mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-28 05:00:20 +00:00
a1e6df46d9
Nothing against free-standing functions, but in the case of dc_watertemp(), dc_airtemp(), endtime() and totaltime(), it seems natural to move this into the dive class and avoid polution of the global name space. Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
3113 lines
88 KiB
C++
3113 lines
88 KiB
C++
// SPDX-License-Identifier: GPL-2.0
|
|
/* dive.cpp */
|
|
/* maintains the internal dive list structure */
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <limits.h>
|
|
#include <memory>
|
|
#include "dive.h"
|
|
#include "gettext.h"
|
|
#include "subsurface-string.h"
|
|
#include "libdivecomputer.h"
|
|
#include "device.h"
|
|
#include "divelist.h"
|
|
#include "divelog.h"
|
|
#include "divesite.h"
|
|
#include "errorhelper.h"
|
|
#include "event.h"
|
|
#include "extradata.h"
|
|
#include "format.h"
|
|
#include "interpolate.h"
|
|
#include "qthelper.h"
|
|
#include "membuffer.h"
|
|
#include "picture.h"
|
|
#include "range.h"
|
|
#include "sample.h"
|
|
#include "tag.h"
|
|
#include "trip.h"
|
|
#include "structured_list.h"
|
|
#include "fulltext.h"
|
|
|
|
// For user visible text but still not translated
|
|
const char *divemode_text_ui[] = {
|
|
QT_TRANSLATE_NOOP("gettextFromC", "Open circuit"),
|
|
QT_TRANSLATE_NOOP("gettextFromC", "CCR"),
|
|
QT_TRANSLATE_NOOP("gettextFromC", "pSCR"),
|
|
QT_TRANSLATE_NOOP("gettextFromC", "Freedive")
|
|
};
|
|
|
|
// For writing/reading files.
|
|
const char *divemode_text[] = {"OC", "CCR", "PSCR", "Freedive"};
|
|
|
|
static double calculate_depth_to_mbarf(int depth, pressure_t surface_pressure, int salinity);
|
|
|
|
// It's the "manually added" divecomputer.
|
|
// Even for dives without divecomputer, we allocate a divecomputer structure.
|
|
dive::dive() : dcs(1)
|
|
{
|
|
id = dive_getUniqID();
|
|
}
|
|
|
|
dive::dive(const dive &) = default;
|
|
dive::dive(dive &&) = default;
|
|
dive &dive::operator=(const dive &) = default;
|
|
dive::~dive() = default;
|
|
|
|
/*
|
|
* The legacy format for sample pressures has a single pressure
|
|
* for each sample that can have any sensor, plus a possible
|
|
* "o2pressure" that is fixed to the Oxygen sensor for a CCR dive.
|
|
*
|
|
* For more complex pressure data, we have to use explicit
|
|
* cylinder indices for each sample.
|
|
*
|
|
* This function returns a negative number for "no legacy mode",
|
|
* or a non-negative number that indicates the o2 sensor index.
|
|
*/
|
|
int legacy_format_o2pressures(const struct dive *dive, const struct divecomputer *dc)
|
|
{
|
|
int o2sensor;
|
|
|
|
o2sensor = (dc->divemode == CCR) ? get_cylinder_idx_by_use(dive, OXYGEN) : -1;
|
|
for (const auto &s: dc->samples) {
|
|
int seen_pressure = 0, idx;
|
|
|
|
for (idx = 0; idx < MAX_SENSORS; idx++) {
|
|
int sensor = s.sensor[idx];
|
|
pressure_t p = s.pressure[idx];
|
|
|
|
if (!p.mbar)
|
|
continue;
|
|
if (sensor == o2sensor)
|
|
continue;
|
|
if (seen_pressure)
|
|
return -1;
|
|
seen_pressure = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use legacy mode: if we have no O2 sensor we return a
|
|
* positive sensor index that is guaranmteed to not match
|
|
* any sensor (we encode it as 8 bits).
|
|
*/
|
|
return o2sensor < 0 ? 256 : o2sensor;
|
|
}
|
|
|
|
/* warning: does not test idx for validity */
|
|
struct event create_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx)
|
|
{
|
|
/* The gas switch event format is insane for historical reasons */
|
|
struct gasmix mix = get_cylinder(dive, idx)->gasmix;
|
|
int o2 = get_o2(mix);
|
|
int he = get_he(mix);
|
|
|
|
o2 = (o2 + 5) / 10;
|
|
he = (he + 5) / 10;
|
|
int value = o2 + (he << 16);
|
|
|
|
struct event ev(seconds, he ? SAMPLE_EVENT_GASCHANGE2 : SAMPLE_EVENT_GASCHANGE, 0, value, "gaschange");
|
|
ev.gas.index = idx;
|
|
ev.gas.mix = mix;
|
|
return ev;
|
|
}
|
|
|
|
void add_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx)
|
|
{
|
|
/* sanity check so we don't crash */
|
|
/* FIXME: The planner uses a dummy cylinder one past the official number of cylinders
|
|
* in the table to mark no-cylinder surface interavals. This is horrendous. Fix ASAP. */
|
|
//if (idx < 0 || idx >= dive->cylinders.size()) {
|
|
if (idx < 0 || static_cast<size_t>(idx) >= dive->cylinders.size() + 1) {
|
|
report_error("Unknown cylinder index: %d", idx);
|
|
return;
|
|
}
|
|
struct event ev = create_gas_switch_event(dive, dc, seconds, idx);
|
|
add_event_to_dc(dc, std::move(ev));
|
|
}
|
|
|
|
struct gasmix get_gasmix_from_event(const struct dive *dive, const struct event &ev)
|
|
{
|
|
if (ev.is_gaschange()) {
|
|
int index = ev.gas.index;
|
|
// FIXME: The planner uses one past cylinder-count to signify "surface air". Remove in due course.
|
|
if (index >= 0 && static_cast<size_t>(index) < dive->cylinders.size() + 1)
|
|
return get_cylinder(dive, index)->gasmix;
|
|
return ev.gas.mix;
|
|
}
|
|
return gasmix_air;
|
|
}
|
|
|
|
// we need this to be uniq. oh, and it has no meaning whatsoever
|
|
// - that's why we have the silly initial number and increment by 3 :-)
|
|
int dive_getUniqID()
|
|
{
|
|
static int maxId = 83529;
|
|
maxId += 3;
|
|
return maxId;
|
|
}
|
|
|
|
static void dc_cylinder_renumber(struct dive &dive, struct divecomputer &dc, const int mapping[]);
|
|
|
|
/* copy dive computer list and renumber the cylinders */
|
|
static void copy_dc_renumber(struct dive &d, const struct dive &s, const int cylinders_map[])
|
|
{
|
|
for (const divecomputer &dc: s.dcs) {
|
|
d.dcs.push_back(dc);
|
|
dc_cylinder_renumber(d, d.dcs.back(), cylinders_map);
|
|
}
|
|
}
|
|
|
|
/* copy_dive makes duplicates of many components of a dive;
|
|
* in order not to leak memory, we need to free those.
|
|
* copy_dive doesn't play with the divetrip and forward/backward pointers
|
|
* so we can ignore those */
|
|
void clear_dive(struct dive *d)
|
|
{
|
|
if (!d)
|
|
return;
|
|
fulltext_unregister(d);
|
|
*d = dive();
|
|
}
|
|
|
|
/* make a true copy that is independent of the source dive;
|
|
* all data structures are duplicated, so the copy can be modified without
|
|
* any impact on the source */
|
|
void copy_dive(const struct dive *s, struct dive *d)
|
|
{
|
|
/* simply copy things over, but then clear fulltext cache and dive cache. */
|
|
*d = *s;
|
|
invalidate_dive_cache(d);
|
|
}
|
|
|
|
/* make a clone of the source dive and clean out the source dive;
|
|
* this allows us to create a dive on the stack and then
|
|
* add it to the divelist. */
|
|
struct std::unique_ptr<dive> move_dive(struct dive *s)
|
|
{
|
|
auto d = std::make_unique<dive>();
|
|
std::swap(*s, *d);
|
|
return d;
|
|
}
|
|
|
|
#define CONDITIONAL_COPY_STRING(_component) \
|
|
if (what._component) \
|
|
d->_component = s->_component
|
|
|
|
// copy elements, depending on bits in what that are set
|
|
void selective_copy_dive(const struct dive *s, struct dive *d, struct dive_components what, bool clear)
|
|
{
|
|
if (clear)
|
|
clear_dive(d);
|
|
CONDITIONAL_COPY_STRING(notes);
|
|
CONDITIONAL_COPY_STRING(diveguide);
|
|
CONDITIONAL_COPY_STRING(buddy);
|
|
CONDITIONAL_COPY_STRING(suit);
|
|
if (what.rating)
|
|
d->rating = s->rating;
|
|
if (what.visibility)
|
|
d->visibility = s->visibility;
|
|
if (what.divesite) {
|
|
unregister_dive_from_dive_site(d);
|
|
s->dive_site->add_dive(d);
|
|
}
|
|
if (what.tags)
|
|
d->tags = s->tags;
|
|
if (what.cylinders)
|
|
copy_cylinder_types(s, d);
|
|
if (what.weights)
|
|
d->weightsystems = s->weightsystems;
|
|
if (what.number)
|
|
d->number = s->number;
|
|
if (what.when)
|
|
d->when = s->when;
|
|
}
|
|
#undef CONDITIONAL_COPY_STRING
|
|
|
|
/* copies all events from the given dive computer before a given time
|
|
this is used when editing a dive in the planner to preserve the events
|
|
of the old dive */
|
|
void copy_events_until(const struct dive *sd, struct dive *dd, int dcNr, int time)
|
|
{
|
|
if (!sd || !dd)
|
|
return;
|
|
|
|
const struct divecomputer *s = &sd->dcs[0];
|
|
struct divecomputer *d = get_dive_dc(dd, dcNr);
|
|
|
|
if (!s || !d)
|
|
return;
|
|
|
|
for (const auto &ev: s->events) {
|
|
// Don't add events the planner knows about
|
|
if (ev.time.seconds < time && !ev.is_gaschange() && !ev.is_divemodechange())
|
|
add_event(d, ev.time.seconds, ev.type, ev.flags, ev.value, ev.name);
|
|
}
|
|
}
|
|
|
|
void copy_used_cylinders(const struct dive *s, struct dive *d, bool used_only)
|
|
{
|
|
if (!s || !d)
|
|
return;
|
|
|
|
d->cylinders.clear();
|
|
for (auto [i, cyl]: enumerated_range(s->cylinders)) {
|
|
if (!used_only || is_cylinder_used(s, i) || get_cylinder(s, i)->cylinder_use == NOT_USED)
|
|
d->cylinders.push_back(cyl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* So when we re-calculate maxdepth and meandepth, we will
|
|
* not override the old numbers if they are close to the
|
|
* new ones.
|
|
*
|
|
* Why? Because a dive computer may well actually track the
|
|
* max. depth and mean depth at finer granularity than the
|
|
* samples it stores. So it's possible that the max and mean
|
|
* have been reported more correctly originally.
|
|
*
|
|
* Only if the values calculated from the samples are clearly
|
|
* different do we override the normal depth values.
|
|
*
|
|
* This considers 1m to be "clearly different". That's
|
|
* a totally random number.
|
|
*/
|
|
static void update_depth(depth_t *depth, int new_depth)
|
|
{
|
|
if (new_depth) {
|
|
int old = depth->mm;
|
|
|
|
if (abs(old - new_depth) > 1000)
|
|
depth->mm = new_depth;
|
|
}
|
|
}
|
|
|
|
static void update_temperature(temperature_t *temperature, int new_temp)
|
|
{
|
|
if (new_temp) {
|
|
int old = temperature->mkelvin;
|
|
|
|
if (abs(old - new_temp) > 1000)
|
|
temperature->mkelvin = new_temp;
|
|
}
|
|
}
|
|
|
|
/* Which cylinders had gas used? */
|
|
#define SOME_GAS 5000
|
|
static bool cylinder_used(const cylinder_t &cyl)
|
|
{
|
|
int start_mbar, end_mbar;
|
|
|
|
start_mbar = cyl.start.mbar ?: cyl.sample_start.mbar;
|
|
end_mbar = cyl.end.mbar ?: cyl.sample_end.mbar;
|
|
|
|
// More than 5 bar used? This matches statistics.cpp
|
|
// heuristics
|
|
return start_mbar > end_mbar + SOME_GAS;
|
|
}
|
|
|
|
/* Get list of used cylinders. Returns the number of used cylinders. */
|
|
static int get_cylinder_used(const struct dive *dive, bool used[])
|
|
{
|
|
int num = 0;
|
|
|
|
for (auto [i, cyl]: enumerated_range(dive->cylinders)) {
|
|
used[i] = cylinder_used(cyl);
|
|
if (used[i])
|
|
num++;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
/* Are there any used cylinders which we do not know usage about? */
|
|
static bool has_unknown_used_cylinders(const struct dive *dive, const struct divecomputer *dc,
|
|
const bool used_cylinders[], int num)
|
|
{
|
|
int idx;
|
|
auto used_and_unknown = std::make_unique<bool[]>(dive->cylinders.size());
|
|
std::copy(used_cylinders, used_cylinders + dive->cylinders.size(), used_and_unknown.get());
|
|
|
|
/* We know about using the O2 cylinder in a CCR dive */
|
|
if (dc->divemode == CCR) {
|
|
int o2_cyl = get_cylinder_idx_by_use(dive, OXYGEN);
|
|
if (o2_cyl >= 0 && used_and_unknown[o2_cyl]) {
|
|
used_and_unknown[o2_cyl] = false;
|
|
num--;
|
|
}
|
|
}
|
|
|
|
/* We know about the explicit first cylinder (or first) */
|
|
idx = explicit_first_cylinder(dive, dc);
|
|
if (idx >= 0 && used_and_unknown[idx]) {
|
|
used_and_unknown[idx] = false;
|
|
num--;
|
|
}
|
|
|
|
/* And we have possible switches to other gases */
|
|
event_loop loop("gaschange");
|
|
const struct event *ev;
|
|
while ((ev = loop.next(*dc)) != nullptr && num > 0) {
|
|
idx = get_cylinder_index(dive, *ev);
|
|
if (idx >= 0 && used_and_unknown[idx]) {
|
|
used_and_unknown[idx] = false;
|
|
num--;
|
|
}
|
|
}
|
|
|
|
return num > 0;
|
|
}
|
|
|
|
void per_cylinder_mean_depth(const struct dive *dive, struct divecomputer *dc, int *mean, int *duration)
|
|
{
|
|
int32_t lasttime = 0;
|
|
int lastdepth = 0;
|
|
int idx = 0;
|
|
int num_used_cylinders;
|
|
|
|
if (dive->cylinders.empty())
|
|
return;
|
|
|
|
for (size_t i = 0; i < dive->cylinders.size(); i++)
|
|
mean[i] = duration[i] = 0;
|
|
if (!dc)
|
|
return;
|
|
|
|
/*
|
|
* There is no point in doing per-cylinder information
|
|
* if we don't actually know about the usage of all the
|
|
* used cylinders.
|
|
*/
|
|
auto used_cylinders = std::make_unique<bool[]>(dive->cylinders.size());
|
|
num_used_cylinders = get_cylinder_used(dive, used_cylinders.get());
|
|
if (has_unknown_used_cylinders(dive, dc, used_cylinders.get(), num_used_cylinders)) {
|
|
/*
|
|
* If we had more than one used cylinder, but
|
|
* do not know usage of them, we simply cannot
|
|
* account mean depth to them.
|
|
*/
|
|
if (num_used_cylinders > 1)
|
|
return;
|
|
|
|
/*
|
|
* For a single cylinder, use the overall mean
|
|
* and duration
|
|
*/
|
|
for (size_t i = 0; i < dive->cylinders.size(); i++) {
|
|
if (used_cylinders[i]) {
|
|
mean[i] = dc->meandepth.mm;
|
|
duration[i] = dc->duration.seconds;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
if (dc->samples.empty())
|
|
fake_dc(dc);
|
|
event_loop loop("gaschange");
|
|
const struct event *ev = loop.next(*dc);
|
|
std::vector<int> depthtime(dive->cylinders.size(), 0);
|
|
for (auto it = dc->samples.begin(); it != dc->samples.end(); ++it) {
|
|
int32_t time = it->time.seconds;
|
|
int depth = it->depth.mm;
|
|
|
|
/* Make sure to move the event past 'lasttime' */
|
|
while (ev && lasttime >= ev->time.seconds) {
|
|
idx = get_cylinder_index(dive, *ev);
|
|
ev = loop.next(*dc);
|
|
}
|
|
|
|
/* Do we need to fake a midway sample at an event? */
|
|
if (ev && it != dc->samples.begin() && time > ev->time.seconds) {
|
|
int newtime = ev->time.seconds;
|
|
int newdepth = interpolate(lastdepth, depth, newtime - lasttime, time - lasttime);
|
|
|
|
time = newtime;
|
|
depth = newdepth;
|
|
--it;
|
|
}
|
|
/* We ignore segments at the surface */
|
|
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
|
|
duration[idx] += time - lasttime;
|
|
depthtime[idx] += (time - lasttime) * (depth + lastdepth) / 2;
|
|
}
|
|
lastdepth = depth;
|
|
lasttime = time;
|
|
}
|
|
for (size_t i = 0; i < dive->cylinders.size(); i++) {
|
|
if (duration[i])
|
|
mean[i] = (depthtime[i] + duration[i] / 2) / duration[i];
|
|
}
|
|
}
|
|
|
|
static void update_min_max_temperatures(struct dive *dive, temperature_t temperature)
|
|
{
|
|
if (temperature.mkelvin) {
|
|
if (!dive->maxtemp.mkelvin || temperature.mkelvin > dive->maxtemp.mkelvin)
|
|
dive->maxtemp = temperature;
|
|
if (!dive->mintemp.mkelvin || temperature.mkelvin < dive->mintemp.mkelvin)
|
|
dive->mintemp = temperature;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the cylinder tank pressures are within half a bar
|
|
* (about 8 PSI) of the sample pressures, we consider it
|
|
* to be a rounding error, and throw them away as redundant.
|
|
*/
|
|
static int same_rounded_pressure(pressure_t a, pressure_t b)
|
|
{
|
|
return abs(a.mbar - b.mbar) <= 500;
|
|
}
|
|
|
|
/* Some dive computers (Cobalt) don't start the dive with cylinder 0 but explicitly
|
|
* tell us what the first gas is with a gas change event in the first sample.
|
|
* Sneakily we'll use a return value of 0 (or FALSE) when there is no explicit
|
|
* first cylinder - in which case cylinder 0 is indeed the first cylinder.
|
|
* We likewise return 0 if the event concerns a cylinder that doesn't exist.
|
|
* If the dive has no cylinders, -1 is returned. */
|
|
int explicit_first_cylinder(const struct dive *dive, const struct divecomputer *dc)
|
|
{
|
|
int res = 0;
|
|
if (dive->cylinders.empty())
|
|
return -1;
|
|
if (dc) {
|
|
const struct event *ev = get_first_event(*dc, "gaschange");
|
|
if (ev && ((!dc->samples.empty() && ev->time.seconds == dc->samples[0].time.seconds) || ev->time.seconds <= 1))
|
|
res = get_cylinder_index(dive, *ev);
|
|
else if (dc->divemode == CCR)
|
|
res = std::max(get_cylinder_idx_by_use(dive, DILUENT), res);
|
|
}
|
|
return static_cast<size_t>(res) < dive->cylinders.size() ? res : 0;
|
|
}
|
|
|
|
/* this gets called when the dive mode has changed (so OC vs. CC)
|
|
* there are two places we might have setpoints... events or in the samples
|
|
*/
|
|
void update_setpoint_events(const struct dive *dive, struct divecomputer *dc)
|
|
{
|
|
int new_setpoint = 0;
|
|
|
|
if (dc->divemode == CCR)
|
|
new_setpoint = prefs.defaultsetpoint;
|
|
|
|
if (dc->divemode == OC &&
|
|
(dc->model == "Shearwater Predator" ||
|
|
dc->model == "Shearwater Petrel" ||
|
|
dc->model == "Shearwater Nerd")) {
|
|
// make sure there's no setpoint in the samples
|
|
// this is an irreversible change - so switching a dive to OC
|
|
// by mistake when it's actually CCR is _bad_
|
|
// So we make sure, this comes from a Predator or Petrel and we only remove
|
|
// pO2 values we would have computed anyway.
|
|
event_loop loop("gaschange");
|
|
const struct event *ev = loop.next(*dc);
|
|
struct gasmix gasmix = get_gasmix_from_event(dive, *ev);
|
|
const struct event *next = loop.next(*dc);
|
|
|
|
for (auto &sample: dc->samples) {
|
|
if (next && sample.time.seconds >= next->time.seconds) {
|
|
ev = next;
|
|
gasmix = get_gasmix_from_event(dive, *ev);
|
|
next = loop.next(*dc);
|
|
}
|
|
gas_pressures pressures = fill_pressures(lrint(calculate_depth_to_mbarf(sample.depth.mm, dc->surface_pressure, 0)), gasmix ,0, dc->divemode);
|
|
if (abs(sample.setpoint.mbar - (int)(1000 * pressures.o2)) <= 50)
|
|
sample.setpoint.mbar = 0;
|
|
}
|
|
}
|
|
|
|
// an "SP change" event at t=0 is currently our marker for OC vs CCR
|
|
// this will need to change to a saner setup, but for now we can just
|
|
// check if such an event is there and adjust it, or add that event
|
|
struct event *ev = get_first_event(*dc, "SP change");
|
|
if (ev && ev->time.seconds == 0) {
|
|
ev->value = new_setpoint;
|
|
} else {
|
|
if (!add_event(dc, 0, SAMPLE_EVENT_PO2, 0, new_setpoint, "SP change"))
|
|
report_info("Could not add setpoint change event");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if the size/workingpressure looks like some standard cylinder
|
|
* size, eg "AL80".
|
|
*
|
|
* NOTE! We don't take compressibility into account when naming
|
|
* cylinders. That makes a certain amount of sense, since the
|
|
* cylinder name is independent from the gasmix, and different
|
|
* gasmixes have different compressibility.
|
|
*/
|
|
static void match_standard_cylinder(cylinder_type_t &type)
|
|
{
|
|
/* Do we already have a cylinder description? */
|
|
if (!type.description.empty())
|
|
return;
|
|
|
|
double bar = type.workingpressure.mbar / 1000.0;
|
|
double cuft = ml_to_cuft(type.size.mliter);
|
|
cuft *= bar_to_atm(bar);
|
|
int psi = lrint(to_PSI(type.workingpressure));
|
|
|
|
const char *fmt;
|
|
switch (psi) {
|
|
case 2300 ... 2500: /* 2400 psi: LP tank */
|
|
fmt = "LP%d";
|
|
break;
|
|
case 2600 ... 2700: /* 2640 psi: LP+10% */
|
|
fmt = "LP%d";
|
|
break;
|
|
case 2900 ... 3100: /* 3000 psi: ALx tank */
|
|
fmt = "AL%d";
|
|
break;
|
|
case 3400 ... 3500: /* 3442 psi: HP tank */
|
|
fmt = "HP%d";
|
|
break;
|
|
case 3700 ... 3850: /* HP+10% */
|
|
fmt = "HP%d+";
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
type.description = format_string_std(fmt, (int)lrint(cuft));
|
|
}
|
|
|
|
/*
|
|
* There are two ways to give cylinder size information:
|
|
* - total amount of gas in cuft (depends on working pressure and physical size)
|
|
* - physical size
|
|
*
|
|
* where "physical size" is the one that actually matters and is sane.
|
|
*
|
|
* We internally use physical size only. But we save the workingpressure
|
|
* so that we can do the conversion if required.
|
|
*/
|
|
static void sanitize_cylinder_type(cylinder_type_t &type)
|
|
{
|
|
/* If we have no working pressure, it had *better* be just a physical size! */
|
|
if (!type.workingpressure.mbar)
|
|
return;
|
|
|
|
/* No size either? Nothing to go on */
|
|
if (!type.size.mliter)
|
|
return;
|
|
|
|
/* Ok, we have both size and pressure: try to match a description */
|
|
match_standard_cylinder(type);
|
|
}
|
|
|
|
static void sanitize_cylinder_info(struct dive *dive)
|
|
{
|
|
for (auto &cyl :dive->cylinders) {
|
|
sanitize_gasmix(cyl.gasmix);
|
|
sanitize_cylinder_type(cyl.type);
|
|
}
|
|
}
|
|
|
|
/* some events should never be thrown away */
|
|
static bool is_potentially_redundant(const struct event &event)
|
|
{
|
|
if (event.name == "gaschange")
|
|
return false;
|
|
if (event.name == "bookmark")
|
|
return false;
|
|
if (event.name == "heading")
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
pressure_t calculate_surface_pressure(const struct dive *dive)
|
|
{
|
|
pressure_t res;
|
|
int sum = 0, nr = 0;
|
|
|
|
bool logged = dive->is_logged();
|
|
for (auto &dc: dive->dcs) {
|
|
if ((logged || !is_dc_planner(&dc)) && dc.surface_pressure.mbar) {
|
|
sum += dc.surface_pressure.mbar;
|
|
nr++;
|
|
}
|
|
}
|
|
res.mbar = nr ? (sum + nr / 2) / nr : 0;
|
|
return res;
|
|
}
|
|
|
|
static void fixup_surface_pressure(struct dive *dive)
|
|
{
|
|
dive->surface_pressure = calculate_surface_pressure(dive);
|
|
}
|
|
|
|
/* if the surface pressure in the dive data is redundant to the calculated
|
|
* value (i.e., it was added by running fixup on the dive) return 0,
|
|
* otherwise return the surface pressure given in the dive */
|
|
pressure_t un_fixup_surface_pressure(const struct dive *d)
|
|
{
|
|
pressure_t res = d->surface_pressure;
|
|
if (res.mbar && res.mbar == calculate_surface_pressure(d).mbar)
|
|
res.mbar = 0;
|
|
return res;
|
|
}
|
|
|
|
static void fixup_water_salinity(struct dive *dive)
|
|
{
|
|
int sum = 0, nr = 0;
|
|
|
|
bool logged = dive->is_logged();
|
|
for (auto &dc: dive->dcs) {
|
|
if ((logged || !is_dc_planner(&dc)) && dc.salinity) {
|
|
if (dc.salinity < 500)
|
|
dc.salinity += FRESHWATER_SALINITY;
|
|
sum += dc.salinity;
|
|
nr++;
|
|
}
|
|
}
|
|
if (nr)
|
|
dive->salinity = (sum + nr / 2) / nr;
|
|
}
|
|
|
|
int get_dive_salinity(const struct dive *dive)
|
|
{
|
|
return dive->user_salinity ? dive->user_salinity : dive->salinity;
|
|
}
|
|
|
|
static void fixup_meandepth(struct dive *dive)
|
|
{
|
|
int sum = 0, nr = 0;
|
|
|
|
bool logged = dive->is_logged();
|
|
for (auto &dc: dive->dcs) {
|
|
if ((logged || !is_dc_planner(&dc)) && dc.meandepth.mm) {
|
|
sum += dc.meandepth.mm;
|
|
nr++;
|
|
}
|
|
}
|
|
|
|
if (nr)
|
|
dive->meandepth.mm = (sum + nr / 2) / nr;
|
|
}
|
|
|
|
static void fixup_duration(struct dive *dive)
|
|
{
|
|
duration_t duration = { };
|
|
|
|
bool logged = dive->is_logged();
|
|
for (auto &dc: dive->dcs) {
|
|
if (logged || !is_dc_planner(&dc))
|
|
duration.seconds = std::max(duration.seconds, dc.duration.seconds);
|
|
}
|
|
dive->duration.seconds = duration.seconds;
|
|
}
|
|
|
|
static void fixup_watertemp(struct dive *dive)
|
|
{
|
|
if (!dive->watertemp.mkelvin)
|
|
dive->watertemp = dive->dc_watertemp();
|
|
}
|
|
|
|
static void fixup_airtemp(struct dive *dive)
|
|
{
|
|
if (!dive->airtemp.mkelvin)
|
|
dive->airtemp = dive->dc_airtemp();
|
|
}
|
|
|
|
/* if the air temperature in the dive data is redundant to the one in its
|
|
* first divecomputer (i.e., it was added by running fixup on the dive)
|
|
* return 0, otherwise return the air temperature given in the dive */
|
|
static temperature_t un_fixup_airtemp(const struct dive &a)
|
|
{
|
|
return a.airtemp.mkelvin == a.dc_airtemp().mkelvin ?
|
|
temperature_t() : a.airtemp;
|
|
}
|
|
|
|
/*
|
|
* events are stored as a linked list, so the concept of
|
|
* "consecutive, identical events" is somewhat hard to
|
|
* implement correctly (especially given that on some dive
|
|
* computers events are asynchronous, so they can come in
|
|
* between what would be the non-constant sample rate).
|
|
*
|
|
* So what we do is that we throw away clearly redundant
|
|
* events that are fewer than 61 seconds apart (assuming there
|
|
* is no dive computer with a sample rate of more than 60
|
|
* seconds... that would be pretty pointless to plot the
|
|
* profile with)
|
|
*/
|
|
static void fixup_dc_events(struct divecomputer &dc)
|
|
{
|
|
std::vector<int> to_delete;
|
|
|
|
for (auto [idx, event]: enumerated_range(dc.events)) {
|
|
if (!is_potentially_redundant(event))
|
|
continue;
|
|
for (int idx2 = idx - 1; idx2 > 0; --idx2) {
|
|
const auto &prev = dc.events[idx2];
|
|
if (prev.name == event.name && prev.flags == event.flags &&
|
|
event.time.seconds - prev.time.seconds < 61)
|
|
to_delete.push_back(idx);
|
|
}
|
|
}
|
|
// Delete from back to not invalidate indexes
|
|
for (auto it = to_delete.rbegin(); it != to_delete.rend(); ++it)
|
|
dc.events.erase(dc.events.begin() + *it);
|
|
}
|
|
|
|
static int interpolate_depth(struct divecomputer &dc, int idx, int lastdepth, int lasttime, int now)
|
|
{
|
|
int nextdepth = lastdepth;
|
|
int nexttime = now;
|
|
|
|
for (auto it = dc.samples.begin() + idx; it != dc.samples.end(); ++it) {
|
|
if (it->depth.mm < 0)
|
|
continue;
|
|
nextdepth = it->depth.mm;
|
|
nexttime = it->time.seconds;
|
|
break;
|
|
}
|
|
return interpolate(lastdepth, nextdepth, now-lasttime, nexttime-lasttime);
|
|
}
|
|
|
|
static void fixup_dc_depths(struct dive *dive, struct divecomputer &dc)
|
|
{
|
|
int maxdepth = dc.maxdepth.mm;
|
|
int lasttime = 0, lastdepth = 0;
|
|
|
|
for (const auto [idx, sample]: enumerated_range(dc.samples)) {
|
|
int time = sample.time.seconds;
|
|
int depth = sample.depth.mm;
|
|
|
|
if (depth < 0 && idx + 2 < static_cast<int>(dc.samples.size())) {
|
|
depth = interpolate_depth(dc, idx, lastdepth, lasttime, time);
|
|
sample.depth.mm = depth;
|
|
}
|
|
|
|
if (depth > SURFACE_THRESHOLD) {
|
|
if (depth > maxdepth)
|
|
maxdepth = depth;
|
|
}
|
|
|
|
lastdepth = depth;
|
|
lasttime = time;
|
|
if (sample.cns > dive->maxcns)
|
|
dive->maxcns = sample.cns;
|
|
}
|
|
|
|
update_depth(&dc.maxdepth, maxdepth);
|
|
if (!dive->is_logged() || !is_dc_planner(&dc))
|
|
if (maxdepth > dive->maxdepth.mm)
|
|
dive->maxdepth.mm = maxdepth;
|
|
}
|
|
|
|
static void fixup_dc_ndl(struct divecomputer &dc)
|
|
{
|
|
for (auto &sample: dc.samples) {
|
|
if (sample.ndl.seconds != 0)
|
|
break;
|
|
if (sample.ndl.seconds == 0)
|
|
sample.ndl.seconds = -1;
|
|
}
|
|
}
|
|
|
|
static void fixup_dc_temp(struct dive *dive, struct divecomputer &dc)
|
|
{
|
|
int mintemp = 0, lasttemp = 0;
|
|
|
|
for (auto &sample: dc.samples) {
|
|
int temp = sample.temperature.mkelvin;
|
|
|
|
if (temp) {
|
|
/*
|
|
* If we have consecutive identical
|
|
* temperature readings, throw away
|
|
* the redundant ones.
|
|
*/
|
|
if (lasttemp == temp)
|
|
sample.temperature.mkelvin = 0;
|
|
else
|
|
lasttemp = temp;
|
|
|
|
if (!mintemp || temp < mintemp)
|
|
mintemp = temp;
|
|
}
|
|
|
|
update_min_max_temperatures(dive, sample.temperature);
|
|
}
|
|
update_temperature(&dc.watertemp, mintemp);
|
|
update_min_max_temperatures(dive, dc.watertemp);
|
|
}
|
|
|
|
/* Remove redundant pressure information */
|
|
static void simplify_dc_pressures(struct divecomputer &dc)
|
|
{
|
|
int lastindex[2] = { -1, -1 };
|
|
int lastpressure[2] = { 0 };
|
|
|
|
for (auto &sample: dc.samples) {
|
|
int j;
|
|
|
|
for (j = 0; j < MAX_SENSORS; j++) {
|
|
int pressure = sample.pressure[j].mbar;
|
|
int index = sample.sensor[j];
|
|
|
|
if (index == lastindex[j]) {
|
|
/* Remove duplicate redundant pressure information */
|
|
if (pressure == lastpressure[j])
|
|
sample.pressure[j].mbar = 0;
|
|
}
|
|
lastindex[j] = index;
|
|
lastpressure[j] = pressure;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do we need a sensor -> cylinder mapping? */
|
|
static void fixup_start_pressure(struct dive *dive, int idx, pressure_t p)
|
|
{
|
|
if (idx >= 0 && static_cast<size_t>(idx) < dive->cylinders.size()) {
|
|
cylinder_t &cyl = dive->cylinders[idx];
|
|
if (p.mbar && !cyl.sample_start.mbar)
|
|
cyl.sample_start = p;
|
|
}
|
|
}
|
|
|
|
static void fixup_end_pressure(struct dive *dive, int idx, pressure_t p)
|
|
{
|
|
if (idx >= 0 && static_cast<size_t>(idx) < dive->cylinders.size()) {
|
|
cylinder_t &cyl = dive->cylinders[idx];
|
|
if (p.mbar && !cyl.sample_end.mbar)
|
|
cyl.sample_end = p;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the cylinder pressure sample information and fill in the
|
|
* overall cylinder pressures from those.
|
|
*
|
|
* We ignore surface samples for tank pressure information.
|
|
*
|
|
* At the beginning of the dive, let the cylinder cool down
|
|
* if the diver starts off at the surface. And at the end
|
|
* of the dive, there may be surface pressures where the
|
|
* diver has already turned off the air supply (especially
|
|
* for computers like the Uemis Zurich that end up saving
|
|
* quite a bit of samples after the dive has ended).
|
|
*/
|
|
static void fixup_dive_pressures(struct dive *dive, struct divecomputer &dc)
|
|
{
|
|
/* Walk the samples from the beginning to find starting pressures.. */
|
|
for (auto &sample: dc.samples) {
|
|
if (sample.depth.mm < SURFACE_THRESHOLD)
|
|
continue;
|
|
|
|
for (int idx = 0; idx < MAX_SENSORS; idx++)
|
|
fixup_start_pressure(dive, sample.sensor[idx], sample.pressure[idx]);
|
|
}
|
|
|
|
/* ..and from the end for ending pressures */
|
|
for (auto it = dc.samples.rbegin(); it != dc.samples.rend(); ++it) {
|
|
if (it->depth.mm < SURFACE_THRESHOLD)
|
|
continue;
|
|
|
|
for (int idx = 0; idx < MAX_SENSORS; idx++)
|
|
fixup_end_pressure(dive, it->sensor[idx], it->pressure[idx]);
|
|
}
|
|
|
|
simplify_dc_pressures(dc);
|
|
}
|
|
|
|
/*
|
|
* Match a gas change event against the cylinders we have
|
|
*/
|
|
static bool validate_gaschange(struct dive *dive, struct event &event)
|
|
{
|
|
int index;
|
|
int o2, he, value;
|
|
|
|
/* We'll get rid of the per-event gasmix, but for now sanitize it */
|
|
if (gasmix_is_air(event.gas.mix))
|
|
event.gas.mix.o2.permille = 0;
|
|
|
|
/* Do we already have a cylinder index for this gasmix? */
|
|
if (event.gas.index >= 0)
|
|
return true;
|
|
|
|
index = find_best_gasmix_match(event.gas.mix, dive->cylinders);
|
|
if (index < 0 || static_cast<size_t>(index) >= dive->cylinders.size())
|
|
return false;
|
|
|
|
/* Fix up the event to have the right information */
|
|
event.gas.index = index;
|
|
event.gas.mix = dive->cylinders[index].gasmix;
|
|
|
|
/* Convert to odd libdivecomputer format */
|
|
o2 = get_o2(event.gas.mix);
|
|
he = get_he(event.gas.mix);
|
|
|
|
o2 = (o2 + 5) / 10;
|
|
he = (he + 5) / 10;
|
|
value = o2 + (he << 16);
|
|
|
|
event.value = value;
|
|
if (he)
|
|
event.type = SAMPLE_EVENT_GASCHANGE2;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Clean up event, return true if event is ok, false if it should be dropped as bogus */
|
|
static bool validate_event(struct dive *dive, struct event &event)
|
|
{
|
|
if (event.is_gaschange())
|
|
return validate_gaschange(dive, event);
|
|
return true;
|
|
}
|
|
|
|
static void fixup_dc_gasswitch(struct dive *dive, struct divecomputer &dc)
|
|
{
|
|
// erase-remove idiom
|
|
auto &events = dc.events;
|
|
events.erase(std::remove_if(events.begin(), events.end(),
|
|
[dive](auto &ev) { return !validate_event(dive, ev); }),
|
|
events.end());
|
|
}
|
|
|
|
static void fixup_no_o2sensors(struct divecomputer &dc)
|
|
{
|
|
// Its only relevant to look for sensor values on CCR and PSCR dives without any no_o2sensors recorded.
|
|
if (dc.no_o2sensors != 0 || !(dc.divemode == CCR || dc.divemode == PSCR))
|
|
return;
|
|
|
|
for (const auto &sample: dc.samples) {
|
|
int nsensor = 0;
|
|
|
|
// How many o2 sensors can we find in this sample?
|
|
for (int j = 0; j < MAX_O2_SENSORS; j++)
|
|
if (sample.o2sensor[j].mbar)
|
|
nsensor++;
|
|
|
|
// If we fond more than the previous found max, record it.
|
|
if (nsensor > dc.no_o2sensors)
|
|
dc.no_o2sensors = nsensor;
|
|
|
|
// Already found the maximum posible amount.
|
|
if (nsensor == MAX_O2_SENSORS)
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void fixup_dc_sample_sensors(struct dive *dive, struct divecomputer &dc)
|
|
{
|
|
unsigned long sensor_mask = 0;
|
|
|
|
for (auto &sample: dc.samples) {
|
|
for (int j = 0; j < MAX_SENSORS; j++) {
|
|
int sensor = sample.sensor[j];
|
|
|
|
// No invalid sensor ID's, please
|
|
if (sensor < 0 || sensor > MAX_SENSORS) {
|
|
sample.sensor[j] = NO_SENSOR;
|
|
sample.pressure[j].mbar = 0;
|
|
continue;
|
|
}
|
|
|
|
// Don't bother tracking sensors with no data
|
|
if (!sample.pressure[j].mbar) {
|
|
sample.sensor[j] = NO_SENSOR;
|
|
continue;
|
|
}
|
|
|
|
// Remember the set of sensors we had
|
|
sensor_mask |= 1ul << sensor;
|
|
}
|
|
}
|
|
|
|
// Ignore the sensors we have cylinders for
|
|
sensor_mask >>= dive->cylinders.size();
|
|
|
|
// Do we need to add empty cylinders?
|
|
while (sensor_mask) {
|
|
add_empty_cylinder(&dive->cylinders);
|
|
sensor_mask >>= 1;
|
|
}
|
|
}
|
|
|
|
static void fixup_dive_dc(struct dive *dive, struct divecomputer &dc)
|
|
{
|
|
/* Fixup duration and mean depth */
|
|
fixup_dc_duration(dc);
|
|
|
|
/* Fix up sample depth data */
|
|
fixup_dc_depths(dive, dc);
|
|
|
|
/* Fix up first sample ndl data */
|
|
fixup_dc_ndl(dc);
|
|
|
|
/* Fix up dive temperatures based on dive computer samples */
|
|
fixup_dc_temp(dive, dc);
|
|
|
|
/* Fix up gas switch events */
|
|
fixup_dc_gasswitch(dive, dc);
|
|
|
|
/* Fix up cylinder ids in pressure sensors */
|
|
fixup_dc_sample_sensors(dive, dc);
|
|
|
|
/* Fix up cylinder pressures based on DC info */
|
|
fixup_dive_pressures(dive, dc);
|
|
|
|
fixup_dc_events(dc);
|
|
|
|
/* Fixup CCR / PSCR dives with o2sensor values, but without no_o2sensors */
|
|
fixup_no_o2sensors(dc);
|
|
|
|
/* If there are no samples, generate a fake profile based on depth and time */
|
|
if (dc.samples.empty())
|
|
fake_dc(&dc);
|
|
}
|
|
|
|
struct dive *fixup_dive(struct dive *dive)
|
|
{
|
|
sanitize_cylinder_info(dive);
|
|
dive->maxcns = dive->cns;
|
|
|
|
/*
|
|
* Use the dive's temperatures for minimum and maximum in case
|
|
* we do not have temperatures recorded by DC.
|
|
*/
|
|
|
|
update_min_max_temperatures(dive, dive->watertemp);
|
|
|
|
for (auto &dc: dive->dcs)
|
|
fixup_dive_dc(dive, dc);
|
|
|
|
fixup_water_salinity(dive);
|
|
if (!dive->surface_pressure.mbar)
|
|
fixup_surface_pressure(dive);
|
|
fixup_meandepth(dive);
|
|
fixup_duration(dive);
|
|
fixup_watertemp(dive);
|
|
fixup_airtemp(dive);
|
|
for (auto &cyl: dive->cylinders) {
|
|
add_cylinder_description(cyl.type);
|
|
if (same_rounded_pressure(cyl.sample_start, cyl.start))
|
|
cyl.start.mbar = 0;
|
|
if (same_rounded_pressure(cyl.sample_end, cyl.end))
|
|
cyl.end.mbar = 0;
|
|
}
|
|
update_cylinder_related_info(dive);
|
|
for (auto &ws: dive->weightsystems)
|
|
add_weightsystem_description(ws);
|
|
/* we should always have a uniq ID as that gets assigned during dive creation,
|
|
* but we want to make sure... */
|
|
if (!dive->id)
|
|
dive->id = dive_getUniqID();
|
|
|
|
return dive;
|
|
}
|
|
|
|
/* Don't pick a zero for MERGE_MIN() */
|
|
#define MERGE_MAX(res, a, b, n) res->n = std::max(a->n, b->n)
|
|
#define MERGE_MIN(res, a, b, n) res->n = (a->n) ? (b->n) ? std::min(a->n, b->n) : (a->n) : (b->n)
|
|
#define MERGE_TXT(res, a, b, n, sep) res->n = merge_text(a->n, b->n, sep)
|
|
#define MERGE_NONZERO(res, a, b, n) (res)->n = (a)->n ? (a)->n : (b)->n
|
|
|
|
/*
|
|
* This is like append_sample(), but if the distance from the last sample
|
|
* is excessive, we add two surface samples in between.
|
|
*
|
|
* This is so that if you merge two non-overlapping dives, we make sure
|
|
* that the time in between the dives is at the surface, not some "last
|
|
* sample that happened to be at a depth of 1.2m".
|
|
*/
|
|
static void merge_one_sample(const struct sample &sample, struct divecomputer &dc)
|
|
{
|
|
if (!dc.samples.empty()) {
|
|
const struct sample &prev = dc.samples.back();
|
|
int last_time = prev.time.seconds;
|
|
int last_depth = prev.depth.mm;
|
|
|
|
/*
|
|
* Only do surface events if the samples are more than
|
|
* a minute apart, and shallower than 5m
|
|
*/
|
|
if (sample.time.seconds > last_time + 60 && last_depth < 5000) {
|
|
struct sample surface;
|
|
|
|
/* Init a few values from prev sample to avoid useless info in XML */
|
|
surface.bearing.degrees = prev.bearing.degrees;
|
|
surface.ndl.seconds = prev.ndl.seconds;
|
|
surface.time.seconds = last_time + 20;
|
|
|
|
append_sample(surface, &dc);
|
|
|
|
surface.time.seconds = sample.time.seconds - 20;
|
|
append_sample(surface, &dc);
|
|
}
|
|
}
|
|
append_sample(sample, &dc);
|
|
}
|
|
|
|
static void renumber_last_sample(struct divecomputer &dc, const int mapping[]);
|
|
static void sample_renumber(struct sample &s, const struct sample *next, const int mapping[]);
|
|
|
|
/*
|
|
* Merge samples. Dive 'a' is "offset" seconds before Dive 'b'
|
|
*/
|
|
static void merge_samples(struct divecomputer &res,
|
|
const struct divecomputer &a, const struct divecomputer &b,
|
|
const int *cylinders_map_a, const int *cylinders_map_b,
|
|
int offset)
|
|
{
|
|
auto as = a.samples.begin();
|
|
auto bs = b.samples.begin();
|
|
auto a_end = a.samples.end();
|
|
auto b_end = b.samples.end();
|
|
|
|
/*
|
|
* We want a positive sample offset, so that sample
|
|
* times are always positive. So if the samples for
|
|
* 'b' are before the samples for 'a' (so the offset
|
|
* is negative), we switch a and b around, and use
|
|
* the reverse offset.
|
|
*/
|
|
if (offset < 0) {
|
|
offset = -offset;
|
|
std::swap(as, bs);
|
|
std::swap(a_end, b_end);
|
|
std::swap(cylinders_map_a, cylinders_map_b);
|
|
}
|
|
|
|
for (;;) {
|
|
int at = as != a_end ? as->time.seconds : -1;
|
|
int bt = bs != b_end ? bs->time.seconds + offset : -1;
|
|
|
|
/* No samples? All done! */
|
|
if (at < 0 && bt < 0)
|
|
return;
|
|
|
|
/* Only samples from a? */
|
|
if (bt < 0) {
|
|
add_sample_a:
|
|
merge_one_sample(*as, res);
|
|
renumber_last_sample(res, cylinders_map_a);
|
|
as++;
|
|
continue;
|
|
}
|
|
|
|
/* Only samples from b? */
|
|
if (at < 0) {
|
|
add_sample_b:
|
|
merge_one_sample(*bs, res);
|
|
renumber_last_sample(res, cylinders_map_b);
|
|
bs++;
|
|
continue;
|
|
}
|
|
|
|
if (at < bt)
|
|
goto add_sample_a;
|
|
if (at > bt)
|
|
goto add_sample_b;
|
|
|
|
/* same-time sample: add a merged sample. Take the non-zero ones */
|
|
struct sample sample = *bs;
|
|
sample_renumber(sample, nullptr, cylinders_map_b);
|
|
if (as->depth.mm)
|
|
sample.depth = as->depth;
|
|
if (as->temperature.mkelvin)
|
|
sample.temperature = as->temperature;
|
|
for (int j = 0; j < MAX_SENSORS; ++j) {
|
|
int sensor_id;
|
|
|
|
sensor_id = cylinders_map_a[as->sensor[j]];
|
|
if (sensor_id < 0)
|
|
continue;
|
|
|
|
if (as->pressure[j].mbar)
|
|
sample.pressure[j] = as->pressure[j];
|
|
if (as->sensor[j])
|
|
sample.sensor[j] = sensor_id;
|
|
}
|
|
if (as->cns)
|
|
sample.cns = as->cns;
|
|
if (as->setpoint.mbar)
|
|
sample.setpoint = as->setpoint;
|
|
if (as->ndl.seconds)
|
|
sample.ndl = as->ndl;
|
|
if (as->stoptime.seconds)
|
|
sample.stoptime = as->stoptime;
|
|
if (as->stopdepth.mm)
|
|
sample.stopdepth = as->stopdepth;
|
|
if (as->in_deco)
|
|
sample.in_deco = true;
|
|
|
|
merge_one_sample(sample, res);
|
|
|
|
as++;
|
|
bs++;
|
|
}
|
|
}
|
|
|
|
static bool operator==(const struct extra_data &e1, const struct extra_data &e2)
|
|
{
|
|
return std::tie(e1.key, e1.value) == std::tie(e2.key, e2.value);
|
|
}
|
|
|
|
/*
|
|
* Merge extra_data.
|
|
*
|
|
* The extra data from 'a' has already been copied into 'res'. So
|
|
* we really should just copy over the data from 'b' too.
|
|
*
|
|
* This is not hugely efficient (with the whole "check this for
|
|
* every value you merge" it's O(n**2)) but it's not like we
|
|
* have very many extra_data entries per dive computer anyway.
|
|
*/
|
|
static void merge_extra_data(struct divecomputer &res,
|
|
const struct divecomputer &a, const struct divecomputer &b)
|
|
{
|
|
for (auto &ed: b.extra_data) {
|
|
if (range_contains(a.extra_data, ed))
|
|
continue;
|
|
|
|
res.extra_data.push_back(ed);
|
|
}
|
|
}
|
|
|
|
static std::string merge_text(const std::string &a, const std::string &b, const char *sep)
|
|
{
|
|
if (a.empty())
|
|
return b;
|
|
if (b.empty())
|
|
return a;
|
|
if (a == b)
|
|
return a;
|
|
return a + sep + b;
|
|
}
|
|
|
|
#define SORT(a, b) \
|
|
if (a != b) \
|
|
return a < b ? -1 : 1
|
|
#define SORT_FIELD(a, b, field) SORT(a.field, b.field)
|
|
|
|
static int sort_event(const struct event &a, const struct event &b, int time_a, int time_b)
|
|
{
|
|
SORT(time_a, time_b);
|
|
SORT_FIELD(a, b, type);
|
|
SORT_FIELD(a, b, flags);
|
|
SORT_FIELD(a, b, value);
|
|
return a.name.compare(b.name);
|
|
}
|
|
|
|
static int same_gas(const struct event *a, const struct event *b)
|
|
{
|
|
if (a->type == b->type && a->flags == b->flags && a->value == b->value && a->name == b->name &&
|
|
same_gasmix(a->gas.mix, b->gas.mix)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void event_renumber(struct event &ev, const int mapping[]);
|
|
static void add_initial_gaschange(struct dive &dive, struct divecomputer &dc, int offset, int idx);
|
|
|
|
static void merge_events(struct dive &d, struct divecomputer &res,
|
|
const struct divecomputer &src1_in, const struct divecomputer &src2_in,
|
|
const int *cylinders_map1, const int *cylinders_map2,
|
|
int offset)
|
|
{
|
|
const struct event *last_gas = NULL;
|
|
|
|
/* Always use positive offsets */
|
|
auto src1 = &src1_in;
|
|
auto src2 = &src2_in;
|
|
if (offset < 0) {
|
|
offset = -offset;
|
|
std::swap(src1, src2);
|
|
std::swap(cylinders_map1, cylinders_map2); // The pointers, not the contents are swapped.
|
|
}
|
|
|
|
auto a = src1->events.begin();
|
|
auto b = src2->events.begin();
|
|
|
|
while (a != src1->events.end() || b != src2->events.end()) {
|
|
int s = 0;
|
|
const struct event *pick;
|
|
const int *cylinders_map;
|
|
int event_offset;
|
|
|
|
if (b == src2->events.end())
|
|
goto pick_a;
|
|
|
|
if (a == src1->events.end())
|
|
goto pick_b;
|
|
|
|
s = sort_event(*a, *b, a->time.seconds, b->time.seconds + offset);
|
|
|
|
/* Identical events? Just skip one of them (we skip a) */
|
|
if (!s) {
|
|
++a;
|
|
continue;
|
|
}
|
|
|
|
/* Otherwise, pick the one that sorts first */
|
|
if (s < 0) {
|
|
pick_a:
|
|
pick = &*a;
|
|
++a;
|
|
event_offset = 0;
|
|
cylinders_map = cylinders_map1;
|
|
} else {
|
|
pick_b:
|
|
pick = &*b;
|
|
++b;
|
|
event_offset = offset;
|
|
cylinders_map = cylinders_map2;
|
|
}
|
|
|
|
/*
|
|
* If that's a gas-change that matches the previous
|
|
* gas change, we'll just skip it
|
|
*/
|
|
if (pick->is_gaschange()) {
|
|
if (last_gas && same_gas(pick, last_gas))
|
|
continue;
|
|
last_gas = pick;
|
|
}
|
|
|
|
/* Add it to the target list */
|
|
res.events.push_back(*pick);
|
|
res.events.back().time.seconds += event_offset;
|
|
event_renumber(res.events.back(), cylinders_map);
|
|
}
|
|
|
|
/* If the initial cylinder of a divecomputer was remapped, add a gas change event to that cylinder */
|
|
if (cylinders_map1[0] > 0)
|
|
add_initial_gaschange(d, res, 0, cylinders_map1[0]);
|
|
if (cylinders_map2[0] > 0)
|
|
add_initial_gaschange(d, res, offset, cylinders_map2[0]);
|
|
}
|
|
|
|
/* get_cylinder_idx_by_use(): Find the index of the first cylinder with a particular CCR use type.
|
|
* The index returned corresponds to that of the first cylinder with a cylinder_use that
|
|
* equals the appropriate enum value [oxygen, diluent, bailout] given by cylinder_use_type.
|
|
* A negative number returned indicates that a match could not be found.
|
|
* Call parameters: dive = the dive being processed
|
|
* cylinder_use_type = an enum, one of {oxygen, diluent, bailout} */
|
|
int get_cylinder_idx_by_use(const struct dive *dive, enum cylinderuse cylinder_use_type)
|
|
{
|
|
auto it = std::find_if(dive->cylinders.begin(), dive->cylinders.end(), [cylinder_use_type]
|
|
(auto &cyl) { return cyl.cylinder_use == cylinder_use_type; });
|
|
return it != dive->cylinders.end() ? it - dive->cylinders.begin() : -1;
|
|
}
|
|
|
|
/* Force an initial gaschange event to the (old) gas #0 */
|
|
static void add_initial_gaschange(struct dive &dive, struct divecomputer &dc, int offset, int idx)
|
|
{
|
|
/* if there is a gaschange event up to 30 sec after the initial event,
|
|
* refrain from adding the initial event */
|
|
event_loop loop("gaschange");
|
|
while(auto ev = loop.next(dc)) {
|
|
if (ev->time.seconds > offset + 30)
|
|
break;
|
|
else if (ev->time.seconds > offset)
|
|
return;
|
|
}
|
|
|
|
/* Old starting gas mix */
|
|
add_gas_switch_event(&dive, &dc, offset, idx);
|
|
}
|
|
|
|
static void sample_renumber(struct sample &s, const struct sample *prev, const int mapping[])
|
|
{
|
|
for (int j = 0; j < MAX_SENSORS; j++) {
|
|
int sensor = -1;
|
|
|
|
if (s.sensor[j] != NO_SENSOR)
|
|
sensor = mapping[s.sensor[j]];
|
|
if (sensor == -1) {
|
|
// Remove sensor and gas pressure info
|
|
if (!prev) {
|
|
s.sensor[j] = 0;
|
|
s.pressure[j].mbar = 0;
|
|
} else {
|
|
s.sensor[j] = prev->sensor[j];
|
|
s.pressure[j].mbar = prev->pressure[j].mbar;
|
|
}
|
|
} else {
|
|
s.sensor[j] = sensor;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void renumber_last_sample(struct divecomputer &dc, const int mapping[])
|
|
{
|
|
if (dc.samples.empty())
|
|
return;
|
|
sample *prev = dc.samples.size() > 1 ? &dc.samples[dc.samples.size() - 2] : nullptr;
|
|
sample_renumber(dc.samples.back(), prev, mapping);
|
|
}
|
|
|
|
static void event_renumber(struct event &ev, const int mapping[])
|
|
{
|
|
if (!ev.is_gaschange())
|
|
return;
|
|
if (ev.gas.index < 0)
|
|
return;
|
|
ev.gas.index = mapping[ev.gas.index];
|
|
}
|
|
|
|
static void dc_cylinder_renumber(struct dive &dive, struct divecomputer &dc, const int mapping[])
|
|
{
|
|
/* Remap or delete the sensor indices */
|
|
for (auto [i, sample]: enumerated_range(dc.samples))
|
|
sample_renumber(sample, i > 0 ? &dc.samples[i-1] : nullptr, mapping);
|
|
|
|
/* Remap the gas change indices */
|
|
for (auto &ev: dc.events)
|
|
event_renumber(ev, mapping);
|
|
|
|
/* If the initial cylinder of a dive was remapped, add a gas change event to that cylinder */
|
|
if (mapping[0] > 0)
|
|
add_initial_gaschange(dive, dc, 0, mapping[0]);
|
|
}
|
|
|
|
/*
|
|
* If the cylinder indices change (due to merging dives or deleting
|
|
* cylinders in the middle), we need to change the indices in the
|
|
* dive computer data for this dive.
|
|
*
|
|
* Also note that we assume that the initial cylinder is cylinder 0,
|
|
* so if that got renamed, we need to create a fake gas change event
|
|
*/
|
|
void cylinder_renumber(struct dive &dive, int mapping[])
|
|
{
|
|
for (auto &dc: dive.dcs)
|
|
dc_cylinder_renumber(dive, dc, mapping);
|
|
}
|
|
|
|
int same_gasmix_cylinder(const cylinder_t &cyl, int cylid, const struct dive *dive, bool check_unused)
|
|
{
|
|
struct gasmix mygas = cyl.gasmix;
|
|
for (auto [i, cyl]: enumerated_range(dive->cylinders)) {
|
|
if (i == cylid)
|
|
continue;
|
|
struct gasmix gas2 = cyl.gasmix;
|
|
if (gasmix_distance(mygas, gas2) == 0 && (is_cylinder_used(dive, i) || check_unused))
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int pdiff(pressure_t a, pressure_t b)
|
|
{
|
|
return a.mbar && b.mbar && a.mbar != b.mbar;
|
|
}
|
|
|
|
static int different_manual_pressures(const cylinder_t *a, const cylinder_t *b)
|
|
{
|
|
return pdiff(a->start, b->start) || pdiff(a->end, b->end);
|
|
}
|
|
|
|
/*
|
|
* Can we find an exact match for a cylinder in another dive?
|
|
* Take the "already matched" map into account, so that we
|
|
* don't match multiple similar cylinders to one target.
|
|
*
|
|
* To match, the cylinders have to have the same gasmix and the
|
|
* same cylinder use (ie OC/Diluent/Oxygen), and if pressures
|
|
* have been added manually they need to match.
|
|
*/
|
|
static int match_cylinder(const cylinder_t *cyl, const struct dive &dive, const bool try_match[])
|
|
{
|
|
for (auto [i, target]: enumerated_range(dive.cylinders)) {
|
|
if (!try_match[i])
|
|
continue;
|
|
|
|
if (!same_gasmix(cyl->gasmix, target.gasmix))
|
|
continue;
|
|
if (cyl->cylinder_use != target.cylinder_use)
|
|
continue;
|
|
if (different_manual_pressures(cyl, &target))
|
|
continue;
|
|
|
|
/* open question: Should we check sizes too? */
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Function used to merge manually set start or end pressures. This
|
|
* is used to merge cylinders when merging dives. We store up to two
|
|
* values for start _and_ end pressures: one derived from samples and
|
|
* one entered manually, whereby the latter takes precedence. It may
|
|
* happen that the user merges two dives where one has a manual,
|
|
* the other only a sample-derived pressure. In such a case we want to
|
|
* supplement the non-existing manual value by a sample derived one.
|
|
* Otherwise, the merged dive would end up with incomplete pressure
|
|
* information.
|
|
* The last argument to the function specifies whether the larger
|
|
* or smaller value of the two dives should be returned. Obviously,
|
|
* for the starting pressure we want the larger and for the ending
|
|
* pressure the smaller value.
|
|
*/
|
|
static pressure_t merge_pressures(pressure_t a, pressure_t sample_a, pressure_t b, pressure_t sample_b, bool take_min)
|
|
{
|
|
if (!a.mbar && !b.mbar)
|
|
return a;
|
|
if (!a.mbar)
|
|
a = sample_a;
|
|
if (!b.mbar)
|
|
b = sample_b;
|
|
if (!a.mbar)
|
|
a = b;
|
|
if (!b.mbar)
|
|
b = a;
|
|
if (take_min)
|
|
return a.mbar < b.mbar? a : b;
|
|
return a.mbar > b.mbar? a : b;
|
|
}
|
|
|
|
/*
|
|
* We matched things up so that they have the same gasmix and
|
|
* use, but we might want to fill in any missing cylinder details
|
|
* in 'a' if we had it from 'b'.
|
|
*/
|
|
static void merge_one_cylinder(cylinder_t *a, const cylinder_t *b)
|
|
{
|
|
if (!a->type.size.mliter)
|
|
a->type.size.mliter = b->type.size.mliter;
|
|
if (!a->type.workingpressure.mbar)
|
|
a->type.workingpressure.mbar = b->type.workingpressure.mbar;
|
|
if (a->type.description.empty())
|
|
a->type.description = b->type.description;
|
|
|
|
/* If either cylinder has manually entered pressures, try to merge them.
|
|
* Use pressures from divecomputer samples if only one cylinder has such a value.
|
|
* Yes, this is an actual use case we encountered.
|
|
* Note that we don't merge the sample-derived pressure values, as this is
|
|
* perfomed after merging in fixup_dive() */
|
|
a->start = merge_pressures(a->start, a->sample_start, b->start, b->sample_start, false);
|
|
a->end = merge_pressures(a->end, a->sample_end, b->end, b->sample_end, true);
|
|
|
|
/* Really? */
|
|
a->gas_used.mliter += b->gas_used.mliter;
|
|
a->deco_gas_used.mliter += b->deco_gas_used.mliter;
|
|
a->bestmix_o2 = a->bestmix_o2 && b->bestmix_o2;
|
|
a->bestmix_he = a->bestmix_he && b->bestmix_he;
|
|
}
|
|
|
|
static bool cylinder_has_data(const cylinder_t &cyl)
|
|
{
|
|
return !cyl.type.size.mliter &&
|
|
!cyl.type.workingpressure.mbar &&
|
|
cyl.type.description.empty() &&
|
|
!cyl.gasmix.o2.permille &&
|
|
!cyl.gasmix.he.permille &&
|
|
!cyl.start.mbar &&
|
|
!cyl.end.mbar &&
|
|
!cyl.sample_start.mbar &&
|
|
!cyl.sample_end.mbar &&
|
|
!cyl.gas_used.mliter &&
|
|
!cyl.deco_gas_used.mliter;
|
|
}
|
|
|
|
static bool cylinder_in_use(const struct dive *dive, int idx)
|
|
{
|
|
if (idx < 0 || static_cast<size_t>(idx) >= dive->cylinders.size())
|
|
return false;
|
|
|
|
/* This tests for gaschange events or pressure changes */
|
|
if (is_cylinder_used(dive, idx) || prefs.include_unused_tanks)
|
|
return true;
|
|
|
|
/* This tests for typenames or gas contents */
|
|
return cylinder_has_data(dive->cylinders[idx]);
|
|
}
|
|
|
|
/*
|
|
* Merging cylinder information is non-trivial, because the two dive computers
|
|
* may have different ideas of what the different cylinder indexing is.
|
|
*
|
|
* Logic: take all the cylinder information from the preferred dive ('a'), and
|
|
* then try to match each of the cylinders in the other dive by the gasmix that
|
|
* is the best match and hasn't been used yet.
|
|
*
|
|
* For each dive, a cylinder-renumbering table is returned.
|
|
*/
|
|
static void merge_cylinders(struct dive &res, const struct dive &a, const struct dive &b,
|
|
int mapping_a[], int mapping_b[])
|
|
{
|
|
size_t max_cylinders = a.cylinders.size() + b.cylinders.size();
|
|
auto used_in_a = std::make_unique<bool[]>(max_cylinders);
|
|
auto used_in_b = std::make_unique<bool[]>(max_cylinders);
|
|
auto try_to_match = std::make_unique<bool[]>(max_cylinders);
|
|
std::fill(try_to_match.get(), try_to_match.get() + max_cylinders, false);
|
|
|
|
/* First, clear all cylinders in destination */
|
|
res.cylinders.clear();
|
|
|
|
/* Clear all cylinder mappings */
|
|
std::fill(mapping_a, mapping_a + a.cylinders.size(), -1);
|
|
std::fill(mapping_b, mapping_b + b.cylinders.size(), -1);
|
|
|
|
/* Calculate usage map of cylinders, clear matching map */
|
|
for (size_t i = 0; i < max_cylinders; i++) {
|
|
used_in_a[i] = cylinder_in_use(&a, i);
|
|
used_in_b[i] = cylinder_in_use(&b, i);
|
|
}
|
|
|
|
/*
|
|
* For each cylinder in 'a' that is used, copy it to 'res'.
|
|
* These are also potential matches for 'b' to use.
|
|
*/
|
|
for (size_t i = 0; i < max_cylinders; i++) {
|
|
size_t res_nr = res.cylinders.size();
|
|
if (!used_in_a[i])
|
|
continue;
|
|
mapping_a[i] = static_cast<int>(res_nr);
|
|
try_to_match[res_nr] = true;
|
|
res.cylinders.push_back(a.cylinders[i]);
|
|
}
|
|
|
|
/*
|
|
* For each cylinder in 'b' that is used, try to match it
|
|
* with an existing cylinder in 'res' from 'a'
|
|
*/
|
|
for (size_t i = 0; i < b.cylinders.size(); i++) {
|
|
int j;
|
|
|
|
if (!used_in_b[i])
|
|
continue;
|
|
|
|
j = match_cylinder(get_cylinder(&b, i), res, try_to_match.get());
|
|
|
|
/* No match? Add it to the result */
|
|
if (j < 0) {
|
|
size_t res_nr = res.cylinders.size();
|
|
mapping_b[i] = static_cast<int>(res_nr);
|
|
res.cylinders.push_back(b.cylinders[i]);
|
|
continue;
|
|
}
|
|
|
|
/* Otherwise, merge the result to the one we found */
|
|
mapping_b[i] = j;
|
|
merge_one_cylinder(get_cylinder(&res, j), get_cylinder(&b, i));
|
|
|
|
/* Don't match the same target more than once */
|
|
try_to_match[j] = false;
|
|
}
|
|
}
|
|
|
|
/* Check whether a weightsystem table contains a given weightsystem */
|
|
static bool has_weightsystem(const weightsystem_table &t, const weightsystem_t &w)
|
|
{
|
|
return any_of(t.begin(), t.end(), [&w] (auto &w2) { return same_weightsystem(w, w2); });
|
|
}
|
|
|
|
static void merge_equipment(struct dive &res, const struct dive &a, const struct dive &b)
|
|
{
|
|
for (auto &ws: a.weightsystems) {
|
|
if (!has_weightsystem(res.weightsystems, ws))
|
|
res.weightsystems.push_back(ws);
|
|
}
|
|
for (auto &ws: b.weightsystems) {
|
|
if (!has_weightsystem(res.weightsystems, ws))
|
|
res.weightsystems.push_back(ws);
|
|
}
|
|
}
|
|
|
|
static void merge_temperatures(struct dive &res, const struct dive &a, const struct dive &b)
|
|
{
|
|
temperature_t airtemp_a = un_fixup_airtemp(a);
|
|
temperature_t airtemp_b = un_fixup_airtemp(b);
|
|
res.airtemp = airtemp_a.mkelvin ? airtemp_a : airtemp_b;
|
|
MERGE_NONZERO(&res, &a, &b, watertemp.mkelvin);
|
|
}
|
|
|
|
/*
|
|
* Pick a trip for a dive
|
|
*/
|
|
static struct dive_trip *get_preferred_trip(const struct dive *a, const struct dive *b)
|
|
{
|
|
dive_trip *atrip, *btrip;
|
|
|
|
/* If only one dive has a trip, choose that */
|
|
atrip = a->divetrip;
|
|
btrip = b->divetrip;
|
|
if (!atrip)
|
|
return btrip;
|
|
if (!btrip)
|
|
return atrip;
|
|
|
|
/* Both dives have a trip - prefer the non-autogenerated one */
|
|
if (atrip->autogen && !btrip->autogen)
|
|
return btrip;
|
|
if (!atrip->autogen && btrip->autogen)
|
|
return atrip;
|
|
|
|
/* Otherwise, look at the trip data and pick the "better" one */
|
|
if (atrip->location.empty())
|
|
return btrip;
|
|
if (btrip->location.empty())
|
|
return atrip;
|
|
if (atrip->notes.empty())
|
|
return btrip;
|
|
if (btrip->notes.empty())
|
|
return atrip;
|
|
|
|
/*
|
|
* Ok, so both have location and notes.
|
|
* Pick the earlier one.
|
|
*/
|
|
if (a->when < b->when)
|
|
return atrip;
|
|
return btrip;
|
|
}
|
|
|
|
#if CURRENTLY_NOT_USED
|
|
/*
|
|
* Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'.
|
|
*
|
|
* If 's' and 'a' are at the same time, offset is 0.
|
|
*/
|
|
static int compare_sample(const struct sample &s, const struct sample &a, const struct sample &b, int offset)
|
|
{
|
|
unsigned int depth = a.depth.mm;
|
|
int diff;
|
|
|
|
if (offset) {
|
|
unsigned int interval = b.time.seconds - a.time.seconds;
|
|
unsigned int depth_a = a.depth.mm;
|
|
unsigned int depth_b = b.depth.mm;
|
|
|
|
if (offset > interval)
|
|
return -1;
|
|
|
|
/* pick the average depth, scaled by the offset from 'b' */
|
|
depth = (depth_a * offset) + (depth_b * (interval - offset));
|
|
depth /= interval;
|
|
}
|
|
diff = s.depth.mm - depth;
|
|
if (diff < 0)
|
|
diff = -diff;
|
|
/* cut off at one meter difference */
|
|
if (diff > 1000)
|
|
diff = 1000;
|
|
return diff * diff;
|
|
}
|
|
|
|
/*
|
|
* Calculate a "difference" in samples between the two dives, given
|
|
* the offset in seconds between them. Use this to find the best
|
|
* match of samples between two different dive computers.
|
|
*/
|
|
static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset)
|
|
{
|
|
if (a->samples.empty() || b->samples.empty())
|
|
return;
|
|
|
|
unsigned long error = 0;
|
|
int start = -1;
|
|
|
|
if (!asamples || !bsamples)
|
|
return 0;
|
|
|
|
/*
|
|
* skip the first sample - this way we know can always look at
|
|
* as/bs[-1] to look at the samples around it in the loop.
|
|
*/
|
|
auto as = a->samples.begin() + 1;
|
|
auto bs = a->samples.begin() + 1;
|
|
|
|
for (;;) {
|
|
/* If we run out of samples, punt */
|
|
if (as == a->samples.end())
|
|
return INT_MAX;
|
|
if (bs == b->samples.end())
|
|
return INT_MAX;
|
|
|
|
int at = as->time.seconds;
|
|
int bt = bs->time.seconds + offset;
|
|
|
|
/* b hasn't started yet? Ignore it */
|
|
if (bt < 0) {
|
|
++bs;
|
|
continue;
|
|
}
|
|
|
|
int diff;
|
|
if (at < bt) {
|
|
diff = compare_sample(*as, *std::prev(bs), *bs, bt - at);
|
|
++as;
|
|
} else if (at > bt) {
|
|
diff = compare_sample(*bs, *std::prev(as), *as, at - bt);
|
|
++bs;
|
|
} else {
|
|
diff = compare_sample(*as, *bs, *bs, 0);
|
|
++as;
|
|
++bs;
|
|
}
|
|
|
|
/* Invalid comparison point? */
|
|
if (diff < 0)
|
|
continue;
|
|
|
|
if (start < 0)
|
|
start = at;
|
|
|
|
error += diff;
|
|
|
|
if (at - start > 120)
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Dive 'a' is 'offset' seconds before dive 'b'
|
|
*
|
|
* This is *not* because the dive computers clocks aren't in sync,
|
|
* it is because the dive computers may "start" the dive at different
|
|
* points in the dive, so the sample at time X in dive 'a' is the
|
|
* same as the sample at time X+offset in dive 'b'.
|
|
*
|
|
* For example, some dive computers take longer to "wake up" when
|
|
* they sense that you are under water (ie Uemis Zurich if it was off
|
|
* when the dive started). And other dive computers have different
|
|
* depths that they activate at, etc etc.
|
|
*
|
|
* If we cannot find a shared offset, don't try to merge.
|
|
*/
|
|
static int find_sample_offset(struct divecomputer *a, struct divecomputer *b)
|
|
{
|
|
/* No samples? Merge at any time (0 offset) */
|
|
if (a->samples.empty())
|
|
return 0;
|
|
if (b->samples.empty())
|
|
return 0;
|
|
|
|
/*
|
|
* Common special-case: merging a dive that came from
|
|
* the same dive computer, so the samples are identical.
|
|
* Check this first, without wasting time trying to find
|
|
* some minimal offset case.
|
|
*/
|
|
int best = 0;
|
|
unsigned long max = sample_difference(a, b, 0);
|
|
if (!max)
|
|
return 0;
|
|
|
|
/*
|
|
* Otherwise, look if we can find anything better within
|
|
* a thirty second window..
|
|
*/
|
|
for (int offset = -30; offset <= 30; offset++) {
|
|
unsigned long diff;
|
|
|
|
int diff = sample_difference(a, b, offset);
|
|
if (diff > max)
|
|
continue;
|
|
best = offset;
|
|
max = diff;
|
|
}
|
|
|
|
return best;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Are a and b "similar" values, when given a reasonable lower end expected
|
|
* difference?
|
|
*
|
|
* So for example, we'd expect different dive computers to give different
|
|
* max. depth readings. You might have them on different arms, and they
|
|
* have different pressure sensors and possibly different ideas about
|
|
* water salinity etc.
|
|
*
|
|
* So have an expected minimum difference, but also allow a larger relative
|
|
* error value.
|
|
*/
|
|
static int similar(unsigned long a, unsigned long b, unsigned long expected)
|
|
{
|
|
if (!a && !b)
|
|
return 1;
|
|
|
|
if (a && b) {
|
|
unsigned long min, max, diff;
|
|
|
|
min = a;
|
|
max = b;
|
|
if (a > b) {
|
|
min = b;
|
|
max = a;
|
|
}
|
|
diff = max - min;
|
|
|
|
/* Smaller than expected difference? */
|
|
if (diff < expected)
|
|
return 1;
|
|
/* Error less than 10% or the maximum */
|
|
if (diff * 10 < max)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Match every dive computer against each other to see if
|
|
* we have a matching dive.
|
|
*
|
|
* Return values:
|
|
* -1 for "is definitely *NOT* the same dive"
|
|
* 0 for "don't know"
|
|
* 1 for "is definitely the same dive"
|
|
*/
|
|
static int match_dc_dive(const struct dive &a, const struct dive &b)
|
|
{
|
|
for (auto &dc1: a.dcs) {
|
|
for (auto &dc2: b.dcs) {
|
|
int match = match_one_dc(dc1, dc2);
|
|
if (match)
|
|
return match;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do we want to automatically try to merge two dives that
|
|
* look like they are the same dive?
|
|
*
|
|
* This happens quite commonly because you download a dive
|
|
* that you already had, or perhaps because you maintained
|
|
* multiple dive logs and want to load them all together
|
|
* (possibly one of them was imported from another dive log
|
|
* application entirely).
|
|
*
|
|
* NOTE! We mainly look at the dive time, but it can differ
|
|
* between two dives due to a few issues:
|
|
*
|
|
* - rounding the dive date to the nearest minute in other dive
|
|
* applications
|
|
*
|
|
* - dive computers with "relative datestamps" (ie the dive
|
|
* computer doesn't actually record an absolute date at all,
|
|
* but instead at download-time synchronizes its internal
|
|
* time with real-time on the downloading computer)
|
|
*
|
|
* - using multiple dive computers with different real time on
|
|
* the same dive
|
|
*
|
|
* We do not merge dives that look radically different, and if
|
|
* the dates are *too* far off the user will have to join two
|
|
* dives together manually. But this tries to handle the sane
|
|
* cases.
|
|
*/
|
|
static bool likely_same_dive(const struct dive &a, const struct dive &b)
|
|
{
|
|
/* don't merge manually added dives with anything */
|
|
if (is_dc_manually_added_dive(&a.dcs[0]) ||
|
|
is_dc_manually_added_dive(&b.dcs[0]))
|
|
return 0;
|
|
|
|
/*
|
|
* Do some basic sanity testing of the values we
|
|
* have filled in during 'fixup_dive()'
|
|
*/
|
|
if (!similar(a.maxdepth.mm, b.maxdepth.mm, 1000) ||
|
|
(a.meandepth.mm && b.meandepth.mm && !similar(a.meandepth.mm, b.meandepth.mm, 1000)) ||
|
|
!a.duration.seconds || !b.duration.seconds ||
|
|
!similar(a.duration.seconds, b.duration.seconds, 5 * 60))
|
|
return 0;
|
|
|
|
/* See if we can get an exact match on the dive computer */
|
|
if (match_dc_dive(a, b))
|
|
return true;
|
|
|
|
/*
|
|
* Allow a time difference due to dive computer time
|
|
* setting etc. Check if they overlap.
|
|
*/
|
|
int fuzz = std::max(a.duration.seconds, b.duration.seconds) / 2;
|
|
fuzz = std::max(fuzz, 60);
|
|
|
|
return (a.when <= b.when + fuzz) && (a.when >= b.when - fuzz);
|
|
}
|
|
|
|
/*
|
|
* This could do a lot more merging. Right now it really only
|
|
* merges almost exact duplicates - something that happens easily
|
|
* with overlapping dive downloads.
|
|
*
|
|
* If new dives are merged into the dive table, dive a is supposed to
|
|
* be the old dive and dive b is supposed to be the newly imported
|
|
* dive. If the flag "prefer_downloaded" is set, data of the latter
|
|
* will take priority over the former.
|
|
*
|
|
* Attn: The dive_site parameter of the dive will be set, but the caller
|
|
* still has to register the dive in the dive site!
|
|
*/
|
|
struct std::unique_ptr<dive> try_to_merge(const struct dive &a, const struct dive &b, bool prefer_downloaded)
|
|
{
|
|
if (!likely_same_dive(a, b))
|
|
return {};
|
|
|
|
auto [res, trip, site] = merge_dives(a, b, 0, prefer_downloaded);
|
|
res->dive_site = site; /* Caller has to call site->add_dive()! */
|
|
return std::move(res);
|
|
}
|
|
|
|
static bool operator==(const sample &a, const sample &b)
|
|
{
|
|
if (a.time.seconds != b.time.seconds)
|
|
return false;
|
|
if (a.depth.mm != b.depth.mm)
|
|
return false;
|
|
if (a.temperature.mkelvin != b.temperature.mkelvin)
|
|
return false;
|
|
if (a.pressure[0].mbar != b.pressure[0].mbar)
|
|
return false;
|
|
return a.sensor[0] == b.sensor[0];
|
|
}
|
|
|
|
static int same_dc(const struct divecomputer &a, const struct divecomputer &b)
|
|
{
|
|
int i;
|
|
i = match_one_dc(a, b);
|
|
if (i)
|
|
return i > 0;
|
|
|
|
if (a.when && b.when && a.when != b.when)
|
|
return 0;
|
|
if (a.samples != b.samples)
|
|
return 0;
|
|
return a.events == b.events;
|
|
}
|
|
|
|
static int might_be_same_device(const struct divecomputer &a, const struct divecomputer &b)
|
|
{
|
|
/* No dive computer model? That matches anything */
|
|
if (a.model.empty() || b.model.empty())
|
|
return 1;
|
|
|
|
/* Otherwise at least the model names have to match */
|
|
if (strcasecmp(a.model.c_str(), b.model.c_str()))
|
|
return 0;
|
|
|
|
/* No device ID? Match */
|
|
if (!a.deviceid || !b.deviceid)
|
|
return 1;
|
|
|
|
return a.deviceid == b.deviceid;
|
|
}
|
|
|
|
static void remove_redundant_dc(struct dive &d, bool prefer_downloaded)
|
|
{
|
|
// Note: since the vector doesn't grow and we only erase
|
|
// elements after the iterator, this is fine.
|
|
for (auto it = d.dcs.begin(); it != d.dcs.end(); ++it) {
|
|
// Remove all following DCs that compare as equal.
|
|
// Use the (infamous) erase-remove idiom.
|
|
auto it2 = std::remove_if(std::next(it), d.dcs.end(),
|
|
[d, prefer_downloaded, &it] (const divecomputer &dc) {
|
|
return same_dc(*it, dc) ||
|
|
(prefer_downloaded && might_be_same_device(*it, dc));
|
|
});
|
|
d.dcs.erase(it2, d.dcs.end());
|
|
|
|
prefer_downloaded = false;
|
|
}
|
|
}
|
|
|
|
static const struct divecomputer *find_matching_computer(const struct divecomputer &match, const struct dive &d)
|
|
{
|
|
for (const auto &dc: d.dcs) {
|
|
if (might_be_same_device(match, dc))
|
|
return &dc;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void copy_dive_computer(struct divecomputer &res, const struct divecomputer &a)
|
|
{
|
|
res = a;
|
|
res.samples.clear();
|
|
res.events.clear();
|
|
}
|
|
|
|
/*
|
|
* Join dive computers with a specific time offset between
|
|
* them.
|
|
*
|
|
* Use the dive computer ID's (or names, if ID's are missing)
|
|
* to match them up. If we find a matching dive computer, we
|
|
* merge them. If not, we just take the data from 'a'.
|
|
*/
|
|
static void interleave_dive_computers(struct dive &res,
|
|
const struct dive &a, const struct dive &b,
|
|
const int cylinders_map_a[], const int cylinders_map_b[],
|
|
int offset)
|
|
{
|
|
res.dcs.clear();
|
|
for (const auto &dc1: a.dcs) {
|
|
res.dcs.emplace_back();
|
|
divecomputer &newdc = res.dcs.back();
|
|
copy_dive_computer(newdc, dc1);
|
|
const divecomputer *match = find_matching_computer(dc1, b);
|
|
if (match) {
|
|
merge_events(res, newdc, dc1, *match, cylinders_map_a, cylinders_map_b, offset);
|
|
merge_samples(newdc, dc1, *match, cylinders_map_a, cylinders_map_b, offset);
|
|
merge_extra_data(newdc, dc1, *match);
|
|
/* Use the diveid of the later dive! */
|
|
if (offset > 0)
|
|
newdc.diveid = match->diveid;
|
|
} else {
|
|
dc_cylinder_renumber(res, res.dcs.back(), cylinders_map_a);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Join dive computer information.
|
|
*
|
|
* If we have old-style dive computer information (no model
|
|
* name etc), we will prefer a new-style one and just throw
|
|
* away the old. We're assuming it's a re-download.
|
|
*
|
|
* Otherwise, we'll just try to keep all the information,
|
|
* unless the user has specified that they prefer the
|
|
* downloaded computer, in which case we'll aggressively
|
|
* try to throw out old information that *might* be from
|
|
* that one.
|
|
*/
|
|
static void join_dive_computers(struct dive &d,
|
|
const struct dive &a, const struct dive &b,
|
|
const int cylinders_map_a[], const int cylinders_map_b[],
|
|
bool prefer_downloaded)
|
|
{
|
|
d.dcs.clear();
|
|
if (!a.dcs[0].model.empty() && b.dcs[0].model.empty()) {
|
|
copy_dc_renumber(d, a, cylinders_map_a);
|
|
return;
|
|
}
|
|
if (!b.dcs[0].model.empty() && a.dcs[0].model.empty()) {
|
|
copy_dc_renumber(d, b, cylinders_map_b);
|
|
return;
|
|
}
|
|
|
|
copy_dc_renumber(d, a, cylinders_map_a);
|
|
copy_dc_renumber(d, b, cylinders_map_b);
|
|
|
|
remove_redundant_dc(d, prefer_downloaded);
|
|
}
|
|
|
|
static bool has_dc_type(const struct dive &dive, bool dc_is_planner)
|
|
{
|
|
return std::any_of(dive.dcs.begin(), dive.dcs.end(),
|
|
[dc_is_planner] (const divecomputer &dc)
|
|
{ return is_dc_planner(&dc) == dc_is_planner; });
|
|
}
|
|
|
|
// Does this dive have a dive computer for which is_dc_planner has value planned
|
|
bool dive::is_planned() const
|
|
{
|
|
return has_dc_type(*this, true);
|
|
}
|
|
|
|
bool dive::is_logged() const
|
|
{
|
|
return has_dc_type(*this, false);
|
|
}
|
|
|
|
/*
|
|
* Merging two dives can be subtle, because there's two different ways
|
|
* of merging:
|
|
*
|
|
* (a) two distinctly _different_ dives that have the same dive computer
|
|
* are merged into one longer dive, because the user asked for it
|
|
* in the divelist.
|
|
*
|
|
* Because this case is with the same dive computer, we *know* the
|
|
* two must have a different start time, and "offset" is the relative
|
|
* time difference between the two.
|
|
*
|
|
* (b) two different dive computers that we might want to merge into
|
|
* one single dive with multiple dive computers.
|
|
*
|
|
* This is the "try_to_merge()" case, which will have offset == 0,
|
|
* even if the dive times might be different.
|
|
*
|
|
* If new dives are merged into the dive table, dive a is supposed to
|
|
* be the old dive and dive b is supposed to be the newly imported
|
|
* dive. If the flag "prefer_downloaded" is set, data of the latter
|
|
* will take priority over the former.
|
|
*
|
|
* The trip the new dive should be associated with (if any) is returned
|
|
* in the "trip" output parameter.
|
|
*
|
|
* The dive site the new dive should be added to (if any) is returned
|
|
* in the "dive_site" output parameter.
|
|
*/
|
|
merge_result merge_dives(const struct dive &a_in, const struct dive &b_in, int offset, bool prefer_downloaded)
|
|
{
|
|
merge_result res = { std::make_unique<dive>(), nullptr, nullptr };
|
|
|
|
if (offset) {
|
|
/*
|
|
* If "likely_same_dive()" returns true, that means that
|
|
* it is *not* the same dive computer, and we do not want
|
|
* to try to turn it into a single longer dive. So we'd
|
|
* join them as two separate dive computers at zero offset.
|
|
*/
|
|
if (likely_same_dive(a_in, b_in))
|
|
offset = 0;
|
|
}
|
|
|
|
const dive *a = &a_in;
|
|
const dive *b = &a_in;
|
|
if (is_dc_planner(&a->dcs[0]))
|
|
std::swap(a, b);
|
|
|
|
res.dive->when = prefer_downloaded ? b->when : a->when;
|
|
res.dive->selected = a->selected || b->selected;
|
|
res.trip = get_preferred_trip(a, b);
|
|
MERGE_TXT(res.dive, a, b, notes, "\n--\n");
|
|
MERGE_TXT(res.dive, a, b, buddy, ", ");
|
|
MERGE_TXT(res.dive, a, b, diveguide, ", ");
|
|
MERGE_MAX(res.dive, a, b, rating);
|
|
MERGE_TXT(res.dive, a, b, suit, ", ");
|
|
MERGE_MAX(res.dive, a, b, number);
|
|
MERGE_NONZERO(res.dive, a, b, visibility);
|
|
MERGE_NONZERO(res.dive, a, b, wavesize);
|
|
MERGE_NONZERO(res.dive, a, b, current);
|
|
MERGE_NONZERO(res.dive, a, b, surge);
|
|
MERGE_NONZERO(res.dive, a, b, chill);
|
|
res.dive->pictures = !a->pictures.empty() ? a->pictures : b->pictures;
|
|
res.dive->tags = taglist_merge(a->tags, b->tags);
|
|
/* if we get dives without any gas / cylinder information in an import, make sure
|
|
* that there is at leatst one entry in the cylinder map for that dive */
|
|
auto cylinders_map_a = std::make_unique<int[]>(std::max(size_t(1), a->cylinders.size()));
|
|
auto cylinders_map_b = std::make_unique<int[]>(std::max(size_t(1), b->cylinders.size()));
|
|
merge_cylinders(*res.dive, *a, *b, cylinders_map_a.get(), cylinders_map_b.get());
|
|
merge_equipment(*res.dive, *a, *b);
|
|
merge_temperatures(*res.dive, *a, *b);
|
|
if (prefer_downloaded) {
|
|
/* If we prefer downloaded, do those first, and get rid of "might be same" computers */
|
|
join_dive_computers(*res.dive, *b, *a, cylinders_map_b.get(), cylinders_map_a.get(), true);
|
|
} else if (offset && might_be_same_device(a->dcs[0], b->dcs[0])) {
|
|
interleave_dive_computers(*res.dive, *a, *b, cylinders_map_a.get(), cylinders_map_b.get(), offset);
|
|
} else {
|
|
join_dive_computers(*res.dive, *a, *b, cylinders_map_a.get(), cylinders_map_b.get(), false);
|
|
}
|
|
|
|
/* The CNS values will be recalculated from the sample in fixup_dive() */
|
|
res.dive->cns = res.dive->maxcns = 0;
|
|
|
|
/* we take the first dive site, unless it's empty */
|
|
res.site = a->dive_site && !a->dive_site->is_empty() ? a->dive_site : b->dive_site;
|
|
if (!dive_site_has_gps_location(res.site) && dive_site_has_gps_location(b->dive_site)) {
|
|
/* we picked the first dive site and that didn't have GPS data, but the new dive has
|
|
* GPS data (that could be a download from a GPS enabled dive computer).
|
|
* Keep the dive site, but add the GPS data */
|
|
res.site->location = b->dive_site->location;
|
|
}
|
|
fixup_dive(res.dive.get());
|
|
return res;
|
|
}
|
|
|
|
struct start_end_pressure {
|
|
pressure_t start;
|
|
pressure_t end;
|
|
};
|
|
|
|
static void force_fixup_dive(struct dive *d)
|
|
{
|
|
struct divecomputer *dc = &d->dcs[0];
|
|
int old_temp = dc->watertemp.mkelvin;
|
|
int old_mintemp = d->mintemp.mkelvin;
|
|
int old_maxtemp = d->maxtemp.mkelvin;
|
|
duration_t old_duration = d->duration;
|
|
std::vector<start_end_pressure> old_pressures(d->cylinders.size());
|
|
|
|
d->maxdepth.mm = 0;
|
|
dc->maxdepth.mm = 0;
|
|
d->watertemp.mkelvin = 0;
|
|
dc->watertemp.mkelvin = 0;
|
|
d->duration.seconds = 0;
|
|
d->maxtemp.mkelvin = 0;
|
|
d->mintemp.mkelvin = 0;
|
|
for (auto [i, cyl]: enumerated_range(d->cylinders)) {
|
|
old_pressures[i].start = cyl.start;
|
|
old_pressures[i].end = cyl.end;
|
|
cyl.start.mbar = 0;
|
|
cyl.end.mbar = 0;
|
|
}
|
|
|
|
fixup_dive(d);
|
|
|
|
if (!d->watertemp.mkelvin)
|
|
d->watertemp.mkelvin = old_temp;
|
|
|
|
if (!dc->watertemp.mkelvin)
|
|
dc->watertemp.mkelvin = old_temp;
|
|
|
|
if (!d->maxtemp.mkelvin)
|
|
d->maxtemp.mkelvin = old_maxtemp;
|
|
|
|
if (!d->mintemp.mkelvin)
|
|
d->mintemp.mkelvin = old_mintemp;
|
|
|
|
if (!d->duration.seconds)
|
|
d->duration = old_duration;
|
|
for (auto [i, cyl]: enumerated_range(d->cylinders)) {
|
|
if (!cyl.start.mbar)
|
|
cyl.start = old_pressures[i].start;
|
|
if (!cyl.end.mbar)
|
|
cyl.end = old_pressures[i].end;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Split a dive that has a surface interval from samples 'a' to 'b'
|
|
* into two dives, but don't add them to the log yet.
|
|
* Returns the nr of the old dive or <0 on failure.
|
|
* Moreover, on failure both output dives are set to NULL.
|
|
* On success, the newly allocated dives are returned in out1 and out2.
|
|
*/
|
|
static std::array<std::unique_ptr<dive>, 2> split_dive_at(const struct dive &dive, int a, int b)
|
|
{
|
|
int nr = get_divenr(&dive);
|
|
|
|
/* if we can't find the dive in the dive list, don't bother */
|
|
if (nr < 0)
|
|
return {};
|
|
|
|
/* Splitting should leave at least 3 samples per dive */
|
|
if (a < 3 || static_cast<size_t>(b + 4) > dive.dcs[0].samples.size())
|
|
return {};
|
|
|
|
/* We're not trying to be efficient here.. */
|
|
auto d1 = std::make_unique<struct dive>(dive);
|
|
auto d2 = std::make_unique<struct dive>(dive);
|
|
d1->id = dive_getUniqID();
|
|
d2->id = dive_getUniqID();
|
|
d1->divetrip = d2->divetrip = nullptr;
|
|
|
|
/* now unselect the first first segment so we don't keep all
|
|
* dives selected by mistake. But do keep the second one selected
|
|
* so the algorithm keeps splitting the dive further */
|
|
d1->selected = false;
|
|
|
|
struct divecomputer &dc1 = d1->dcs[0];
|
|
struct divecomputer &dc2 = d2->dcs[0];
|
|
/*
|
|
* Cut off the samples of d1 at the beginning
|
|
* of the interval.
|
|
*/
|
|
dc1.samples.resize(a);
|
|
|
|
/* And get rid of the 'b' first samples of d2 */
|
|
dc2.samples.erase(dc2.samples.begin(), dc2.samples.begin() + b);
|
|
|
|
/* Now the secondary dive computers */
|
|
int32_t t = dc2.samples[0].time.seconds;
|
|
for (auto it1 = d1->dcs.begin() + 1; it1 != d1->dcs.end(); ++it1) {
|
|
auto it = std::find_if(it1->samples.begin(), it1->samples.end(),
|
|
[t](auto &sample) { return sample.time.seconds >= t; });
|
|
it1->samples.erase(it, it1->samples.end());
|
|
}
|
|
for (auto it2 = d2->dcs.begin() + 1; it2 != d2->dcs.end(); ++it2) {
|
|
auto it = std::find_if(it2->samples.begin(), it2->samples.end(),
|
|
[t](auto &sample) { return sample.time.seconds >= t; });
|
|
it2->samples.erase(it2->samples.begin(), it);
|
|
}
|
|
|
|
/*
|
|
* This is where we cut off events from d1,
|
|
* and shift everything in d2
|
|
*/
|
|
d2->when += t;
|
|
auto it1 = d1->dcs.begin();
|
|
auto it2 = d2->dcs.begin();
|
|
while (it1 != d1->dcs.end() && it2 != d2->dcs.end()) {
|
|
it2->when += t;
|
|
for (auto &sample: it2->samples)
|
|
sample.time.seconds -= t;
|
|
|
|
/* Remove the events past 't' from d1 */
|
|
auto it = std::lower_bound(it1->events.begin(), it1->events.end(), t,
|
|
[] (struct event &ev, int t)
|
|
{ return ev.time.seconds < t; });
|
|
it1->events.erase(it, it1->events.end());
|
|
|
|
/* Remove the events before 't' from d2, and shift the rest */
|
|
it = std::lower_bound(it2->events.begin(), it2->events.end(), t,
|
|
[] (struct event &ev, int t)
|
|
{ return ev.time.seconds < t; });
|
|
it2->events.erase(it2->events.begin(), it);
|
|
for (auto &ev: it2->events)
|
|
ev.time.seconds -= t;
|
|
|
|
++it1;
|
|
++it2;
|
|
}
|
|
|
|
force_fixup_dive(d1.get());
|
|
force_fixup_dive(d2.get());
|
|
|
|
/*
|
|
* Was the dive numbered? If it was the last dive, then we'll
|
|
* increment the dive number for the tail part that we split off.
|
|
* Otherwise the tail is unnumbered.
|
|
*/
|
|
if (d2->number) {
|
|
if (divelog.dives->nr == nr + 1)
|
|
d2->number++;
|
|
else
|
|
d2->number = 0;
|
|
}
|
|
|
|
return { std::move(d1), std::move(d2) };
|
|
}
|
|
|
|
/* in freedive mode we split for as little as 10 seconds on the surface,
|
|
* otherwise we use a minute */
|
|
static bool should_split(const struct divecomputer *dc, int t1, int t2)
|
|
{
|
|
int threshold = dc->divemode == FREEDIVE ? 10 : 60;
|
|
|
|
return t2 - t1 >= threshold;
|
|
}
|
|
|
|
/*
|
|
* Try to split a dive into multiple dives at a surface interval point.
|
|
*
|
|
* NOTE! We will split when there is at least one surface event that has
|
|
* non-surface events on both sides.
|
|
*
|
|
* The surface interval points are determined using the first dive computer.
|
|
*
|
|
* In other words, this is a (simplified) reversal of the dive merging.
|
|
*/
|
|
std::array<std::unique_ptr<dive>, 2> split_dive(const struct dive &dive)
|
|
{
|
|
const struct divecomputer *dc = &dive.dcs[0];
|
|
bool at_surface = true;
|
|
if (dc->samples.empty())
|
|
return {};
|
|
auto surface_start = dc->samples.begin();
|
|
for (auto it = dc->samples.begin() + 1; it != dc->samples.end(); ++it) {
|
|
bool surface_sample = it->depth.mm < SURFACE_THRESHOLD;
|
|
|
|
/*
|
|
* We care about the transition from and to depth 0,
|
|
* not about the depth staying similar.
|
|
*/
|
|
if (at_surface == surface_sample)
|
|
continue;
|
|
at_surface = surface_sample;
|
|
|
|
// Did it become surface after having been non-surface? We found the start
|
|
if (at_surface) {
|
|
surface_start = it;
|
|
continue;
|
|
}
|
|
|
|
// Going down again? We want at least a minute from
|
|
// the surface start.
|
|
if (surface_start == dc->samples.begin())
|
|
continue;
|
|
if (!should_split(dc, surface_start->time.seconds, std::prev(it)->time.seconds))
|
|
continue;
|
|
|
|
return split_dive_at(dive, surface_start - dc->samples.begin(), it - dc->samples.begin() - 1);
|
|
}
|
|
return {};
|
|
}
|
|
|
|
std::array<std::unique_ptr<dive>, 2> split_dive_at_time(const struct dive &dive, duration_t time)
|
|
{
|
|
auto it = std::find_if(dive.dcs[0].samples.begin(), dive.dcs[0].samples.end(),
|
|
[time](auto &sample) { return sample.time.seconds >= time.seconds; });
|
|
if (it == dive.dcs[0].samples.end())
|
|
return {};
|
|
size_t idx = it - dive.dcs[0].samples.begin();
|
|
if (idx < 1)
|
|
return {};
|
|
return split_dive_at(dive, static_cast<int>(idx), static_cast<int>(idx - 1));
|
|
}
|
|
|
|
/*
|
|
* "dc_maxtime()" is how much total time this dive computer
|
|
* has for this dive. Note that it can differ from "duration"
|
|
* if there are surface events in the middle.
|
|
*
|
|
* Still, we do ignore all but the last surface samples from the
|
|
* end, because some divecomputers just generate lots of them.
|
|
*/
|
|
static inline int dc_totaltime(const struct divecomputer &dc)
|
|
{
|
|
int time = dc.duration.seconds;
|
|
|
|
for (auto it = dc.samples.rbegin(); it != dc.samples.rend(); ++it) {
|
|
time = it->time.seconds;
|
|
if (it->depth.mm >= SURFACE_THRESHOLD)
|
|
break;
|
|
}
|
|
return time;
|
|
}
|
|
|
|
/*
|
|
* The end of a dive is actually not trivial, because "duration"
|
|
* is not the duration until the end, but the time we spend under
|
|
* water, which can be very different if there are surface events
|
|
* during the dive.
|
|
*
|
|
* So walk the dive computers, looking for the longest actual
|
|
* time in the samples (and just default to the dive duration if
|
|
* there are no samples).
|
|
*/
|
|
duration_t dive::totaltime() const
|
|
{
|
|
int time = duration.seconds;
|
|
|
|
bool logged = is_logged();
|
|
for (auto &dc: dcs) {
|
|
if (logged || !is_dc_planner(&dc)) {
|
|
int dc_time = dc_totaltime(dc);
|
|
if (dc_time > time)
|
|
time = dc_time;
|
|
}
|
|
}
|
|
return { time };
|
|
}
|
|
|
|
timestamp_t dive::endtime() const
|
|
{
|
|
return when + totaltime().seconds;
|
|
}
|
|
|
|
bool time_during_dive_with_offset(const struct dive *dive, timestamp_t when, timestamp_t offset)
|
|
{
|
|
timestamp_t start = dive->when;
|
|
timestamp_t end = dive->endtime();
|
|
return start - offset <= when && when <= end + offset;
|
|
}
|
|
|
|
/* this sets a usually unused copy of the preferences with the units
|
|
* that were active the last time the dive list was saved to git storage
|
|
* (this isn't used in XML files); storing the unit preferences in the
|
|
* data file is usually pointless (that's a setting of the software,
|
|
* not a property of the data), but it's a great hint of what the user
|
|
* might expect to see when creating a backend service that visualizes
|
|
* the dive list without Subsurface running - so this is basically a
|
|
* functionality for the core library that Subsurface itself doesn't
|
|
* use but that another consumer of the library (like an HTML exporter)
|
|
* will need */
|
|
void set_informational_units(const char *units)
|
|
{
|
|
if (strstr(units, "METRIC")) {
|
|
git_prefs.unit_system = METRIC;
|
|
} else if (strstr(units, "IMPERIAL")) {
|
|
git_prefs.unit_system = IMPERIAL;
|
|
} else if (strstr(units, "PERSONALIZE")) {
|
|
git_prefs.unit_system = PERSONALIZE;
|
|
if (strstr(units, "METERS"))
|
|
git_prefs.units.length = units::METERS;
|
|
if (strstr(units, "FEET"))
|
|
git_prefs.units.length = units::FEET;
|
|
if (strstr(units, "LITER"))
|
|
git_prefs.units.volume = units::LITER;
|
|
if (strstr(units, "CUFT"))
|
|
git_prefs.units.volume = units::CUFT;
|
|
if (strstr(units, "BAR"))
|
|
git_prefs.units.pressure = units::BAR;
|
|
if (strstr(units, "PSI"))
|
|
git_prefs.units.pressure = units::PSI;
|
|
if (strstr(units, "CELSIUS"))
|
|
git_prefs.units.temperature = units::CELSIUS;
|
|
if (strstr(units, "FAHRENHEIT"))
|
|
git_prefs.units.temperature = units::FAHRENHEIT;
|
|
if (strstr(units, "KG"))
|
|
git_prefs.units.weight = units::KG;
|
|
if (strstr(units, "LBS"))
|
|
git_prefs.units.weight = units::LBS;
|
|
if (strstr(units, "SECONDS"))
|
|
git_prefs.units.vertical_speed_time = units::SECONDS;
|
|
if (strstr(units, "MINUTES"))
|
|
git_prefs.units.vertical_speed_time = units::MINUTES;
|
|
}
|
|
|
|
}
|
|
|
|
void set_git_prefs(const char *prefs)
|
|
{
|
|
if (strstr(prefs, "TANKBAR"))
|
|
git_prefs.tankbar = 1;
|
|
if (strstr(prefs, "SHOW_SETPOINT"))
|
|
git_prefs.show_ccr_setpoint = 1;
|
|
if (strstr(prefs, "SHOW_SENSORS"))
|
|
git_prefs.show_ccr_sensors = 1;
|
|
if (strstr(prefs, "PO2_GRAPH"))
|
|
git_prefs.pp_graphs.po2 = 1;
|
|
}
|
|
|
|
/* clones a dive and moves given dive computer to front */
|
|
std::unique_ptr<dive> clone_make_first_dc(const struct dive &d, int dc_number)
|
|
{
|
|
/* copy the dive */
|
|
auto res = std::make_unique<dive>(d);
|
|
|
|
/* make a new unique id, since we still can't handle two equal ids */
|
|
res->id = dive_getUniqID();
|
|
|
|
if (dc_number != 0)
|
|
move_in_range(res->dcs, dc_number, dc_number + 1, 0);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Clone a dive and delete given dive computer */
|
|
std::unique_ptr<dive> clone_delete_divecomputer(const struct dive &d, int dc_number)
|
|
{
|
|
/* copy the dive */
|
|
auto res = std::make_unique<dive>(d);
|
|
|
|
/* make a new unique id, since we still can't handle two equal ids */
|
|
res->id = dive_getUniqID();
|
|
|
|
if (res->dcs.size() <= 1)
|
|
return res;
|
|
|
|
if (dc_number < 0 || static_cast<size_t>(dc_number) >= res->dcs.size())
|
|
return res;
|
|
|
|
res->dcs.erase(res->dcs.begin() + dc_number);
|
|
|
|
force_fixup_dive(res.get());
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* This splits the dive src by dive computer. The first output dive has all
|
|
* dive computers except num, the second only dive computer num.
|
|
* The dives will not be associated with a trip.
|
|
* On error, both output parameters are set to NULL.
|
|
*/
|
|
std::array<std::unique_ptr<dive>, 2> split_divecomputer(const struct dive &src, int num)
|
|
{
|
|
if (num < 0 || src.dcs.size() < 2 || static_cast<size_t>(num) >= src.dcs.size())
|
|
return {};
|
|
|
|
// Copy the dive with full divecomputer list
|
|
auto out1 = std::make_unique<dive>(src);
|
|
|
|
// Remove all DCs, stash them and copy the dive again.
|
|
// Then, we have to dives without DCs and a list of DCs.
|
|
std::vector<divecomputer> dcs;
|
|
std::swap(out1->dcs, dcs);
|
|
auto out2 = std::make_unique<dive>(*out1);
|
|
|
|
// Give the dives new unique ids and remove them from the trip.
|
|
out1->id = dive_getUniqID();
|
|
out2->id = dive_getUniqID();
|
|
out1->divetrip = out2->divetrip = NULL;
|
|
|
|
// Now copy the divecomputers
|
|
out1->dcs.reserve(src.dcs.size() - 1);
|
|
for (auto [idx, dc]: enumerated_range(dcs)) {
|
|
auto &dcs = idx == num ? out2->dcs : out1->dcs;
|
|
dcs.push_back(std::move(dc));
|
|
}
|
|
|
|
// Recalculate gas data, etc.
|
|
fixup_dive(out1.get());
|
|
fixup_dive(out2.get());
|
|
|
|
return { std::move(out1), std::move(out2) };
|
|
}
|
|
|
|
//Calculate O2 in best mix
|
|
fraction_t best_o2(depth_t depth, const struct dive *dive, bool in_planner)
|
|
{
|
|
fraction_t fo2;
|
|
int po2 = in_planner ? prefs.bottompo2 : (int)(prefs.modpO2 * 1000.0);
|
|
|
|
fo2.permille = (po2 * 100 / depth_to_mbar(depth.mm, dive)) * 10; //use integer arithmetic to round down to nearest percent
|
|
// Don't permit >100% O2
|
|
if (fo2.permille > 1000)
|
|
fo2.permille = 1000;
|
|
return fo2;
|
|
}
|
|
|
|
//Calculate He in best mix. O2 is considered narcopic
|
|
fraction_t best_he(depth_t depth, const struct dive *dive, bool o2narcotic, fraction_t fo2)
|
|
{
|
|
fraction_t fhe;
|
|
int pnarcotic, ambient;
|
|
pnarcotic = depth_to_mbar(prefs.bestmixend.mm, dive);
|
|
ambient = depth_to_mbar(depth.mm, dive);
|
|
if (o2narcotic) {
|
|
fhe.permille = (100 - 100 * pnarcotic / ambient) * 10; //use integer arithmetic to round up to nearest percent
|
|
} else {
|
|
fhe.permille = 1000 - fo2.permille - N2_IN_AIR * pnarcotic / ambient;
|
|
}
|
|
if (fhe.permille < 0)
|
|
fhe.permille = 0;
|
|
return fhe;
|
|
}
|
|
|
|
void invalidate_dive_cache(struct dive *dive)
|
|
{
|
|
memset(dive->git_id, 0, 20);
|
|
}
|
|
|
|
bool dive_cache_is_valid(const struct dive *dive)
|
|
{
|
|
static const unsigned char null_id[20] = { 0, };
|
|
return !!memcmp(dive->git_id, null_id, 20);
|
|
}
|
|
|
|
int get_surface_pressure_in_mbar(const struct dive *dive, bool non_null)
|
|
{
|
|
int mbar = dive->surface_pressure.mbar;
|
|
if (!mbar && non_null)
|
|
mbar = SURFACE_PRESSURE;
|
|
return mbar;
|
|
}
|
|
|
|
/* This returns the conversion factor that you need to multiply
|
|
* a (relative) depth in mm to obtain a (relative) pressure in mbar.
|
|
* As everywhere in Subsurface, the expected unit of a salinity is
|
|
* g/10l such that sea water has a salinity of 10300
|
|
*/
|
|
static double salinity_to_specific_weight(int salinity)
|
|
{
|
|
return salinity * 0.981 / 100000.0;
|
|
}
|
|
|
|
/* Pa = N/m^2 - so we determine the weight (in N) of the mass of 10m
|
|
* of water (and use standard salt water at 1.03kg per liter if we don't know salinity)
|
|
* and add that to the surface pressure (or to 1013 if that's unknown) */
|
|
static double calculate_depth_to_mbarf(int depth, pressure_t surface_pressure, int salinity)
|
|
{
|
|
double specific_weight;
|
|
int mbar = surface_pressure.mbar;
|
|
|
|
if (!mbar)
|
|
mbar = SURFACE_PRESSURE;
|
|
if (!salinity)
|
|
salinity = SEAWATER_SALINITY;
|
|
if (salinity < 500)
|
|
salinity += FRESHWATER_SALINITY;
|
|
specific_weight = salinity_to_specific_weight(salinity);
|
|
return mbar + depth * specific_weight;
|
|
}
|
|
|
|
int depth_to_mbar(int depth, const struct dive *dive)
|
|
{
|
|
return lrint(depth_to_mbarf(depth, dive));
|
|
}
|
|
|
|
double depth_to_mbarf(int depth, const struct dive *dive)
|
|
{
|
|
// For downloaded and planned dives, use DC's values
|
|
int salinity = dive->dcs[0].salinity;
|
|
pressure_t surface_pressure = dive->dcs[0].surface_pressure;
|
|
|
|
if (is_dc_manually_added_dive(&dive->dcs[0])) { // For manual dives, salinity and pressure in another place...
|
|
surface_pressure = dive->surface_pressure;
|
|
salinity = dive->user_salinity;
|
|
}
|
|
return calculate_depth_to_mbarf(depth, surface_pressure, salinity);
|
|
}
|
|
|
|
double depth_to_bar(int depth, const struct dive *dive)
|
|
{
|
|
return depth_to_mbar(depth, dive) / 1000.0;
|
|
}
|
|
|
|
double depth_to_atm(int depth, const struct dive *dive)
|
|
{
|
|
return mbar_to_atm(depth_to_mbar(depth, dive));
|
|
}
|
|
|
|
/* for the inverse calculation we use just the relative pressure
|
|
* (that's the one that some dive computers like the Uemis Zurich
|
|
* provide - for the other models that do this libdivecomputer has to
|
|
* take care of this, but the Uemis we support natively */
|
|
int rel_mbar_to_depth(int mbar, const struct dive *dive)
|
|
{
|
|
// For downloaded and planned dives, use DC's salinity. Manual dives, use user's salinity
|
|
int salinity = is_dc_manually_added_dive(&dive->dcs[0]) ? dive->user_salinity : dive->dcs[0].salinity;
|
|
if (!salinity)
|
|
salinity = SEAWATER_SALINITY;
|
|
|
|
/* whole mbar gives us cm precision */
|
|
double specific_weight = salinity_to_specific_weight(salinity);
|
|
return (int)lrint(mbar / specific_weight);
|
|
}
|
|
|
|
int mbar_to_depth(int mbar, const struct dive *dive)
|
|
{
|
|
// For downloaded and planned dives, use DC's pressure. Manual dives, use user's pressure
|
|
pressure_t surface_pressure = is_dc_manually_added_dive(&dive->dcs[0])
|
|
? dive->surface_pressure
|
|
: dive->dcs[0].surface_pressure;
|
|
|
|
if (!surface_pressure.mbar)
|
|
surface_pressure.mbar = SURFACE_PRESSURE;
|
|
|
|
return rel_mbar_to_depth(mbar - surface_pressure.mbar, dive);
|
|
}
|
|
|
|
/* MOD rounded to multiples of roundto mm */
|
|
depth_t gas_mod(struct gasmix mix, pressure_t po2_limit, const struct dive *dive, int roundto)
|
|
{
|
|
depth_t rounded_depth;
|
|
|
|
double depth = (double) mbar_to_depth(po2_limit.mbar * 1000 / get_o2(mix), dive);
|
|
rounded_depth.mm = (int)lrint(depth / roundto) * roundto;
|
|
return rounded_depth;
|
|
}
|
|
|
|
/* Maximum narcotic depth rounded to multiples of roundto mm */
|
|
depth_t gas_mnd(struct gasmix mix, depth_t end, const struct dive *dive, int roundto)
|
|
{
|
|
depth_t rounded_depth;
|
|
pressure_t ppo2n2;
|
|
ppo2n2.mbar = depth_to_mbar(end.mm, dive);
|
|
|
|
int maxambient = prefs.o2narcotic ?
|
|
(int)lrint(ppo2n2.mbar / (1 - get_he(mix) / 1000.0))
|
|
:
|
|
get_n2(mix) > 0 ?
|
|
(int)lrint(ppo2n2.mbar * N2_IN_AIR / get_n2(mix))
|
|
:
|
|
// Actually: Infinity
|
|
1000000;
|
|
rounded_depth.mm = (int)lrint(((double)mbar_to_depth(maxambient, dive)) / roundto) * roundto;
|
|
return rounded_depth;
|
|
}
|
|
|
|
struct dive *get_dive(int nr)
|
|
{
|
|
if (nr >= divelog.dives->nr || nr < 0)
|
|
return NULL;
|
|
return divelog.dives->dives[nr];
|
|
}
|
|
|
|
struct dive_site *get_dive_site_for_dive(const struct dive *dive)
|
|
{
|
|
return dive->dive_site;
|
|
}
|
|
|
|
std::string get_dive_country(const struct dive *dive)
|
|
{
|
|
struct dive_site *ds = dive->dive_site;
|
|
return ds ? taxonomy_get_country(ds->taxonomy) : std::string();
|
|
}
|
|
|
|
std::string get_dive_location(const struct dive *dive)
|
|
{
|
|
const struct dive_site *ds = dive->dive_site;
|
|
return ds ? ds->name : std::string();
|
|
}
|
|
|
|
unsigned int number_of_computers(const struct dive *dive)
|
|
{
|
|
return dive ? static_cast<int>(dive->dcs.size()) : 1;
|
|
}
|
|
|
|
struct divecomputer *get_dive_dc(struct dive *dive, int nr)
|
|
{
|
|
if (!dive || dive->dcs.empty())
|
|
return NULL;
|
|
nr = std::max(0, nr);
|
|
return &dive->dcs[static_cast<size_t>(nr) % dive->dcs.size()];
|
|
}
|
|
|
|
const struct divecomputer *get_dive_dc(const struct dive *dive, int nr)
|
|
{
|
|
return get_dive_dc((struct dive *)dive, nr);
|
|
}
|
|
|
|
struct dive *get_dive_by_uniq_id(int id)
|
|
{
|
|
int i;
|
|
struct dive *dive = NULL;
|
|
|
|
for_each_dive (i, dive) {
|
|
if (dive->id == id)
|
|
break;
|
|
}
|
|
#ifdef DEBUG
|
|
if (dive == NULL) {
|
|
report_info("Invalid id %x passed to get_dive_by_diveid, try to fix the code", id);
|
|
exit(1);
|
|
}
|
|
#endif
|
|
return dive;
|
|
}
|
|
|
|
int get_idx_by_uniq_id(int id)
|
|
{
|
|
int i;
|
|
struct dive *dive = NULL;
|
|
|
|
for_each_dive (i, dive) {
|
|
if (dive->id == id)
|
|
break;
|
|
}
|
|
#ifdef DEBUG
|
|
if (dive == NULL) {
|
|
report_info("Invalid id %x passed to get_dive_by_diveid, try to fix the code", id);
|
|
exit(1);
|
|
}
|
|
#endif
|
|
return i;
|
|
}
|
|
|
|
bool dive_site_has_gps_location(const struct dive_site *ds)
|
|
{
|
|
return ds && has_location(&ds->location);
|
|
}
|
|
|
|
int dive_has_gps_location(const struct dive *dive)
|
|
{
|
|
if (!dive)
|
|
return false;
|
|
return dive_site_has_gps_location(dive->dive_site);
|
|
}
|
|
|
|
/* Extract GPS location of a dive computer stored in the GPS1
|
|
* or GPS2 extra data fields */
|
|
static location_t dc_get_gps_location(const struct divecomputer *dc)
|
|
{
|
|
location_t res;
|
|
|
|
for (const auto &data: dc->extra_data) {
|
|
if (data.key == "GPS1") {
|
|
parse_location(data.value.c_str(), &res);
|
|
/* If we found a valid GPS1 field exit early since
|
|
* it has priority over GPS2 */
|
|
if (has_location(&res))
|
|
break;
|
|
} else if (data.key == "GPS2") {
|
|
/* For GPS2 fields continue searching, as we might
|
|
* still find a GPS1 field */
|
|
parse_location(data.value.c_str(), &res);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Get GPS location for a dive. Highest priority is given to the GPS1
|
|
* extra data written by libdivecomputer, as this comes from a real GPS
|
|
* device. If that doesn't exits, use the currently set dive site.
|
|
* This function is potentially slow, therefore only call sparingly
|
|
* and remember the result.
|
|
*/
|
|
location_t dive_get_gps_location(const struct dive *d)
|
|
{
|
|
for (const struct divecomputer &dc: d->dcs) {
|
|
location_t res = dc_get_gps_location(&dc);
|
|
if (has_location(&res))
|
|
return res;
|
|
}
|
|
|
|
/* No libdivecomputer generated GPS data found.
|
|
* Let's use the location of the current dive site.
|
|
*/
|
|
if (d->dive_site)
|
|
return d->dive_site->location;
|
|
|
|
return location_t();
|
|
}
|
|
|
|
gasmix_loop::gasmix_loop(const struct dive &d, const struct divecomputer &dc) :
|
|
dive(d), dc(dc), last(gasmix_air), loop("gaschange")
|
|
{
|
|
/* if there is no cylinder, return air */
|
|
if (dive.cylinders.empty())
|
|
return;
|
|
|
|
/* on first invocation, get initial gas mix and first event (if any) */
|
|
int cyl = explicit_first_cylinder(&dive, &dc);
|
|
last = get_cylinder(&dive, cyl)->gasmix;
|
|
ev = loop.next(dc);
|
|
}
|
|
|
|
gasmix gasmix_loop::next(int time)
|
|
{
|
|
/* if there is no cylinder, return air */
|
|
if (dive.cylinders.empty())
|
|
return last;
|
|
|
|
while (ev && ev->time.seconds <= time) {
|
|
last = get_gasmix_from_event(&dive, *ev);
|
|
ev = loop.next(dc);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
/* get the gas at a certain time during the dive */
|
|
/* If there is a gasswitch at that time, it returns the new gasmix */
|
|
struct gasmix get_gasmix_at_time(const struct dive &d, const struct divecomputer &dc, duration_t time)
|
|
{
|
|
return gasmix_loop(d, dc).next(time.seconds);
|
|
}
|
|
|
|
/* Does that cylinder have any pressure readings? */
|
|
bool cylinder_with_sensor_sample(const struct dive *dive, int cylinder_id)
|
|
{
|
|
for (const auto &dc: dive->dcs) {
|
|
for (const auto &sample: dc.samples) {
|
|
for (int j = 0; j < MAX_SENSORS; ++j) {
|
|
if (!sample.pressure[j].mbar)
|
|
continue;
|
|
if (sample.sensor[j] == cylinder_id)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* What do the dive computers say the water temperature is?
|
|
* (not in the samples, but as dc property for dcs that support that)
|
|
*/
|
|
temperature_t dive::dc_watertemp() const
|
|
{
|
|
int sum = 0, nr = 0;
|
|
|
|
for (auto &dc: dcs) {
|
|
if (dc.watertemp.mkelvin) {
|
|
sum += dc.watertemp.mkelvin;
|
|
nr++;
|
|
}
|
|
}
|
|
if (!nr)
|
|
return temperature_t();
|
|
return temperature_t{ static_cast<uint32_t>((sum + nr / 2) / nr) };
|
|
}
|
|
|
|
/*
|
|
* What do the dive computers say the air temperature is?
|
|
*/
|
|
temperature_t dive::dc_airtemp() const
|
|
{
|
|
int sum = 0, nr = 0;
|
|
|
|
for (auto &dc: dcs) {
|
|
if (dc.airtemp.mkelvin) {
|
|
sum += dc.airtemp.mkelvin;
|
|
nr++;
|
|
}
|
|
}
|
|
if (!nr)
|
|
return temperature_t();
|
|
return temperature_t{ static_cast<uint32_t>((sum + nr / 2) / nr) };
|
|
}
|