fff, decode, 0, mod, in, size, buf);
partial_decode(0x1fff, 0x2fff, decode, 0, mod, in, size, buf);
partial_decode(0x2fff, 0x48ff, decode, 0, mod, in, size, buf);
/*
* This is not all the descrambling you need - the above are just
* what appears to be the fixed-size blocks. The rest is also
* scrambled, but there seems to be size differences in the data,
* so this just descrambles part of it:
*/
// Decode log entry (512 bytes + random prefix)
partial_decode(0x48ff, 0x4914 + config.logbook_size, decode,
0, mod, in, size, buf);
unsigned int sample_size = size - 0x4914 - config.logbook_size;
int g;
// Decode sample data
partial_decode(0x4914 + config.logbook_size, size, decode,
0, mod, in, size, buf);
#ifdef COCHRAN_DEBUG
// Display pre-logbook data
puts("\nPre Logbook Data\n");
cochran_debug_write(buf, 0x4914);
// Display log book
puts("\nLogbook Data\n");
cochran_debug_write(buf + 0x4914, config.logbook_size + 0x400);
// Display sample data
puts("\nSample Data\n");
#endif
dive = alloc_dive();
dc = &dive->dc;
struct cochran_cmdr_log_t *cmdr_log = (struct cochran_cmdr_log_t *) (buf + 0x4914);
struct cochran_emc_log_t *emc_log = (struct cochran_emc_log_t *) (buf + 0x4914);
switch (config.type) {
case TYPE_GEMINI:
case TYPE_COMMANDER:
if (config.type == TYPE_GEMINI) {
dc->model = "Gemini";
dc->deviceid = buf[0x18c] * 256 + buf[0x18d]; // serial no
fill_default_cylinder(&dive->cylinder[0]);
dive->cylinder[0].gasmix.o2.permille = (cmdr_log->o2_percent[0][0] / 256
+ cmdr_log->o2_percent[0][1]) * 10;
dive->cylinder[0].gasmix.he.permille = 0;
} else {
dc->model = "Commander";
dc->deviceid = array_uint32_le(buf + 0x31e); // serial no
for (g = 0; g < 2; g++) {
fill_default_cylinder(&dive->cylinder[g]);
dive->cylinder[g].gasmix.o2.permille = (cmdr_log->o2_percent[g][0] / 256
+ cmdr_log->o2_percent[g][1]) * 10;
dive->cylinder[g].gasmix.he.permille = 0;
}
}
tm.tm_year = cmdr_log->year;
tm.tm_mon = cmdr_log->month - 1;
tm.tm_mday = cmdr_log->day;
tm.tm_hour = cmdr_log->hour;
tm.tm_min = cmdr_log->minutes;
tm.tm_sec = cmdr_log->seconds;
tm.tm_isdst = -1;
dive->when = dc->when = utc_mktime(&tm);
dive->number = cmdr_log->number[0] + cmdr_log->number[1] * 256 + 1;
dc->duration.seconds = (cmdr_log->bt[0] + cmdr_log->bt[1] * 256) * 60;
dc->surfacetime.seconds = (cmdr_log->sit[0] + cmdr_log->sit[1] * 256) * 60;
dc->maxdepth.mm = (cmdr_log->max_depth[0] +
cmdr_log->max_depth[1] * 256) / 4 * FEET * 1000;
dc->meandepth.mm = (cmdr_log->avg_depth[0] +
cmdr_log->avg_depth[1] * 256) / 4 * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((cmdr_log->temp / 32) - 1.8);
dc->surface_pressure.mbar = ATM / BAR * pow(1 - 0.0000225577
* (double) cmdr_log->altitude * 250 * FEET, 5.25588) * 1000;
dc->salinity = 10000 + 150 * emc_log->water_conductivity;
SHA1(cmdr_log->number, 2, (unsigned char *)csum);
dc->diveid = csum[0];
if (cmdr_log->max_depth[0] == 0xff && cmdr_log->max_depth[1] == 0xff)
corrupt_dive = 1;
break;
case TYPE_EMC:
dc->model = "EMC";
dc->deviceid = array_uint32_le(buf + 0x31e); // serial no
for (g = 0; g < 4; g++) {
fill_default_cylinder(&dive->cylinder[g]);
dive->cylinder[g].gasmix.o2.permille = (emc_log->o2_percent[g][0] / 256
+ emc_log->o2_percent[g][1]) * 10;
dive->cylinder[g].gasmix.he.permille = (emc_log->he_percent[g][0] / 256
+ emc_log->he_percent[g][1]) * 10;
}
tm.tm_year = emc_log->year;
tm.tm_mon = emc_log->month - 1;
tm.tm_mday = emc_log->day;
tm.tm_hour = emc_log->hour;
tm.tm_min = emc_log->minutes;
tm.tm_sec = emc_log->seconds;
tm.tm_isdst = -1;
dive->when = dc->when = utc_mktime(&tm);
dive->number = emc_log->number[0] + emc_log->number[1] * 256 + 1;
dc->duration.seconds = (emc_log->bt[0] + emc_log->bt[1] * 256) * 60;
dc->surfacetime.seconds = (emc_log->sit[0] + emc_log->sit[1] * 256) * 60;
dc->maxdepth.mm = (emc_log->max_depth[0] +
emc_log->max_depth[1] * 256) / 4 * FEET * 1000;
dc->meandepth.mm = (emc_log->avg_depth[0] +
emc_log->avg_depth[1] * 256) / 4 * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((emc_log->temp - 32) / 1.8);
dc->surface_pressure.mbar = ATM / BAR * pow(1 - 0.0000225577
* (double) emc_log->altitude * 250 * FEET, 5.25588) * 1000;
dc->salinity = 10000 + 150 * emc_log->water_conductivity;
SHA1(emc_log->number, 2, (unsigned char *)csum);
dc->diveid = csum[0];
if (emc_log->max_depth[0] == 0xff && emc_log->max_depth[1] == 0xff)
corrupt_dive = 1;
break;
}
cochran_parse_samples(dive, buf + 0x4914, buf + 0x4914
+ config.logbook_size, sample_size,
&duration, &max_depth, &avg_depth, &min_temp);
// Check for corrupt dive
if (corrupt_dive) {
dc->maxdepth.mm = max_depth * FEET * 1000;
dc->meandepth.mm = avg_depth * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((min_temp - 32) / 1.8);
dc->duration.seconds = duration;
}
dive->downloaded = true;
record_dive(dive);
mark_divelist_changed(true);
free(buf);
}
int try_to_open_cochran(const char *filename, struct memblock *mem)
{
unsigned int i;
unsigned int mod;
unsigned int *offsets, dive1, dive2;
unsigned char *decode = mem->buffer + 0x40001;
if (mem->size < 0x40000)
return 0;
offsets = (int *) mem->buffer;
dive1 = offsets[0];
dive2 = offsets[1];
if (dive1 < 0x40000 || dive2 < dive1 || dive2 > mem->size)
return 0;
mod = decode[0x100] + 1;
cochran_parse_header(decode, mod, mem->buffer + 0x40000, dive1 - 0x40000);
// Decode each dive
for (i = 0; i < 65534; i++) {
dive1 = offsets[i];
dive2 = offsets[i + 1];
if (dive2 < dive1)
break;
if (dive2 > mem->size)
break;
cochran_parse_dive(decode, mod, mem->buffer + dive1,
dive2 - dive1);
}
return 1; // no further processing needed
}