subsurface/profile.c
Dirk Hohndel 029db4aae2 Add depth scale to the dive profile
This is intended to be unobtrusive, but add more information for people
who aren't satisfied with the numeric value we put inside the plot to mark
local peaks and troughs.

See ticket #9

Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-29 10:56:20 -07:00

1499 lines
42 KiB
C

/* profile.c */
/* creates all the necessary data for drawing the dive profile
* uses cairo to draw it
*/
#include <glib/gi18n.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <time.h>
#include "dive.h"
#include "display.h"
#include "divelist.h"
#include "color.h"
int selected_dive = 0;
char zoomed_plot = 0;
static double plot_scale = SCALE_SCREEN;
#define cairo_set_line_width_scaled(cr, w) \
cairo_set_line_width((cr), (w) * plot_scale);
typedef enum { STABLE, SLOW, MODERATE, FAST, CRAZY } velocity_t;
/* Plot info with smoothing, velocity indication
* and one-, two- and three-minute minimums and maximums */
struct plot_info {
int nr;
int maxtime;
int meandepth, maxdepth;
int maxpressure;
int mintemp, maxtemp;
struct plot_data {
unsigned int same_cylinder:1;
unsigned int cylinderindex;
int sec;
/* pressure[0] is sensor pressure
* pressure[1] is interpolated pressure */
int pressure[2];
int temperature;
/* Depth info */
int depth;
int smoothed;
velocity_t velocity;
struct plot_data *min[3];
struct plot_data *max[3];
int avg[3];
} entry[];
};
#define SENSOR_PR 0
#define INTERPOLATED_PR 1
#define SENSOR_PRESSURE(_entry) (_entry)->pressure[SENSOR_PR]
#define INTERPOLATED_PRESSURE(_entry) (_entry)->pressure[INTERPOLATED_PR]
#define GET_PRESSURE(_entry) (SENSOR_PRESSURE(_entry) ? : INTERPOLATED_PRESSURE(_entry))
#define SAC_COLORS_START_IDX SAC_1
#define SAC_COLORS 9
#define VELOCITY_COLORS_START_IDX VELO_STABLE
#define VELOCITY_COLORS 5
typedef enum {
/* SAC colors. Order is important, the SAC_COLORS_START_IDX define above. */
SAC_1, SAC_2, SAC_3, SAC_4, SAC_5, SAC_6, SAC_7, SAC_8, SAC_9,
/* Velocity colors. Order is still important, ref VELOCITY_COLORS_START_IDX. */
VELO_STABLE, VELO_SLOW, VELO_MODERATE, VELO_FAST, VELO_CRAZY,
/* Other colors */
TEXT_BACKGROUND, ALERT_BG, ALERT_FG, EVENTS, SAMPLE_DEEP, SAMPLE_SHALLOW,
SMOOTHED, MINUTE, TIME_GRID, TIME_TEXT, DEPTH_GRID, MEAN_DEPTH, DEPTH_TOP,
DEPTH_BOTTOM, TEMP_TEXT, TEMP_PLOT, SAC_DEFAULT, BOUNDING_BOX, PRESSURE_TEXT, BACKGROUND
} color_indice_t;
typedef struct {
/* media[0] is screen, and media[1] is printer */
struct rgba {
double r,g,b,a;
} media[2];
} color_t;
/* [color indice] = {{screen color, printer color}} */
static const color_t profile_color[] = {
[SAC_1] = {{FUNGREEN1, BLACK1_LOW_TRANS}},
[SAC_2] = {{APPLE1, BLACK1_LOW_TRANS}},
[SAC_3] = {{ATLANTIS1, BLACK1_LOW_TRANS}},
[SAC_4] = {{ATLANTIS2, BLACK1_LOW_TRANS}},
[SAC_5] = {{EARLSGREEN1, BLACK1_LOW_TRANS}},
[SAC_6] = {{HOKEYPOKEY1, BLACK1_LOW_TRANS}},
[SAC_7] = {{TUSCANY1, BLACK1_LOW_TRANS}},
[SAC_8] = {{CINNABAR1, BLACK1_LOW_TRANS}},
[SAC_9] = {{REDORANGE1, BLACK1_LOW_TRANS}},
[VELO_STABLE] = {{CAMARONE1, BLACK1_LOW_TRANS}},
[VELO_SLOW] = {{LIMENADE1, BLACK1_LOW_TRANS}},
[VELO_MODERATE] = {{RIOGRANDE1, BLACK1_LOW_TRANS}},
[VELO_FAST] = {{PIRATEGOLD1, BLACK1_LOW_TRANS}},
[VELO_CRAZY] = {{RED1, BLACK1_LOW_TRANS}},
[TEXT_BACKGROUND] = {{CONCRETE1_LOWER_TRANS, WHITE1}},
[ALERT_BG] = {{BROOM1_LOWER_TRANS, BLACK1_LOW_TRANS}},
[ALERT_FG] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}},
[EVENTS] = {{REDORANGE1, BLACK1_LOW_TRANS}},
[SAMPLE_DEEP] = {{PERSIANRED1, BLACK1_LOW_TRANS}},
[SAMPLE_SHALLOW] = {{PERSIANRED1, BLACK1_LOW_TRANS}},
[SMOOTHED] = {{REDORANGE1_HIGH_TRANS, BLACK1_LOW_TRANS}},
[MINUTE] = {{MEDIUMREDVIOLET1_HIGHER_TRANS, BLACK1_LOW_TRANS}},
[TIME_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}},
[TIME_TEXT] = {{FORESTGREEN1, BLACK1_LOW_TRANS}},
[DEPTH_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}},
[MEAN_DEPTH] = {{REDORANGE1_MED_TRANS, BLACK1_LOW_TRANS}},
[DEPTH_BOTTOM] = {{GOVERNORBAY1_MED_TRANS, TUNDORA1_MED_TRANS}},
[DEPTH_TOP] = {{MERCURY1_MED_TRANS, WHITE1_MED_TRANS}},
[TEMP_TEXT] = {{GOVERNORBAY2, BLACK1_LOW_TRANS}},
[TEMP_PLOT] = {{ROYALBLUE2_LOW_TRANS, BLACK1_LOW_TRANS}},
[SAC_DEFAULT] = {{WHITE1, BLACK1_LOW_TRANS}},
[BOUNDING_BOX] = {{WHITE1, BLACK1_LOW_TRANS}},
[PRESSURE_TEXT] = {{KILLARNEY1, BLACK1_LOW_TRANS}},
[BACKGROUND] = {{SPRINGWOOD1, BLACK1_LOW_TRANS}},
};
#define plot_info_size(nr) (sizeof(struct plot_info) + (nr)*sizeof(struct plot_data))
/* Scale to 0,0 -> maxx,maxy */
#define SCALEX(gc,x) (((x)-gc->leftx)/(gc->rightx-gc->leftx)*gc->maxx)
#define SCALEY(gc,y) (((y)-gc->topy)/(gc->bottomy-gc->topy)*gc->maxy)
#define SCALE(gc,x,y) SCALEX(gc,x),SCALEY(gc,y)
static void move_to(struct graphics_context *gc, double x, double y)
{
cairo_move_to(gc->cr, SCALE(gc, x, y));
}
static void line_to(struct graphics_context *gc, double x, double y)
{
cairo_line_to(gc->cr, SCALE(gc, x, y));
}
static void set_source_rgba(struct graphics_context *gc, color_indice_t c)
{
const color_t *col = &profile_color[c];
struct rgba rgb = col->media[gc->printer];
double r = rgb.r;
double g = rgb.g;
double b = rgb.b;
double a = rgb.a;
cairo_set_source_rgba(gc->cr, r, g, b, a);
}
void init_profile_background(struct graphics_context *gc)
{
set_source_rgba(gc, BACKGROUND);
}
void pattern_add_color_stop_rgba(struct graphics_context *gc, cairo_pattern_t *pat, double o, color_indice_t c)
{
const color_t *col = &profile_color[c];
struct rgba rgb = col->media[gc->printer];
cairo_pattern_add_color_stop_rgba(pat, o, rgb.r, rgb.g, rgb.b, rgb.a);
}
#define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y))
/* debugging tool - not normally used */
static void dump_pi (struct plot_info *pi)
{
int i;
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
" maxpressure:%d mintemp:%d maxtemp:%d\n",
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
pi->maxpressure, pi->mintemp, pi->maxtemp);
for (i = 0; i < pi->nr; i++)
printf(" entry[%d]:{same_cylinder:%d cylinderindex:%d sec:%d pressure:{%d,%d}\n"
" time:%d:%02d temperature:%d depth:%d smoothed:%d}\n",
i, pi->entry[i].same_cylinder, pi->entry[i].cylinderindex, pi->entry[i].sec,
pi->entry[i].pressure[0], pi->entry[i].pressure[1],
pi->entry[i].sec / 60, pi->entry[i].sec % 60,
pi->entry[i].temperature, pi->entry[i].depth, pi->entry[i].smoothed);
printf(" }\n");
}
/*
* When showing dive profiles, we scale things to the
* current dive. However, we don't scale past less than
* 30 minutes or 90 ft, just so that small dives show
* up as such unless zoom is enabled.
* We also need to add 180 seconds at the end so the min/max
* plots correctly
*/
static int get_maxtime(struct plot_info *pi)
{
int seconds = pi->maxtime;
if (zoomed_plot) {
/* Rounded up to one minute, with at least 2.5 minutes to
* spare.
* For dive times shorter than 10 minutes, we use seconds/4 to
* calculate the space dynamically.
* This is seamless since 600/4 = 150.
*/
if ( seconds < 600 )
return ROUND_UP(seconds+seconds/4, 60);
else
return ROUND_UP(seconds+150, 60);
} else {
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
return MAX(30*60, ROUND_UP(seconds+150, 60*5));
}
}
static int get_maxdepth(struct plot_info *pi)
{
unsigned mm = pi->maxdepth;
if (zoomed_plot) {
/* Rounded up to 10m, with at least 3m to spare */
return ROUND_UP(mm+3000, 10000);
} else {
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
return MAX(30000, ROUND_UP(mm+3000, 10000));
}
}
typedef struct {
int size;
color_indice_t color;
double hpos, vpos;
} text_render_options_t;
#define RIGHT (-1.0)
#define CENTER (-0.5)
#define LEFT (0.0)
#define TOP (1)
#define MIDDLE (0)
#define BOTTOM (-1)
static void plot_text(struct graphics_context *gc, const text_render_options_t *tro,
double x, double y, const char *fmt, ...)
{
cairo_t *cr = gc->cr;
cairo_font_extents_t fe;
cairo_text_extents_t extents;
double dx, dy;
char buffer[80];
va_list args;
va_start(args, fmt);
vsnprintf(buffer, sizeof(buffer), fmt, args);
va_end(args);
cairo_set_font_size(cr, tro->size * plot_scale);
cairo_font_extents(cr, &fe);
cairo_text_extents(cr, buffer, &extents);
dx = tro->hpos * (extents.width + extents.x_bearing);
dy = tro->vpos * (extents.height + fe.descent);
move_to(gc, x, y);
cairo_rel_move_to(cr, dx, dy);
cairo_text_path(cr, buffer);
set_source_rgba(gc, TEXT_BACKGROUND);
cairo_stroke(cr);
move_to(gc, x, y);
cairo_rel_move_to(cr, dx, dy);
set_source_rgba(gc, tro->color);
cairo_show_text(cr, buffer);
}
struct ev_select {
char *ev_name;
gboolean plot_ev;
};
static struct ev_select *ev_namelist;
static int evn_allocated;
static int evn_used;
void evn_foreach(void (*callback)(const char *, int *, void *), void *data)
{
int i;
for (i = 0; i < evn_used; i++) {
/* here we display an event name on screen - so translate */
callback(_(ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
}
}
void remember_event(const char *eventname)
{
int i=0, len;
if (!eventname || (len = strlen(eventname)) == 0)
return;
while (i < evn_used) {
if (!strncmp(eventname,ev_namelist[i].ev_name,len))
return;
i++;
}
if (evn_used == evn_allocated) {
evn_allocated += 10;
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
if (! ev_namelist)
/* we are screwed, but let's just bail out */
return;
}
ev_namelist[evn_used].ev_name = strdup(eventname);
ev_namelist[evn_used].plot_ev = TRUE;
evn_used++;
}
static void plot_one_event(struct graphics_context *gc, struct plot_info *pi, struct event *event, const text_render_options_t *tro)
{
int i, depth = 0;
int x,y;
/* is plotting this event disabled? */
if (event->name) {
for (i = 0; i < evn_used; i++) {
if (! strcmp(event->name, ev_namelist[i].ev_name)) {
if (ev_namelist[i].plot_ev)
break;
else
return;
}
}
}
for (i = 0; i < pi->nr; i++) {
struct plot_data *data = pi->entry + i;
if (event->time.seconds < data->sec)
break;
depth = data->depth;
}
/* draw a little tirangular marker and attach tooltip */
x = SCALEX(gc, event->time.seconds);
y = SCALEY(gc, depth);
set_source_rgba(gc, ALERT_BG);
cairo_move_to(gc->cr, x-15, y+6);
cairo_line_to(gc->cr, x-3 , y+6);
cairo_line_to(gc->cr, x-9, y-6);
cairo_line_to(gc->cr, x-15, y+6);
cairo_stroke_preserve(gc->cr);
cairo_fill(gc->cr);
set_source_rgba(gc, ALERT_FG);
cairo_move_to(gc->cr, x-9, y-3);
cairo_line_to(gc->cr, x-9, y+1);
cairo_move_to(gc->cr, x-9, y+4);
cairo_line_to(gc->cr, x-9, y+4);
cairo_stroke(gc->cr);
/* we display the event on screen - so translate */
attach_tooltip(x-15, y-6, 12, 12, _(event->name));
}
static void plot_events(struct graphics_context *gc, struct plot_info *pi, struct dive *dive)
{
static const text_render_options_t tro = {14, EVENTS, CENTER, TOP};
struct event *event = dive->events;
if (gc->printer)
return;
while (event) {
plot_one_event(gc, pi, event, &tro);
event = event->next;
}
}
static void render_depth_sample(struct graphics_context *gc, struct plot_data *entry, const text_render_options_t *tro)
{
int sec = entry->sec, decimals;
double d;
d = get_depth_units(entry->depth, &decimals, NULL);
plot_text(gc, tro, sec, entry->depth, "%.*f", decimals, d);
}
static void plot_text_samples(struct graphics_context *gc, struct plot_info *pi)
{
static const text_render_options_t deep = {14, SAMPLE_DEEP, CENTER, TOP};
static const text_render_options_t shallow = {14, SAMPLE_SHALLOW, CENTER, BOTTOM};
int i;
int last = -1;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
if (entry->depth < 2000)
continue;
if ((entry == entry->max[2]) && entry->depth != last) {
render_depth_sample(gc, entry, &deep);
last = entry->depth;
}
if ((entry == entry->min[2]) && entry->depth != last) {
render_depth_sample(gc, entry, &shallow);
last = entry->depth;
}
if (entry->depth != last)
last = -1;
}
}
static void plot_depth_text(struct graphics_context *gc, struct plot_info *pi)
{
int maxtime, maxdepth;
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
maxdepth = get_maxdepth(pi);
gc->leftx = 0; gc->rightx = maxtime;
gc->topy = 0; gc->bottomy = maxdepth;
plot_text_samples(gc, pi);
}
static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i;
struct plot_data *entry = pi->entry;
set_source_rgba(gc, SMOOTHED);
move_to(gc, entry->sec, entry->smoothed);
for (i = 1; i < pi->nr; i++) {
entry++;
line_to(gc, entry->sec, entry->smoothed);
}
cairo_stroke(gc->cr);
}
static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi,
int index)
{
int i;
struct plot_data *entry = pi->entry;
set_source_rgba(gc, MINUTE);
move_to(gc, entry->sec, entry->min[index]->depth);
for (i = 1; i < pi->nr; i++) {
entry++;
line_to(gc, entry->sec, entry->min[index]->depth);
}
for (i = 1; i < pi->nr; i++) {
line_to(gc, entry->sec, entry->max[index]->depth);
entry--;
}
cairo_close_path(gc->cr);
cairo_fill(gc->cr);
}
static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi)
{
if (gc->printer)
return;
plot_minmax_profile_minute(gc, pi, 2);
plot_minmax_profile_minute(gc, pi, 1);
plot_minmax_profile_minute(gc, pi, 0);
}
static void plot_depth_scale(struct graphics_context *gc, struct plot_info *pi)
{
int i, maxdepth, marker;
static const text_render_options_t tro = {10, SAMPLE_DEEP, RIGHT, MIDDLE};
/* Depth markers: every 30 ft or 10 m*/
maxdepth = get_maxdepth(pi);
gc->topy = 0; gc->bottomy = maxdepth;
switch (output_units.length) {
case METERS: marker = 10000; break;
case FEET: marker = 9144; break; /* 30 ft */
}
set_source_rgba(gc, DEPTH_GRID);
for (i = marker; i < maxdepth; i += marker) {
double d = get_depth_units(i, NULL, NULL);
plot_text(gc, &tro, -0.002, i, "%.0f", d);
}
}
static void plot_depth_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i, incr;
cairo_t *cr = gc->cr;
int sec, depth;
struct plot_data *entry;
int maxtime, maxdepth, marker;
int increments[8] = { 10, 20, 30, 60, 5*60, 10*60, 15*60, 30*60 };
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
maxdepth = get_maxdepth(pi);
/* Time markers: at most every 10 seconds, but no more than 12 markers.
* We start out with 10 seconds and increment up to 30 minutes,
* depending on the dive time.
* This allows for 6h dives - enough (I hope) for even the craziest
* divers - but just in case, for those 8h depth-record-breaking dives,
* we double the interval if this still doesn't get us to 12 or fewer
* time markers */
i = 0;
while (maxtime / increments[i] > 12 && i < 8)
i++;
incr = increments[i];
while (maxtime / incr > 12)
incr *= 2;
gc->leftx = 0; gc->rightx = maxtime;
gc->topy = 0; gc->bottomy = 1.0;
set_source_rgba(gc, TIME_GRID);
cairo_set_line_width_scaled(gc->cr, 2);
for (i = incr; i < maxtime; i += incr) {
move_to(gc, i, 0);
line_to(gc, i, 1);
}
cairo_stroke(cr);
/* now the text on the time markers */
text_render_options_t tro = {10, TIME_TEXT, CENTER, TOP};
if (maxtime < 600) {
/* Be a bit more verbose with shorter dives */
for (i = incr; i < maxtime; i += incr)
plot_text(gc, &tro, i, 1, "%02d:%02d", i/60, i%60);
} else {
/* Only render the time on every second marker for normal dives */
for (i = incr; i < maxtime; i += 2 * incr)
plot_text(gc, &tro, i, 1, "%d", i/60);
}
/* Depth markers: every 30 ft or 10 m*/
gc->leftx = 0; gc->rightx = 1.0;
gc->topy = 0; gc->bottomy = maxdepth;
switch (output_units.length) {
case METERS: marker = 10000; break;
case FEET: marker = 9144; break; /* 30 ft */
}
set_source_rgba(gc, DEPTH_GRID);
for (i = marker; i < maxdepth; i += marker) {
move_to(gc, 0, i);
line_to(gc, 1, i);
}
cairo_stroke(cr);
/* Show mean depth */
if (! gc->printer) {
set_source_rgba(gc, MEAN_DEPTH);
move_to(gc, 0, pi->meandepth);
line_to(gc, 1, pi->meandepth);
cairo_stroke(cr);
}
gc->leftx = 0; gc->rightx = maxtime;
/*
* These are good for debugging text placement etc,
* but not for actual display..
*/
if (0) {
plot_smoothed_profile(gc, pi);
plot_minmax_profile(gc, pi);
}
/* Do the depth profile for the neat fill */
gc->topy = 0; gc->bottomy = maxdepth;
cairo_pattern_t *pat;
pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale);
pattern_add_color_stop_rgba (gc, pat, 1, DEPTH_BOTTOM);
pattern_add_color_stop_rgba (gc, pat, 0, DEPTH_TOP);
cairo_set_source(gc->cr, pat);
cairo_pattern_destroy(pat);
cairo_set_line_width_scaled(gc->cr, 2);
entry = pi->entry;
move_to(gc, 0, 0);
for (i = 0; i < pi->nr; i++, entry++)
line_to(gc, entry->sec, entry->depth);
cairo_close_path(gc->cr);
cairo_fill(gc->cr);
/* Now do it again for the velocity colors */
entry = pi->entry;
for (i = 1; i < pi->nr; i++) {
entry++;
sec = entry->sec;
/* we want to draw the segments in different colors
* representing the vertical velocity, so we need to
* chop this into short segments */
depth = entry->depth;
set_source_rgba(gc, VELOCITY_COLORS_START_IDX + entry->velocity);
move_to(gc, entry[-1].sec, entry[-1].depth);
line_to(gc, sec, depth);
cairo_stroke(cr);
}
}
static int setup_temperature_limits(struct graphics_context *gc, struct plot_info *pi)
{
int maxtime, mintemp, maxtemp, delta;
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
mintemp = pi->mintemp;
maxtemp = pi->maxtemp;
gc->leftx = 0; gc->rightx = maxtime;
/* Show temperatures in roughly the lower third, but make sure the scale
is at least somewhat reasonable */
delta = maxtemp - mintemp;
if (delta > 3000) { /* more than 3K in fluctuation */
gc->topy = maxtemp + delta*2;
gc->bottomy = mintemp - delta/2;
} else {
gc->topy = maxtemp + 1500 + delta*2;
gc->bottomy = mintemp - delta/2;
}
return maxtemp > mintemp;
}
static void plot_single_temp_text(struct graphics_context *gc, int sec, int mkelvin)
{
double deg;
const char *unit;
static const text_render_options_t tro = {12, TEMP_TEXT, LEFT, TOP};
deg = get_temp_units(mkelvin, &unit);
plot_text(gc, &tro, sec, mkelvin, "%d%s", (int)(deg + 0.5), unit);
}
static void plot_temperature_text(struct graphics_context *gc, struct plot_info *pi)
{
int i;
int last = -300, sec = 0;
int last_temperature = 0, last_printed_temp = 0;
if (!setup_temperature_limits(gc, pi))
return;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry+i;
int mkelvin = entry->temperature;
if (!mkelvin)
continue;
last_temperature = mkelvin;
sec = entry->sec;
/* don't print a temperature
* if it's been less than 5min and less than a 2K change OR
* if it's been less than 2min OR if the change from the
* last print is less than .4K (and therefore less than 1F */
if (((sec < last + 300) && (abs(mkelvin - last_printed_temp) < 2000)) ||
(sec < last + 120) ||
(abs(mkelvin - last_printed_temp) < 400))
continue;
last = sec;
plot_single_temp_text(gc,sec,mkelvin);
last_printed_temp = mkelvin;
}
/* it would be nice to print the end temperature, if it's
* different or if the last temperature print has been more
* than a quarter of the dive back */
if ((abs(last_temperature - last_printed_temp) > 500) ||
((double)last / (double)sec < 0.75))
plot_single_temp_text(gc, sec, last_temperature);
}
static void plot_temperature_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i;
cairo_t *cr = gc->cr;
int last = 0;
if (!setup_temperature_limits(gc, pi))
return;
cairo_set_line_width_scaled(gc->cr, 2);
set_source_rgba(gc, TEMP_PLOT);
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
int mkelvin = entry->temperature;
int sec = entry->sec;
if (!mkelvin) {
if (!last)
continue;
mkelvin = last;
}
if (last)
line_to(gc, sec, mkelvin);
else
move_to(gc, sec, mkelvin);
last = mkelvin;
}
cairo_stroke(cr);
}
/* gets both the actual start and end pressure as well as the scaling factors */
static int get_cylinder_pressure_range(struct graphics_context *gc, struct plot_info *pi)
{
gc->leftx = 0;
gc->rightx = get_maxtime(pi);
gc->bottomy = 0; gc->topy = pi->maxpressure * 1.5;
return pi->maxpressure != 0;
}
/* set the color for the pressure plot according to temporary sac rate
* as compared to avg_sac; the calculation simply maps the delta between
* sac and avg_sac to indexes 0 .. (SAC_COLORS - 1) with everything
* more than 6000 ml/min below avg_sac mapped to 0 */
static void set_sac_color(struct graphics_context *gc, int sac, int avg_sac)
{
int sac_index = 0;
int delta = sac - avg_sac + 7000;
if (!gc->printer) {
sac_index = delta / 2000;
if (sac_index < 0)
sac_index = 0;
if (sac_index > SAC_COLORS - 1)
sac_index = SAC_COLORS - 1;
set_source_rgba(gc, SAC_COLORS_START_IDX + sac_index);
} else {
set_source_rgba(gc, SAC_DEFAULT);
}
}
/* calculate the current SAC in ml/min and convert to int */
#define GET_LOCAL_SAC(_entry1, _entry2, _dive) (int) \
((GET_PRESSURE((_entry1)) - GET_PRESSURE((_entry2))) * \
(_dive)->cylinder[(_entry1)->cylinderindex].type.size.mliter / \
(((_entry2)->sec - (_entry1)->sec) / 60.0) / \
(1 + ((_entry1)->depth + (_entry2)->depth) / 20000.0) / \
1000.0)
#define SAC_WINDOW 45 /* sliding window in seconds for current SAC calculation */
static void plot_cylinder_pressure(struct graphics_context *gc, struct plot_info *pi,
struct dive *dive)
{
int i;
int last = -1;
int lift_pen = FALSE;
int first_plot = TRUE;
int sac = 0;
struct plot_data *last_entry = NULL;
if (!get_cylinder_pressure_range(gc, pi))
return;
cairo_set_line_width_scaled(gc->cr, 2);
for (i = 0; i < pi->nr; i++) {
int mbar;
struct plot_data *entry = pi->entry + i;
mbar = GET_PRESSURE(entry);
if (!entry->same_cylinder) {
lift_pen = TRUE;
last_entry = NULL;
}
if (!mbar) {
lift_pen = TRUE;
continue;
}
if (!last_entry) {
last = i;
last_entry = entry;
sac = GET_LOCAL_SAC(entry, pi->entry + i + 1, dive);
} else {
int j;
sac = 0;
for (j = last; j < i; j++)
sac += GET_LOCAL_SAC(pi->entry + j, pi->entry + j + 1, dive);
sac /= (i - last);
if (entry->sec - last_entry->sec >= SAC_WINDOW) {
last++;
last_entry = pi->entry + last;
}
}
set_sac_color(gc, sac, dive->sac);
if (lift_pen) {
if (!first_plot && entry->same_cylinder) {
/* if we have a previous event from the same tank,
* draw at least a short line */
int prev_pr;
prev_pr = GET_PRESSURE(entry - 1);
move_to(gc, (entry-1)->sec, prev_pr);
line_to(gc, entry->sec, mbar);
} else {
first_plot = FALSE;
move_to(gc, entry->sec, mbar);
}
lift_pen = FALSE;
} else {
line_to(gc, entry->sec, mbar);
}
cairo_stroke(gc->cr);
move_to(gc, entry->sec, mbar);
}
}
static void plot_pressure_value(struct graphics_context *gc, int mbar, int sec,
int xalign, int yalign)
{
int pressure;
const char *unit;
pressure = get_pressure_units(mbar, &unit);
text_render_options_t tro = {10, PRESSURE_TEXT, xalign, yalign};
plot_text(gc, &tro, sec, mbar, "%d %s", pressure, unit);
}
static void plot_cylinder_pressure_text(struct graphics_context *gc, struct plot_info *pi)
{
int i;
int mbar, cyl;
int seen_cyl[MAX_CYLINDERS] = { FALSE, };
int last_pressure[MAX_CYLINDERS] = { 0, };
int last_time[MAX_CYLINDERS] = { 0, };
struct plot_data *entry;
if (!get_cylinder_pressure_range(gc, pi))
return;
/* only loop over the actual events from the dive computer
* plus the second synthetic event at the start (to make sure
* we get "time=0" right)
* sadly with a recent change that first entry may no longer
* have any pressure reading - in that case just grab the
* pressure from the second entry */
if (GET_PRESSURE(pi->entry + 1) == 0 && GET_PRESSURE(pi->entry + 2) !=0)
INTERPOLATED_PRESSURE(pi->entry + 1) = GET_PRESSURE(pi->entry + 2);
for (i = 1; i < pi->nr; i++) {
entry = pi->entry + i;
if (!entry->same_cylinder) {
cyl = entry->cylinderindex;
if (!seen_cyl[cyl]) {
mbar = GET_PRESSURE(entry);
plot_pressure_value(gc, mbar, entry->sec, LEFT, BOTTOM);
seen_cyl[cyl] = TRUE;
}
if (i > 2) {
/* remember the last pressure and time of
* the previous cylinder */
cyl = (entry - 1)->cylinderindex;
last_pressure[cyl] = GET_PRESSURE(entry - 1);
last_time[cyl] = (entry - 1)->sec;
}
}
}
cyl = entry->cylinderindex;
if (GET_PRESSURE(entry))
last_pressure[cyl] = GET_PRESSURE(entry);
last_time[cyl] = entry->sec;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
if (last_time[cyl]) {
plot_pressure_value(gc, last_pressure[cyl], last_time[cyl], CENTER, TOP);
}
}
}
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
{
struct plot_data *p = entry;
int time = entry->sec;
int seconds = 90*(index+1);
struct plot_data *min, *max;
int avg, nr;
/* Go back 'seconds' in time */
while (p > first) {
if (p[-1].sec < time - seconds)
break;
p--;
}
/* Then go forward until we hit an entry past the time */
min = max = p;
avg = p->depth;
nr = 1;
while (++p < last) {
int depth = p->depth;
if (p->sec > time + seconds)
break;
avg += depth;
nr ++;
if (depth < min->depth)
min = p;
if (depth > max->depth)
max = p;
}
entry->min[index] = min;
entry->max[index] = max;
entry->avg[index] = (avg + nr/2) / nr;
}
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
{
analyze_plot_info_minmax_minute(entry, first, last, 0);
analyze_plot_info_minmax_minute(entry, first, last, 1);
analyze_plot_info_minmax_minute(entry, first, last, 2);
}
static velocity_t velocity(int speed)
{
velocity_t v;
if (speed < -304) /* ascent faster than -60ft/min */
v = CRAZY;
else if (speed < -152) /* above -30ft/min */
v = FAST;
else if (speed < -76) /* -15ft/min */
v = MODERATE;
else if (speed < -25) /* -5ft/min */
v = SLOW;
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
for descent are usually about 2x ascent rate; still, we want
stable to mean stable */
v = STABLE;
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
v = SLOW;
else if (speed < 304) /* up to 60ft/min is moderate */
v = MODERATE;
else if (speed < 507) /* up to 100ft/min is fast */
v = FAST;
else /* more than that is just crazy - you'll blow your ears out */
v = CRAZY;
return v;
}
static struct plot_info *analyze_plot_info(struct plot_info *pi)
{
int i;
int nr = pi->nr;
/* Do pressure min/max based on the non-surface data */
for (i = 0; i < nr; i++) {
struct plot_data *entry = pi->entry+i;
int pressure = GET_PRESSURE(entry);
int temperature = entry->temperature;
if (pressure) {
if (pressure > pi->maxpressure)
pi->maxpressure = pressure;
}
if (temperature) {
if (!pi->mintemp || temperature < pi->mintemp)
pi->mintemp = temperature;
if (temperature > pi->maxtemp)
pi->maxtemp = temperature;
}
}
/* Smoothing function: 5-point triangular smooth */
for (i = 2; i < nr; i++) {
struct plot_data *entry = pi->entry+i;
int depth;
if (i < nr-2) {
depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth;
entry->smoothed = (depth+4) / 9;
}
/* vertical velocity in mm/sec */
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
if (entry[0].sec - entry[-1].sec) {
entry->velocity = velocity((entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec));
/* if our samples are short and we aren't too FAST*/
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
int past = -2;
while (i+past > 0 && entry[0].sec - entry[past].sec < 15)
past--;
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
(entry[0].sec - entry[past].sec));
}
} else
entry->velocity = STABLE;
}
/* One-, two- and three-minute minmax data */
for (i = 0; i < nr; i++) {
struct plot_data *entry = pi->entry +i;
analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr);
}
return pi;
}
/*
* simple structure to track the beginning and end tank pressure as
* well as the integral of depth over time spent while we have no
* pressure reading from the tank */
typedef struct pr_track_struct pr_track_t;
struct pr_track_struct {
int start;
int end;
int t_start;
int t_end;
double pressure_time;
pr_track_t *next;
};
static pr_track_t *pr_track_alloc(int start, int t_start) {
pr_track_t *pt = malloc(sizeof(pr_track_t));
pt->start = start;
pt->t_start = t_start;
pt->end = 0;
pt->t_end = 0;
pt->pressure_time = 0.0;
pt->next = NULL;
return pt;
}
/* poor man's linked list */
static pr_track_t *list_last(pr_track_t *list)
{
pr_track_t *tail = list;
if (!tail)
return NULL;
while (tail->next) {
tail = tail->next;
}
return tail;
}
static pr_track_t *list_add(pr_track_t *list, pr_track_t *element)
{
pr_track_t *tail = list_last(list);
if (!tail)
return element;
tail->next = element;
return list;
}
static void list_free(pr_track_t *list)
{
if (!list)
return;
list_free(list->next);
free(list);
}
static void dump_pr_track(pr_track_t **track_pr)
{
int cyl;
pr_track_t *list;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
list = track_pr[cyl];
while (list) {
printf("cyl%d: start %d end %d t_start %d t_end %d pt %6.3f\n", cyl,
list->start, list->end, list->t_start, list->t_end, list->pressure_time);
list = list->next;
}
}
}
static void fill_missing_tank_pressures(struct plot_info *pi, pr_track_t **track_pr)
{
pr_track_t *list = NULL;
pr_track_t *nlist = NULL;
double pt, magic;
int cyl, i;
struct plot_data *entry;
int cur_pr[MAX_CYLINDERS];
if (0) {
/* another great debugging tool */
dump_pr_track(track_pr);
}
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
cur_pr[cyl] = track_pr[cyl]->start;
}
/* The first two are "fillers", but in case we don't have a sample
* at time 0 we need to process the second of them here */
for (i = 1; i < pi->nr; i++) {
entry = pi->entry + i;
if (SENSOR_PRESSURE(entry)) {
cur_pr[entry->cylinderindex] = SENSOR_PRESSURE(entry);
} else {
if(!list || list->t_end < entry->sec) {
nlist = track_pr[entry->cylinderindex];
list = NULL;
while (nlist && nlist->t_start <= entry->sec) {
list = nlist;
nlist = list->next;
}
/* there may be multiple segments - so
* let's assemble the length */
nlist = list;
if (list) {
pt = list->pressure_time;
while (!nlist->end) {
nlist = nlist->next;
if (!nlist) {
/* oops - we have no end pressure,
* so this means this is a tank without
* gas consumption information */
break;
}
pt += nlist->pressure_time;
}
}
if (!nlist) {
/* just continue without calculating
* interpolated values */
INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex];
list = NULL;
continue;
}
magic = (nlist->end - cur_pr[entry->cylinderindex]) / pt;
}
if (pt != 0.0) {
double cur_pt = (entry->sec - (entry-1)->sec) *
(1 + (entry->depth + (entry-1)->depth) / 20000.0);
INTERPOLATED_PRESSURE(entry) =
cur_pr[entry->cylinderindex] + cur_pt * magic + 0.5;
cur_pr[entry->cylinderindex] = INTERPOLATED_PRESSURE(entry);
} else
INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex];
}
}
}
static int get_cylinder_index(struct dive *dive, struct event *ev)
{
int i;
/*
* Try to find a cylinder that matches the O2 percentage
* in the gas change event 'value' field.
*
* Crazy suunto gas change events. We really should do
* this in libdivecomputer or something.
*/
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder+i;
int o2 = (cyl->gasmix.o2.permille + 5) / 10;
if (o2 == ev->value)
return i;
}
return 0;
}
static struct event *get_next_gaschange(struct event *event)
{
while (event) {
if (!strcmp(event->name, "gaschange"))
return event;
event = event->next;
}
return event;
}
static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
{
while (i < pi->nr) {
struct plot_data *entry = pi->entry+i;
if (entry->sec > end)
break;
if (entry->cylinderindex != cylinderindex) {
entry->cylinderindex = cylinderindex;
entry->pressure[0] = 0;
}
i++;
}
return i;
}
static void check_gas_change_events(struct dive *dive, struct plot_info *pi)
{
int i = 0, cylinderindex = 0;
struct event *ev = get_next_gaschange(dive->events);
if (!ev)
return;
do {
i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
cylinderindex = get_cylinder_index(dive, ev);
ev = get_next_gaschange(ev->next);
} while (ev);
set_cylinder_index(pi, i, cylinderindex, ~0u);
}
/* for computers that track gas changes through events */
static int count_gas_change_events(struct dive *dive)
{
int count = 0;
struct event *ev = get_next_gaschange(dive->events);
while (ev) {
count++;
ev = get_next_gaschange(ev->next);
}
return count;
}
/*
* Create a plot-info with smoothing and ranged min/max
*
* This also makes sure that we have extra empty events on both
* sides, so that you can do end-points without having to worry
* about it.
*/
static struct plot_info *create_plot_info(struct dive *dive, int nr_samples, struct sample *dive_sample)
{
int cylinderindex = -1;
int lastdepth, lastindex;
int i, pi_idx, nr, sec, cyl;
size_t alloc_size;
struct plot_info *pi;
pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, };
pr_track_t *pr_track, *current;
gboolean missing_pr = FALSE;
struct plot_data *entry = NULL;
struct event *ev;
/* we want to potentially add synthetic plot_info elements for the gas changes */
nr = nr_samples + 4 + 2 * count_gas_change_events(dive);
alloc_size = plot_info_size(nr);
pi = malloc(alloc_size);
if (!pi)
return pi;
memset(pi, 0, alloc_size);
pi->nr = nr;
pi_idx = 2; /* the two extra events at the start */
/* check for gas changes before the samples start */
ev = get_next_gaschange(dive->events);
while (ev && ev->time.seconds < dive_sample->time.seconds) {
entry = pi->entry + pi_idx;
entry->sec = ev->time.seconds;
entry->depth = 0; /* is that always correct ? */
pi_idx++;
ev = get_next_gaschange(ev->next);
}
if (ev && ev->time.seconds == dive_sample->time.seconds) {
/* we already have a sample at the time of the event */
ev = get_next_gaschange(ev->next);
}
sec = 0;
lastindex = 0;
lastdepth = -1;
for (i = 0; i < nr_samples; i++) {
int depth;
int delay = 0;
struct sample *sample = dive_sample+i;
entry = pi->entry + i + pi_idx;
while (ev && ev->time.seconds < sample->time.seconds) {
/* insert two fake plot info structures for the end of
* the old tank and the start of the new tank */
if (ev->time.seconds == sample->time.seconds - 1) {
entry->sec = ev->time.seconds - 1;
(entry+1)->sec = ev->time.seconds;
} else {
entry->sec = ev->time.seconds;
(entry+1)->sec = ev->time.seconds + 1;
}
/* we need a fake depth - let's interpolate */
if (i) {
entry->depth = sample->depth.mm -
(sample->depth.mm - (sample-1)->depth.mm) / 2;
} else
entry->depth = sample->depth.mm;
(entry+1)->depth = entry->depth;
pi_idx += 2;
entry = pi->entry + i + pi_idx;
ev = get_next_gaschange(ev->next);
}
if (ev && ev->time.seconds == sample->time.seconds) {
/* we already have a sample at the time of the event
* just add a new one for the old tank and delay the
* real even by one second (to keep time monotonous) */
entry->sec = ev->time.seconds;
entry->depth = sample->depth.mm;
pi_idx++;
entry = pi->entry + i + pi_idx;
ev = get_next_gaschange(ev->next);
delay = 1;
}
sec = entry->sec = sample->time.seconds + delay;
depth = entry->depth = sample->depth.mm;
entry->cylinderindex = sample->cylinderindex;
SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
entry->temperature = sample->temperature.mkelvin;
if (depth || lastdepth)
lastindex = i + pi_idx;
lastdepth = depth;
if (depth > pi->maxdepth)
pi->maxdepth = depth;
}
entry = pi->entry + i + pi_idx;
/* are there still unprocessed gas changes? that would be very strange */
while (ev) {
entry->sec = ev->time.seconds;
entry->depth = 0; /* why are there gas changes after the dive is over? */
pi_idx++;
entry = pi->entry + i + pi_idx;
ev = get_next_gaschange(ev->next);
}
nr = nr_samples + pi_idx - 2;
check_gas_change_events(dive, pi);
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) /* initialize the start pressures */
track_pr[cyl] = pr_track_alloc(dive->cylinder[cyl].start.mbar, -1);
current = track_pr[pi->entry[2].cylinderindex];
for (i = 0; i < nr + 1; i++) {
entry = pi->entry + i + 1;
entry->same_cylinder = entry->cylinderindex == cylinderindex;
cylinderindex = entry->cylinderindex;
/* track the segments per cylinder and their pressure/time integral */
if (!entry->same_cylinder) {
current->end = SENSOR_PRESSURE(entry-1);
current->t_end = (entry-1)->sec;
current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec);
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
} else { /* same cylinder */
if ((!SENSOR_PRESSURE(entry) && SENSOR_PRESSURE(entry-1)) ||
(SENSOR_PRESSURE(entry) && !SENSOR_PRESSURE(entry-1))) {
/* transmitter changed its working status */
current->end = SENSOR_PRESSURE(entry-1);
current->t_end = (entry-1)->sec;
current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec);
track_pr[cylinderindex] =
list_add(track_pr[cylinderindex], current);
}
}
/* finally, do the discrete integration to get the SAC rate equivalent */
current->pressure_time += (entry->sec - (entry-1)->sec) *
(1 + (entry->depth + (entry-1)->depth) / 20000.0);
missing_pr |= !SENSOR_PRESSURE(entry);
}
if (entry)
current->t_end = entry->sec;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { /* initialize the end pressures */
int pr = dive->cylinder[cyl].end.mbar;
if (pr && track_pr[cyl]) {
pr_track = list_last(track_pr[cyl]);
pr_track->end = pr;
}
}
/* Fill in the last two entries with empty values but valid times
* without creating a false cylinder change event */
i = nr + 2;
pi->entry[i].sec = sec + 20;
pi->entry[i].same_cylinder = 1;
pi->entry[i].cylinderindex = pi->entry[i-1].cylinderindex;
INTERPOLATED_PRESSURE(pi->entry + i) = GET_PRESSURE(pi->entry + i - 1);
pi->entry[i+1].sec = sec + 40;
pi->entry[i+1].same_cylinder = 1;
pi->entry[i+1].cylinderindex = pi->entry[i-1].cylinderindex;
INTERPOLATED_PRESSURE(pi->entry + i + 1) = GET_PRESSURE(pi->entry + i - 1);
/* the number of actual entries - some computers have lots of
* depth 0 samples at the end of a dive, we want to make sure
* we have exactly one of them at the end */
pi->nr = lastindex+1;
while (pi->nr <= i+2 && pi->entry[pi->nr-1].depth > 0)
pi->nr++;
pi->maxtime = pi->entry[lastindex].sec;
/* Analyze_plot_info() will do the sample max pressures,
* this handles the manual pressures
*/
pi->maxpressure = 0;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
unsigned int mbar = dive->cylinder[cyl].start.mbar;
if (mbar > pi->maxpressure)
pi->maxpressure = mbar;
}
pi->meandepth = dive->meandepth.mm;
if (missing_pr) {
fill_missing_tank_pressures(pi, track_pr);
}
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++)
list_free(track_pr[cyl]);
if (0) /* awesome for debugging - not useful otherwise */
dump_pi(pi);
return analyze_plot_info(pi);
}
static void plot_set_scale(scale_mode_t scale)
{
switch (scale) {
default:
case SC_SCREEN:
plot_scale = SCALE_SCREEN;
break;
case SC_PRINT:
plot_scale = SCALE_PRINT;
break;
}
}
void plot(struct graphics_context *gc, cairo_rectangle_t *drawing_area, struct dive *dive, scale_mode_t scale)
{
struct plot_info *pi;
static struct sample fake[4];
struct sample *sample = dive->sample;
int nr = dive->samples;
plot_set_scale(scale);
if (!nr) {
/* The dive has no samples, so create a few fake ones. This assumes an
ascent/descent rate of 9 m/min, which is just below the limit for FAST. */
int duration = dive->duration.seconds;
int maxdepth = dive->maxdepth.mm;
int asc_desc_time = dive->maxdepth.mm*60/9000;
if (asc_desc_time * 2 >= duration)
asc_desc_time = duration / 2;
sample = fake;
fake[1].time.seconds = asc_desc_time;
fake[1].depth.mm = maxdepth;
fake[2].time.seconds = duration - asc_desc_time;
fake[2].depth.mm = maxdepth;
fake[3].time.seconds = duration * 1.00;
nr = 4;
}
pi = create_plot_info(dive, nr, sample);
/* shift the drawing area so we have a nice margin around it */
cairo_translate(gc->cr, drawing_area->x, drawing_area->y);
cairo_set_line_width_scaled(gc->cr, 1);
cairo_set_line_cap(gc->cr, CAIRO_LINE_CAP_ROUND);
cairo_set_line_join(gc->cr, CAIRO_LINE_JOIN_ROUND);
/*
* We don't use "cairo_translate()" because that doesn't
* scale line width etc. But the actual scaling we need
* do set up ourselves..
*
* Snif. What a pity.
*/
gc->maxx = (drawing_area->width - 2*drawing_area->x);
gc->maxy = (drawing_area->height - 2*drawing_area->y);
/* Depth profile */
plot_depth_profile(gc, pi);
plot_events(gc, pi, dive);
/* Temperature profile */
plot_temperature_profile(gc, pi);
/* Cylinder pressure plot */
plot_cylinder_pressure(gc, pi, dive);
/* Text on top of all graphs.. */
plot_temperature_text(gc, pi);
plot_depth_text(gc, pi);
plot_cylinder_pressure_text(gc, pi);
/* Bounding box last */
gc->leftx = 0; gc->rightx = 1.0;
gc->topy = 0; gc->bottomy = 1.0;
set_source_rgba(gc, BOUNDING_BOX);
cairo_set_line_width_scaled(gc->cr, 1);
move_to(gc, 0, 0);
line_to(gc, 0, 1);
line_to(gc, 1, 1);
line_to(gc, 1, 0);
cairo_close_path(gc->cr);
cairo_stroke(gc->cr);
/* now shift the translation back by half the margin;
* this way we can draw the vertical scales on both sides */
cairo_translate(gc->cr, -drawing_area->x / 2.0, 0);
gc->maxx += drawing_area->x;
gc->leftx = -(drawing_area->x / drawing_area->width) / 2.0;
gc->rightx = 1.0 - gc->leftx;
plot_depth_scale(gc, pi);
free(pi);
}