subsurface/qt-models/diveplotdatamodel.cpp
Tomaz Canabrava e49d6213ad Move qt-ui to desktop-widgets
Since we have now destkop and mobile versions, 'qt-ui' was a very
poor name choice for a folder that contains only destkop-enabled
widgets.

Also, move the graphicsview-common.h/cpp to subsurface-core because
it doesn't depend on qgraphicsview, it merely implements all the
colors that we use throughout Subsurface, and we will use colors on both
desktop and mobile versions

Same thing applies for metrics.h/cpp

Signed-off-by: Tomaz Canabrava <tomaz.canabrava@intel.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2015-10-30 10:36:49 -07:00

232 lines
5.9 KiB
C++

#include "diveplotdatamodel.h"
#include "dive.h"
#include "profile.h"
#include "divelist.h"
#include "subsurface-core/color.h"
DivePlotDataModel::DivePlotDataModel(QObject *parent) :
QAbstractTableModel(parent),
diveId(0),
dcNr(0)
{
memset(&pInfo, 0, sizeof(pInfo));
}
int DivePlotDataModel::columnCount(const QModelIndex &parent) const
{
return COLUMNS;
}
QVariant DivePlotDataModel::data(const QModelIndex &index, int role) const
{
if ((!index.isValid()) || (index.row() >= pInfo.nr))
return QVariant();
plot_data item = pInfo.entry[index.row()];
if (role == Qt::DisplayRole) {
switch (index.column()) {
case DEPTH:
return item.depth;
case TIME:
return item.sec;
case PRESSURE:
return item.pressure[0];
case TEMPERATURE:
return item.temperature;
case COLOR:
return item.velocity;
case USERENTERED:
return false;
case CYLINDERINDEX:
return item.cylinderindex;
case SENSOR_PRESSURE:
return item.pressure[0];
case INTERPOLATED_PRESSURE:
return item.pressure[1];
case CEILING:
return item.ceiling;
case SAC:
return item.sac;
case PN2:
return item.pressures.n2;
case PHE:
return item.pressures.he;
case PO2:
return item.pressures.o2;
case O2SETPOINT:
return item.o2setpoint.mbar / 1000.0;
case CCRSENSOR1:
return item.o2sensor[0].mbar / 1000.0;
case CCRSENSOR2:
return item.o2sensor[1].mbar / 1000.0;
case CCRSENSOR3:
return item.o2sensor[2].mbar / 1000.0;
case HEARTBEAT:
return item.heartbeat;
case AMBPRESSURE:
return AMB_PERCENTAGE;
case GFLINE:
return item.gfline;
case INSTANT_MEANDEPTH:
return item.running_sum;
}
}
if (role == Qt::DisplayRole && index.column() >= TISSUE_1 && index.column() <= TISSUE_16) {
return item.ceilings[index.column() - TISSUE_1];
}
if (role == Qt::DisplayRole && index.column() >= PERCENTAGE_1 && index.column() <= PERCENTAGE_16) {
return item.percentages[index.column() - PERCENTAGE_1];
}
if (role == Qt::BackgroundRole) {
switch (index.column()) {
case COLOR:
return getColor((color_indice_t)(VELOCITY_COLORS_START_IDX + item.velocity));
}
}
return QVariant();
}
const plot_info &DivePlotDataModel::data() const
{
return pInfo;
}
int DivePlotDataModel::rowCount(const QModelIndex &parent) const
{
return pInfo.nr;
}
QVariant DivePlotDataModel::headerData(int section, Qt::Orientation orientation, int role) const
{
if (orientation != Qt::Horizontal)
return QVariant();
if (role != Qt::DisplayRole)
return QVariant();
switch (section) {
case DEPTH:
return tr("Depth");
case TIME:
return tr("Time");
case PRESSURE:
return tr("Pressure");
case TEMPERATURE:
return tr("Temperature");
case COLOR:
return tr("Color");
case USERENTERED:
return tr("User entered");
case CYLINDERINDEX:
return tr("Cylinder index");
case SENSOR_PRESSURE:
return tr("Pressure S");
case INTERPOLATED_PRESSURE:
return tr("Pressure I");
case CEILING:
return tr("Ceiling");
case SAC:
return tr("SAC");
case PN2:
return tr("pN₂");
case PHE:
return tr("pHe");
case PO2:
return tr("pO₂");
case O2SETPOINT:
return tr("Setpoint");
case CCRSENSOR1:
return tr("Sensor 1");
case CCRSENSOR2:
return tr("Sensor 2");
case CCRSENSOR3:
return tr("Sensor 3");
case AMBPRESSURE:
return tr("Ambient pressure");
case HEARTBEAT:
return tr("Heart rate");
case GFLINE:
return tr("Gradient factor");
case INSTANT_MEANDEPTH:
return tr("Mean depth @ s");
}
if (role == Qt::DisplayRole && section >= TISSUE_1 && section <= TISSUE_16) {
return QString("Ceiling: %1").arg(section - TISSUE_1);
}
if (role == Qt::DisplayRole && section >= PERCENTAGE_1 && section <= PERCENTAGE_16) {
return QString("Tissue: %1").arg(section - PERCENTAGE_1);
}
return QVariant();
}
void DivePlotDataModel::clear()
{
if (rowCount() != 0) {
beginRemoveRows(QModelIndex(), 0, rowCount() - 1);
pInfo.nr = 0;
diveId = -1;
dcNr = -1;
endRemoveRows();
}
}
void DivePlotDataModel::setDive(dive *d, const plot_info &info)
{
clear();
Q_ASSERT(d != NULL);
diveId = d->id;
dcNr = dc_number;
pInfo = info;
beginInsertRows(QModelIndex(), 0, pInfo.nr - 1);
endInsertRows();
}
unsigned int DivePlotDataModel::dcShown() const
{
return dcNr;
}
#define MAX_PPGAS_FUNC(GAS, GASFUNC) \
double DivePlotDataModel::GASFUNC() \
{ \
double ret = -1; \
for (int i = 0, count = rowCount(); i < count; i++) { \
if (pInfo.entry[i].pressures.GAS > ret) \
ret = pInfo.entry[i].pressures.GAS; \
} \
return ret; \
}
#define MAX_SENSOR_GAS_FUNC(GASFUNC) \
double DivePlotDataModel::GASFUNC() /* CCR: This function finds the largest measured po2 value */ \
{ /* by scanning the readings from the three individual o2 sensors. */ \
double ret = -1; /* This is used for scaling the Y-axis for partial pressures */ \
for (int s = 0; s < 3; s++) { /* when displaying the graphs for individual o2 sensors */ \
for (int i = 0, count = rowCount(); i < count; i++) { /* POTENTIAL PROBLEM: the '3' (no_sensors) is hard-coded here */\
if (pInfo.entry[i].o2sensor[s].mbar > ret) \
ret = pInfo.entry[i].o2sensor[s].mbar; \
} \
} \
return (ret / 1000.0); /* mbar -> bar conversion */ \
}
MAX_PPGAS_FUNC(he, pheMax);
MAX_PPGAS_FUNC(n2, pn2Max);
MAX_PPGAS_FUNC(o2, po2Max);
MAX_SENSOR_GAS_FUNC(CCRMax);
void DivePlotDataModel::emitDataChanged()
{
emit dataChanged(QModelIndex(), QModelIndex());
}
void DivePlotDataModel::calculateDecompression()
{
struct divecomputer *dc = select_dc(&displayed_dive);
init_decompression(&displayed_dive);
calculate_deco_information(&displayed_dive, dc, &pInfo, false);
dataChanged(index(0, CEILING), index(pInfo.nr - 1, TISSUE_16));
}