subsurface/core/device.cpp
Berthold Stoeger 1d6c1db4a5 core: use case-insensitive comparison for device models
The code in core/libdivecomputer.c used string insensitive
comparison for device models, before being merged into core/device.c.

Let's reinstate that behavior, since it appears to be more logical.
On would assume that two different vendors will not use the same
model with different casing (and the same device-ids), so that
should be safe.

This uses strcoll to correctly sort unicode, which will hopefully
never be needed!

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
2020-10-16 14:26:37 -07:00

384 lines
11 KiB
C++

// SPDX-License-Identifier: GPL-2.0
#include "ssrf.h"
#include "dive.h"
#include "subsurface-string.h"
#include "device.h"
#include "errorhelper.h" // for verbose flag
#include "selection.h"
#include "core/settings/qPrefDiveComputer.h"
#include <QString> // for QString::number
/*
* Good fake dive profiles are hard.
*
* "depthtime" is the integral of the dive depth over
* time ("area" of the dive profile). We want that
* area to match the average depth (avg_d*max_t).
*
* To do that, we generate a 6-point profile:
*
* (0, 0)
* (t1, max_d)
* (t2, max_d)
* (t3, d)
* (t4, d)
* (max_t, 0)
*
* with the same ascent/descent rates between the
* different depths.
*
* NOTE: avg_d, max_d and max_t are given constants.
* The rest we can/should play around with to get a
* good-looking profile.
*
* That six-point profile gives a total area of:
*
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
*
* And the "same ascent/descent rates" requirement
* gives us (time per depth must be same):
*
* t1 / max_d = (t3-t2) / (max_d-d)
* t1 / max_d = (max_t-t4) / d
*
* We also obviously require:
*
* 0 <= t1 <= t2 <= t3 <= t4 <= max_t
*
* Let us call 'd_frac = d / max_d', and we get:
*
* Total area must match average depth-time:
*
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
* max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
* max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
* t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
*
* and descent slope must match ascent slopes:
*
* t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
* t1 = (t3-t2)/(1-d_frac)
*
* and
*
* t1 / max_d = (max_t-t4) / (max_d*d_frac)
* t1 = (max_t-t4)/d_frac
*
* In general, we have more free variables than we have constraints,
* but we can aim for certain basics, like a good ascent slope.
*/
static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac)
{
double t_frac = max_t * (1 - avg_d / (double)max_d);
int t1 = lrint(max_d / slope);
int t4 = lrint(max_t - t1 * d_frac);
int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
int t2 = lrint(t3 - t1 * (1 - d_frac));
if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
return 0;
s[1].time.seconds = t1;
s[1].depth.mm = max_d;
s[2].time.seconds = t2;
s[2].depth.mm = max_d;
s[3].time.seconds = t3;
s[3].depth.mm = lrint(max_d * d_frac);
s[4].time.seconds = t4;
s[4].depth.mm = lrint(max_d * d_frac);
return 1;
}
/* we have no average depth; instead of making up a random average depth
* we should assume either a PADI rectangular profile (for short and/or
* shallow dives) or more reasonably a six point profile with a 3 minute
* safety stop at 5m */
static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope)
{
// shallow or short dives are just trapecoids based on the given slope
if (max_d < 10000 || max_t < 600) {
s[1].time.seconds = lrint(max_d / slope);
s[1].depth.mm = max_d;
s[2].time.seconds = max_t - lrint(max_d / slope);
s[2].depth.mm = max_d;
} else {
s[1].time.seconds = lrint(max_d / slope);
s[1].depth.mm = max_d;
s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
s[2].depth.mm = max_d;
s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
s[3].depth.mm = 5000;
s[4].time.seconds = max_t - lrint(5000 / slope);
s[4].depth.mm = 5000;
}
}
extern "C" void fake_dc(struct divecomputer *dc)
{
alloc_samples(dc, 6);
struct sample *fake = dc->sample;
int i;
dc->samples = 6;
/* The dive has no samples, so create a few fake ones */
int max_t = dc->duration.seconds;
int max_d = dc->maxdepth.mm;
int avg_d = dc->meandepth.mm;
memset(fake, 0, 6 * sizeof(struct sample));
fake[5].time.seconds = max_t;
for (i = 0; i < 6; i++) {
fake[i].bearing.degrees = -1;
fake[i].ndl.seconds = -1;
}
if (!max_t || !max_d) {
dc->samples = 0;
return;
}
/* Set last manually entered time to the total dive length */
dc->last_manual_time = dc->duration;
/*
* We want to fake the profile so that the average
* depth ends up correct. However, in the absence of
* a reasonable average, let's just make something
* up. Note that 'avg_d == max_d' is _not_ a reasonable
* average.
* We explicitly treat avg_d == 0 differently */
if (avg_d == 0) {
/* we try for a sane slope, but bow to the insanity of
* the user supplied data */
fill_samples_no_avg(fake, max_d, max_t, MAX(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
if (fake[3].time.seconds == 0) { // just a 4 point profile
dc->samples = 4;
fake[3].time.seconds = max_t;
}
return;
}
if (avg_d < max_d / 10 || avg_d >= max_d) {
avg_d = (max_d + 10000) / 3;
if (avg_d > max_d)
avg_d = max_d * 2 / 3;
}
if (!avg_d)
avg_d = 1;
/*
* Ok, first we try a basic profile with a specific ascent
* rate (5 meters per minute) and d_frac (1/3).
*/
if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
return;
/*
* Ok, assume that didn't work because we cannot make the
* average come out right because it was a quick deep dive
* followed by a much shallower region
*/
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
return;
/*
* Uhhuh. That didn't work. We'd need to find a good combination that
* satisfies our constraints. Currently, we don't, we just give insane
* slopes.
*/
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
return;
/* Even that didn't work? Give up, there's something wrong */
}
struct device_table device_table;
bool device::operator==(const device &a) const
{
return model == a.model &&
deviceId == a.deviceId &&
firmware == a.firmware &&
serialNumber == a.serialNumber &&
nickName == a.nickName;
}
bool device::operator<(const device &a) const
{
if (deviceId != a.deviceId)
return deviceId < a.deviceId;
// Use strcoll to compare model-strings, since these might be unicode
// and therefore locale dependent? Let's hope that not, but who knows?
return strcoll(model.c_str(), a.model.c_str()) < 0;
}
const struct device *get_device_for_dc(const struct device_table *table, const struct divecomputer *dc)
{
const std::vector<device> &dcs = table->devices;
auto it = std::lower_bound(dcs.begin(), dcs.end(), device{dc->model, dc->deviceid, {}, {}, {}});
return it != dcs.end() && it->model == dc->model && it->deviceId == dc->deviceid ? &*it : NULL;
}
/*
* When setting the device ID, we also fill in the
* serial number and firmware version data
*/
extern "C" void set_dc_deviceid(struct divecomputer *dc, unsigned int deviceid, const struct device_table *device_table)
{
if (!deviceid)
return;
dc->deviceid = deviceid;
// Serial and firmware can only be deduced if we know the model
if (!dc->model)
return;
const device *node = get_device_for_dc(device_table, dc);
if (!node)
return;
if (!node->serialNumber.empty() && empty_string(dc->serial)) {
free((void *)dc->serial);
dc->serial = strdup(node->serialNumber.c_str());
}
if (!node->firmware.empty() && empty_string(dc->fw_version)) {
free((void *)dc->fw_version);
dc->fw_version = strdup(node->firmware.c_str());
}
}
void device::showchanges(const std::string &n, const std::string &s, const std::string &f) const
{
if (nickName != n && !n.empty())
qDebug("new nickname %s for DC model %s deviceId 0x%x", n.c_str(), model.c_str(), deviceId);
if (serialNumber != s && !s.empty())
qDebug("new serial number %s for DC model %s deviceId 0x%x", s.c_str(), model.c_str(), deviceId);
if (firmware != f && !f.empty())
qDebug("new firmware version %s for DC model %s deviceId 0x%x", f.c_str(), model.c_str(), deviceId);
}
static void addDC(std::vector<device> &dcs, const std::string &m, uint32_t d, const std::string &n, const std::string &s, const std::string &f)
{
if (m.empty() || d == 0)
return;
auto it = std::lower_bound(dcs.begin(), dcs.end(), device{m, d, {}, {}, {}});
if (it != dcs.end() && it->model == m && it->deviceId == d) {
// debugging: show changes
if (verbose)
it->showchanges(n, s, f);
// Update any non-existent fields from the old entry
if (!n.empty())
it->nickName = n;
if (!s.empty())
it->serialNumber = s;
if (!f.empty())
it->firmware = f;
} else {
dcs.insert(it, device{m, d, s, f, n});
}
}
extern "C" void create_device_node(struct device_table *device_table, const char *model, uint32_t deviceid, const char *serial, const char *firmware, const char *nickname)
{
addDC(device_table->devices, model ?: "", deviceid, nickname ?: "", serial ?: "", firmware ?: "");
}
extern "C" void clear_device_nodes(struct device_table *device_table)
{
device_table->devices.clear();
}
/* Returns whether the given device is used by a selected dive. */
extern "C" bool device_used_by_selected_dive(const struct device *dev)
{
for (dive *d: getDiveSelection()) {
struct divecomputer *dc;
for_each_dc (d, dc) {
if (dc->deviceid == dev->deviceId)
return true;
}
}
return false;
}
extern "C" int is_default_dive_computer_device(const char *name)
{
return qPrefDiveComputer::device() == name;
}
extern "C" void set_dc_nickname(struct dive *dive, struct device_table *device_table)
{
if (!dive)
return;
struct divecomputer *dc;
for_each_dc (dive, dc) {
if (!empty_string(dc->model) && dc->deviceid &&
!get_device_for_dc(device_table, dc)) {
// we don't have this one, yet
if (std::any_of(device_table->devices.begin(), device_table->devices.end(),
[dc] (const device &dev)
{ return !strcasecmp(dev.model.c_str(), dc->model); })) {
// we already have this model but a different deviceid
std::string simpleNick(dc->model);
if (dc->deviceid == 0)
simpleNick += " (unknown deviceid)";
else
simpleNick += " (" + QString::number(dc->deviceid, 16).toStdString() + ")";
addDC(device_table->devices, dc->model, dc->deviceid, simpleNick, {}, {});
} else {
addDC(device_table->devices, dc->model, dc->deviceid, {}, {}, {});
}
}
}
}
const char *get_dc_nickname(const struct divecomputer *dc)
{
const device *existNode = get_device_for_dc(&device_table, dc);
if (existNode && !existNode->nickName.empty())
return existNode->nickName.c_str();
else
return dc->model;
}
extern "C" int nr_devices(const struct device_table *table)
{
return (int)table->devices.size();
}
extern "C" const struct device *get_device(const struct device_table *table, int i)
{
if (i < 0 || i > nr_devices(table))
return NULL;
return &table->devices[i];
}
extern "C" const char *device_get_model(const struct device *dev)
{
return dev ? dev->model.c_str() : NULL;
}
extern "C" const uint32_t device_get_id(const struct device *dev)
{
return dev ? dev->deviceId : -1;
}
extern "C" const char *device_get_serial(const struct device *dev)
{
return dev ? dev->serialNumber.c_str() : NULL;
}
extern "C" const char *device_get_firmware(const struct device *dev)
{
return dev ? dev->firmware.c_str() : NULL;
}
extern "C" const char *device_get_nickname(const struct device *dev)
{
return dev ? dev->nickName.c_str() : NULL;
}