subsurface/core/dive.cpp
Berthold Stoeger ae81b42fe2 core: introduce a few user-defined literals for unit types
Thise makes initialization of unit types more palatable.

For example:

    surface.time = sample.time - duration_t { .seconds = 20 };
=>  surface.time = sample.time - 20_sec;

    delta_depth.mm = feet_to_mm(1.0); // 1ft
=>  delta_depth = 1_ft;

    get_cylinderid_at_time(..., { .seconds = 20 * 60 + 1 }));
=>  get_cylinderid_at_time(..., 20_min + 1_sec));

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
2024-09-11 10:23:07 +02:00

2788 lines
78 KiB
C++

// SPDX-License-Identifier: GPL-2.0
/* dive.cpp */
/* maintains the internal dive list structure */
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <memory>
#include "dive.h"
#include "gettext.h"
#include "subsurface-string.h"
#include "libdivecomputer.h"
#include "device.h"
#include "divelist.h"
#include "divesite.h"
#include "equipment.h"
#include "errorhelper.h"
#include "event.h"
#include "extradata.h"
#include "format.h"
#include "fulltext.h"
#include "interpolate.h"
#include "qthelper.h"
#include "membuffer.h"
#include "picture.h"
#include "range.h"
#include "sample.h"
#include "tag.h"
#include "trip.h"
// For user visible text but still not translated
const char *divemode_text_ui[] = {
QT_TRANSLATE_NOOP("gettextFromC", "Open circuit"),
QT_TRANSLATE_NOOP("gettextFromC", "CCR"),
QT_TRANSLATE_NOOP("gettextFromC", "pSCR"),
QT_TRANSLATE_NOOP("gettextFromC", "Freedive")
};
// For writing/reading files.
const char *divemode_text[] = {"OC", "CCR", "PSCR", "Freedive"};
// Even for dives without divecomputer, we allocate a divecomputer structure.
// It's the "manually added" divecomputer.
dive::dive() : dcs(1)
{
id = dive_getUniqID();
}
dive::dive(const dive &) = default;
dive::dive(dive &&) = default;
dive &dive::operator=(const dive &) = default;
dive::~dive() = default;
/* get_cylinder_idx_by_use(): Find the index of the first cylinder with a particular CCR use type.
* The index returned corresponds to that of the first cylinder with a cylinder_use that
* equals the appropriate enum value [oxygen, diluent, bailout] given by cylinder_use_type.
* A negative number returned indicates that a match could not be found.
* Call parameters: dive = the dive being processed
* cylinder_use_type = an enum, one of {oxygen, diluent, bailout} */
static int get_cylinder_idx_by_use(const struct dive &dive, enum cylinderuse cylinder_use_type)
{
auto it = std::find_if(dive.cylinders.begin(), dive.cylinders.end(), [cylinder_use_type]
(auto &cyl) { return cyl.cylinder_use == cylinder_use_type; });
return it != dive.cylinders.end() ? it - dive.cylinders.begin() : -1;
}
/*
* The legacy format for sample pressures has a single pressure
* for each sample that can have any sensor, plus a possible
* "o2pressure" that is fixed to the Oxygen sensor for a CCR dive.
*
* For more complex pressure data, we have to use explicit
* cylinder indices for each sample.
*
* This function returns a negative number for "no legacy mode",
* or a non-negative number that indicates the o2 sensor index.
*/
int legacy_format_o2pressures(const struct dive *dive, const struct divecomputer *dc)
{
int o2sensor;
o2sensor = (dc->divemode == CCR) ? get_cylinder_idx_by_use(*dive, OXYGEN) : -1;
for (const auto &s: dc->samples) {
int seen_pressure = 0, idx;
for (idx = 0; idx < MAX_SENSORS; idx++) {
int sensor = s.sensor[idx];
pressure_t p = s.pressure[idx];
if (!p.mbar)
continue;
if (sensor == o2sensor)
continue;
if (seen_pressure)
return -1;
seen_pressure = 1;
}
}
/*
* Use legacy mode: if we have no O2 sensor we return a
* positive sensor index that is guaranmteed to not match
* any sensor (we encode it as 8 bits).
*/
return o2sensor < 0 ? 256 : o2sensor;
}
/* access to cylinders is controlled by two functions:
* - get_cylinder() returns the cylinder of a dive and supposes that
* the cylinder with the given index exists. If it doesn't, an error
* message is printed and the "surface air" cylinder returned.
* (NOTE: this MUST not be written into!).
* - get_or_create_cylinder() creates an empty cylinder if it doesn't exist.
* Multiple cylinders might be created if the index is bigger than the
* number of existing cylinders
*/
cylinder_t *dive::get_cylinder(int idx)
{
return &cylinders[idx];
}
const cylinder_t *dive::get_cylinder(int idx) const
{
return &cylinders[idx];
}
/* warning: does not test idx for validity */
struct event create_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx)
{
/* The gas switch event format is insane for historical reasons */
struct gasmix mix = dive->get_cylinder(idx)->gasmix;
int o2 = get_o2(mix);
int he = get_he(mix);
o2 = (o2 + 5) / 10;
he = (he + 5) / 10;
int value = o2 + (he << 16);
struct event ev(seconds, he ? SAMPLE_EVENT_GASCHANGE2 : SAMPLE_EVENT_GASCHANGE, 0, value, "gaschange");
ev.gas.index = idx;
ev.gas.mix = mix;
return ev;
}
void add_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx)
{
/* sanity check so we don't crash */
/* FIXME: The planner uses a dummy cylinder one past the official number of cylinders
* in the table to mark no-cylinder surface interavals. This is horrendous. Fix ASAP. */
//if (idx < 0 || idx >= dive->cylinders.size()) {
if (idx < 0 || static_cast<size_t>(idx) >= dive->cylinders.size() + 1) {
report_error("Unknown cylinder index: %d", idx);
return;
}
struct event ev = create_gas_switch_event(dive, dc, seconds, idx);
add_event_to_dc(dc, std::move(ev));
}
struct gasmix dive::get_gasmix_from_event(const struct event &ev) const
{
if (ev.is_gaschange()) {
int index = ev.gas.index;
// FIXME: The planner uses one past cylinder-count to signify "surface air". Remove in due course.
if (index >= 0 && static_cast<size_t>(index) < cylinders.size() + 1)
return get_cylinder(index)->gasmix;
return ev.gas.mix;
}
return gasmix_air;
}
// we need this to be uniq. oh, and it has no meaning whatsoever
// - that's why we have the silly initial number and increment by 3 :-)
int dive_getUniqID()
{
static int maxId = 83529;
maxId += 3;
return maxId;
}
static void dc_cylinder_renumber(struct dive &dive, struct divecomputer &dc, const int mapping[]);
/* copy dive computer list and renumber the cylinders */
static void copy_dc_renumber(struct dive &d, const struct dive &s, const int cylinders_map[])
{
for (const divecomputer &dc: s.dcs) {
d.dcs.push_back(dc);
dc_cylinder_renumber(d, d.dcs.back(), cylinders_map);
}
}
void dive::clear()
{
*this = dive();
}
/* make a true copy that is independent of the source dive;
* all data structures are duplicated, so the copy can be modified without
* any impact on the source */
void copy_dive(const struct dive *s, struct dive *d)
{
/* simply copy things over, but then clear the dive cache. */
*d = *s;
d->invalidate_cache();
}
/* copies all events from the given dive computer before a given time
this is used when editing a dive in the planner to preserve the events
of the old dive */
void copy_events_until(const struct dive *sd, struct dive *dd, int dcNr, int time)
{
if (!sd || !dd)
return;
const struct divecomputer *s = &sd->dcs[0];
struct divecomputer *d = dd->get_dc(dcNr);
if (!s || !d)
return;
for (const auto &ev: s->events) {
// Don't add events the planner knows about
if (ev.time.seconds < time && !ev.is_gaschange() && !ev.is_divemodechange())
add_event(d, ev.time.seconds, ev.type, ev.flags, ev.value, ev.name);
}
}
void copy_used_cylinders(const struct dive *s, struct dive *d, bool used_only)
{
if (!s || !d)
return;
d->cylinders.clear();
for (auto [i, cyl]: enumerated_range(s->cylinders)) {
if (!used_only || s->is_cylinder_used(i) || s->get_cylinder(i)->cylinder_use == NOT_USED)
d->cylinders.push_back(cyl);
}
}
/*
* So when we re-calculate maxdepth and meandepth, we will
* not override the old numbers if they are close to the
* new ones.
*
* Why? Because a dive computer may well actually track the
* max. depth and mean depth at finer granularity than the
* samples it stores. So it's possible that the max and mean
* have been reported more correctly originally.
*
* Only if the values calculated from the samples are clearly
* different do we override the normal depth values.
*
* This considers 1m to be "clearly different". That's
* a totally random number.
*/
static void update_depth(depth_t *depth, int new_depth)
{
if (new_depth) {
int old = depth->mm;
if (abs(old - new_depth) > 1000)
depth->mm = new_depth;
}
}
static void update_temperature(temperature_t *temperature, int new_temp)
{
if (new_temp) {
int old = temperature->mkelvin;
if (abs(old - new_temp) > 1000)
temperature->mkelvin = new_temp;
}
}
/* Which cylinders had gas used? */
#define SOME_GAS 5000
static bool cylinder_used(const cylinder_t &cyl)
{
int start_mbar, end_mbar;
start_mbar = cyl.start.mbar ?: cyl.sample_start.mbar;
end_mbar = cyl.end.mbar ?: cyl.sample_end.mbar;
// More than 5 bar used? This matches statistics.cpp
// heuristics
return start_mbar > end_mbar + SOME_GAS;
}
/* Get list of used cylinders. Returns the number of used cylinders. */
static int get_cylinder_used(const struct dive *dive, bool used[])
{
int num = 0;
for (auto [i, cyl]: enumerated_range(dive->cylinders)) {
used[i] = cylinder_used(cyl);
if (used[i])
num++;
}
return num;
}
/*
* If the event has an explicit cylinder index,
* we return that. If it doesn't, we return the best
* match based on the gasmix.
*
* Some dive computers give cylinder indices, some
* give just the gas mix.
*/
int dive::get_cylinder_index(const struct event &ev) const
{
if (ev.gas.index >= 0)
return ev.gas.index;
/*
* This should no longer happen!
*
* We now match up gas change events with their cylinders at dive
* event fixup time.
*/
report_info("Still looking up cylinder based on gas mix in get_cylinder_index()!");
gasmix mix = get_gasmix_from_event(ev);
int best = find_best_gasmix_match(mix, cylinders);
return best < 0 ? 0 : best;
}
cylinder_t *dive::get_or_create_cylinder(int idx)
{
if (idx < 0) {
report_info("Warning: accessing invalid cylinder %d", idx);
return NULL;
}
while (static_cast<size_t>(idx) >= cylinders.size())
cylinders.emplace_back();
return &cylinders[idx];
}
/* Are there any used cylinders which we do not know usage about? */
static bool has_unknown_used_cylinders(const struct dive &dive, const struct divecomputer *dc,
const bool used_cylinders[], int num)
{
int idx;
auto used_and_unknown = std::make_unique<bool[]>(dive.cylinders.size());
std::copy(used_cylinders, used_cylinders + dive.cylinders.size(), used_and_unknown.get());
/* We know about using the O2 cylinder in a CCR dive */
if (dc->divemode == CCR) {
int o2_cyl = get_cylinder_idx_by_use(dive, OXYGEN);
if (o2_cyl >= 0 && used_and_unknown[o2_cyl]) {
used_and_unknown[o2_cyl] = false;
num--;
}
}
/* We know about the explicit first cylinder (or first) */
/* And we have possible switches to other gases */
gasmix_loop loop(dive, *dc);
while (loop.has_next() && num > 0) {
idx = loop.next_cylinder_index().first;
if (idx >= 0 && used_and_unknown[idx]) {
used_and_unknown[idx] = false;
num--;
}
}
return num > 0;
}
void per_cylinder_mean_depth(const struct dive *dive, struct divecomputer *dc, int *mean, int *duration)
{
int num_used_cylinders;
if (dive->cylinders.empty())
return;
for (size_t i = 0; i < dive->cylinders.size(); i++)
mean[i] = duration[i] = 0;
if (!dc)
return;
/*
* There is no point in doing per-cylinder information
* if we don't actually know about the usage of all the
* used cylinders.
*/
auto used_cylinders = std::make_unique<bool[]>(dive->cylinders.size());
num_used_cylinders = get_cylinder_used(dive, used_cylinders.get());
if (has_unknown_used_cylinders(*dive, dc, used_cylinders.get(), num_used_cylinders)) {
/*
* If we had more than one used cylinder, but
* do not know usage of them, we simply cannot
* account mean depth to them.
*/
if (num_used_cylinders > 1)
return;
/*
* For a single cylinder, use the overall mean
* and duration
*/
for (size_t i = 0; i < dive->cylinders.size(); i++) {
if (used_cylinders[i]) {
mean[i] = dc->meandepth.mm;
duration[i] = dc->duration.seconds;
}
}
return;
}
if (dc->samples.empty())
fake_dc(dc);
gasmix_loop loop(*dive, *dc);
std::vector<int> depthtime(dive->cylinders.size(), 0);
int lasttime = 0;
int lastdepth = 0;
int last_cylinder_index = -1;
std::pair<int, int> gaschange_event;
for (auto it = dc->samples.begin(); it != dc->samples.end(); ++it) {
int32_t time = it->time.seconds;
int depth = it->depth.mm;
/* Make sure to move the event past 'lasttime' */
gaschange_event = loop.cylinder_index_at(lasttime);
/* Do we need to fake a midway sample? */
if (last_cylinder_index >= 0 && last_cylinder_index != gaschange_event.first) {
int newdepth = interpolate(lastdepth, depth, gaschange_event.second - lasttime, time - lasttime);
if (newdepth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
duration[gaschange_event.first] += gaschange_event.second - lasttime;
depthtime[gaschange_event.first] += (gaschange_event.second - lasttime) * (newdepth + lastdepth) / 2;
}
lasttime = gaschange_event.second;
lastdepth = newdepth;
}
/* We ignore segments at the surface */
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
duration[gaschange_event.first] += time - lasttime;
depthtime[gaschange_event.first] += (time - lasttime) * (depth + lastdepth) / 2;
}
lastdepth = depth;
lasttime = time;
last_cylinder_index = gaschange_event.first;
}
for (size_t i = 0; i < dive->cylinders.size(); i++) {
if (duration[i])
mean[i] = (depthtime[i] + duration[i] / 2) / duration[i];
}
}
static void update_min_max_temperatures(struct dive &dive, temperature_t temperature)
{
if (temperature.mkelvin) {
if (!dive.maxtemp.mkelvin || temperature.mkelvin > dive.maxtemp.mkelvin)
dive.maxtemp = temperature;
if (!dive.mintemp.mkelvin || temperature.mkelvin < dive.mintemp.mkelvin)
dive.mintemp = temperature;
}
}
/*
* If the cylinder tank pressures are within half a bar
* (about 8 PSI) of the sample pressures, we consider it
* to be a rounding error, and throw them away as redundant.
*/
static int same_rounded_pressure(pressure_t a, pressure_t b)
{
return abs((a - b).mbar) <= 500;
}
static double calculate_depth_to_mbarf(int depth, pressure_t surface_pressure, int salinity);
/* this gets called when the dive mode has changed (so OC vs. CC)
* there are two places we might have setpoints... events or in the samples
*/
void update_setpoint_events(const struct dive *dive, struct divecomputer *dc)
{
int new_setpoint = 0;
if (dc->divemode == CCR)
new_setpoint = prefs.defaultsetpoint;
if (dc->divemode == OC &&
(dc->model == "Shearwater Predator" ||
dc->model == "Shearwater Petrel" ||
dc->model == "Shearwater Nerd")) {
// make sure there's no setpoint in the samples
// this is an irreversible change - so switching a dive to OC
// by mistake when it's actually CCR is _bad_
// So we make sure, this comes from a Predator or Petrel and we only remove
// pO2 values we would have computed anyway.
gasmix_loop loop(*dive, *dc);
for (auto &sample: dc->samples) {
struct gasmix gasmix = loop.at(sample.time.seconds).first;
gas_pressures pressures = fill_pressures(lrint(calculate_depth_to_mbarf(sample.depth.mm, dc->surface_pressure, 0)), gasmix ,0, dc->divemode);
if (abs(sample.setpoint.mbar - (int)(1000 * pressures.o2)) <= 50)
sample.setpoint = 0_baro2;
}
}
// an "SP change" event at t=0 is currently our marker for OC vs CCR
// this will need to change to a saner setup, but for now we can just
// check if such an event is there and adjust it, or add that event
struct event *ev = get_first_event(*dc, "SP change");
if (ev && ev->time.seconds == 0) {
ev->value = new_setpoint;
} else {
if (!add_event(dc, 0, SAMPLE_EVENT_PO2, 0, new_setpoint, "SP change"))
report_info("Could not add setpoint change event");
}
}
/*
* See if the size/workingpressure looks like some standard cylinder
* size, eg "AL80".
*
* NOTE! We don't take compressibility into account when naming
* cylinders. That makes a certain amount of sense, since the
* cylinder name is independent from the gasmix, and different
* gasmixes have different compressibility.
*/
static void match_standard_cylinder(cylinder_type_t &type)
{
/* Do we already have a cylinder description? */
if (!type.description.empty())
return;
double bar = type.workingpressure.mbar / 1000.0;
double cuft = ml_to_cuft(type.size.mliter);
cuft *= bar_to_atm(bar);
int psi = lrint(to_PSI(type.workingpressure));
const char *fmt;
switch (psi) {
case 2300 ... 2500: /* 2400 psi: LP tank */
fmt = "LP%d";
break;
case 2600 ... 2700: /* 2640 psi: LP+10% */
fmt = "LP%d";
break;
case 2900 ... 3100: /* 3000 psi: ALx tank */
fmt = "AL%d";
break;
case 3400 ... 3500: /* 3442 psi: HP tank */
fmt = "HP%d";
break;
case 3700 ... 3850: /* HP+10% */
fmt = "HP%d+";
break;
default:
return;
}
type.description = format_string_std(fmt, int_cast<int>(cuft));
}
/*
* There are two ways to give cylinder size information:
* - total amount of gas in cuft (depends on working pressure and physical size)
* - physical size
*
* where "physical size" is the one that actually matters and is sane.
*
* We internally use physical size only. But we save the workingpressure
* so that we can do the conversion if required.
*/
static void sanitize_cylinder_type(cylinder_type_t &type)
{
/* If we have no working pressure, it had *better* be just a physical size! */
if (!type.workingpressure.mbar)
return;
/* No size either? Nothing to go on */
if (!type.size.mliter)
return;
/* Ok, we have both size and pressure: try to match a description */
match_standard_cylinder(type);
}
static void sanitize_cylinder_info(struct dive &dive)
{
for (auto &cyl: dive.cylinders) {
sanitize_gasmix(cyl.gasmix);
sanitize_cylinder_type(cyl.type);
}
}
/* some events should never be thrown away */
static bool is_potentially_redundant(const struct event &event)
{
if (event.name == "gaschange")
return false;
if (event.name == "bookmark")
return false;
if (event.name == "heading")
return false;
return true;
}
pressure_t dive::calculate_surface_pressure() const
{
pressure_t res;
int sum = 0, nr = 0;
bool logged = is_logged();
for (auto &dc: dcs) {
if ((logged || !is_dc_planner(&dc)) && dc.surface_pressure.mbar) {
sum += dc.surface_pressure.mbar;
nr++;
}
}
res.mbar = nr ? (sum + nr / 2) / nr : 0;
return res;
}
static void fixup_surface_pressure(struct dive &dive)
{
dive.surface_pressure = dive.calculate_surface_pressure();
}
/* if the surface pressure in the dive data is redundant to the calculated
* value (i.e., it was added by running fixup on the dive) return 0,
* otherwise return the surface pressure given in the dive */
pressure_t dive::un_fixup_surface_pressure() const
{
return surface_pressure.mbar == calculate_surface_pressure().mbar ?
pressure_t() : surface_pressure;
}
static void fixup_water_salinity(struct dive &dive)
{
int sum = 0, nr = 0;
bool logged = dive.is_logged();
for (auto &dc: dive.dcs) {
if ((logged || !is_dc_planner(&dc)) && dc.salinity) {
if (dc.salinity < 500)
dc.salinity += FRESHWATER_SALINITY;
sum += dc.salinity;
nr++;
}
}
if (nr)
dive.salinity = (sum + nr / 2) / nr;
}
int dive::get_salinity() const
{
return user_salinity ? user_salinity : salinity;
}
static void fixup_meandepth(struct dive &dive)
{
int sum = 0, nr = 0;
bool logged = dive.is_logged();
for (auto &dc: dive.dcs) {
if ((logged || !is_dc_planner(&dc)) && dc.meandepth.mm) {
sum += dc.meandepth.mm;
nr++;
}
}
if (nr)
dive.meandepth.mm = (sum + nr / 2) / nr;
}
static void fixup_duration(struct dive &dive)
{
duration_t duration;
bool logged = dive.is_logged();
for (auto &dc: dive.dcs) {
if (logged || !is_dc_planner(&dc))
duration.seconds = std::max(duration.seconds, dc.duration.seconds);
}
dive.duration = duration;
}
static void fixup_watertemp(struct dive &dive)
{
if (!dive.watertemp.mkelvin)
dive.watertemp = dive.dc_watertemp();
}
static void fixup_airtemp(struct dive &dive)
{
if (!dive.airtemp.mkelvin)
dive.airtemp = dive.dc_airtemp();
}
/* if the air temperature in the dive data is redundant to the one in its
* first divecomputer (i.e., it was added by running fixup on the dive)
* return 0, otherwise return the air temperature given in the dive */
static temperature_t un_fixup_airtemp(const struct dive &a)
{
return a.airtemp.mkelvin == a.dc_airtemp().mkelvin ?
temperature_t() : a.airtemp;
}
/*
* events are stored as a linked list, so the concept of
* "consecutive, identical events" is somewhat hard to
* implement correctly (especially given that on some dive
* computers events are asynchronous, so they can come in
* between what would be the non-constant sample rate).
*
* So what we do is that we throw away clearly redundant
* events that are fewer than 61 seconds apart (assuming there
* is no dive computer with a sample rate of more than 60
* seconds... that would be pretty pointless to plot the
* profile with)
*/
static void fixup_dc_events(struct divecomputer &dc)
{
std::vector<int> to_delete;
for (auto [idx, event]: enumerated_range(dc.events)) {
if (!is_potentially_redundant(event))
continue;
for (int idx2 = idx - 1; idx2 > 0; --idx2) {
const auto &prev = dc.events[idx2];
if ((event.time - prev.time).seconds > 60)
break;
if (range_contains(to_delete, idx2))
continue;
if (prev.name == event.name && prev.flags == event.flags) {
to_delete.push_back(idx);
break;
}
}
}
// Delete from back to not invalidate indexes
for (auto it = to_delete.rbegin(); it != to_delete.rend(); ++it)
dc.events.erase(dc.events.begin() + *it);
}
static int interpolate_depth(struct divecomputer &dc, int idx, int lastdepth, int lasttime, int now)
{
int nextdepth = lastdepth;
int nexttime = now;
for (auto it = dc.samples.begin() + idx; it != dc.samples.end(); ++it) {
if (it->depth.mm < 0)
continue;
nextdepth = it->depth.mm;
nexttime = it->time.seconds;
break;
}
return interpolate(lastdepth, nextdepth, now-lasttime, nexttime-lasttime);
}
static void fixup_dc_depths(struct dive &dive, struct divecomputer &dc)
{
int maxdepth = dc.maxdepth.mm;
int lasttime = 0, lastdepth = 0;
for (const auto [idx, sample]: enumerated_range(dc.samples)) {
int time = sample.time.seconds;
int depth = sample.depth.mm;
if (depth < 0 && idx + 2 < static_cast<int>(dc.samples.size())) {
depth = interpolate_depth(dc, idx, lastdepth, lasttime, time);
sample.depth.mm = depth;
}
if (depth > SURFACE_THRESHOLD) {
if (depth > maxdepth)
maxdepth = depth;
}
lastdepth = depth;
lasttime = time;
if (sample.cns > dive.maxcns)
dive.maxcns = sample.cns;
}
update_depth(&dc.maxdepth, maxdepth);
if (!dive.is_logged() || !is_dc_planner(&dc))
if (maxdepth > dive.maxdepth.mm)
dive.maxdepth.mm = maxdepth;
}
static void fixup_dc_ndl(struct divecomputer &dc)
{
for (auto &sample: dc.samples) {
if (sample.ndl.seconds != 0)
break;
if (sample.ndl.seconds == 0)
sample.ndl.seconds = -1;
}
}
static void fixup_dc_temp(struct dive &dive, struct divecomputer &dc)
{
int mintemp = 0, lasttemp = 0;
for (auto &sample: dc.samples) {
int temp = sample.temperature.mkelvin;
if (temp) {
/*
* If we have consecutive identical
* temperature readings, throw away
* the redundant ones.
*/
if (lasttemp == temp)
sample.temperature = 0_K;
else
lasttemp = temp;
if (!mintemp || temp < mintemp)
mintemp = temp;
}
update_min_max_temperatures(dive, sample.temperature);
}
update_temperature(&dc.watertemp, mintemp);
update_min_max_temperatures(dive, dc.watertemp);
}
/* Remove redundant pressure information */
static void simplify_dc_pressures(struct divecomputer &dc)
{
int lastindex[2] = { -1, -1 };
int lastpressure[2] = { 0 };
for (auto &sample: dc.samples) {
int j;
for (j = 0; j < MAX_SENSORS; j++) {
int pressure = sample.pressure[j].mbar;
int index = sample.sensor[j];
if (index == lastindex[j]) {
/* Remove duplicate redundant pressure information */
if (pressure == lastpressure[j])
sample.pressure[j] = 0_bar;
}
lastindex[j] = index;
lastpressure[j] = pressure;
}
}
}
/* Do we need a sensor -> cylinder mapping? */
static void fixup_start_pressure(struct dive &dive, int idx, pressure_t p)
{
if (idx >= 0 && static_cast<size_t>(idx) < dive.cylinders.size()) {
cylinder_t &cyl = dive.cylinders[idx];
if (p.mbar && !cyl.sample_start.mbar)
cyl.sample_start = p;
}
}
static void fixup_end_pressure(struct dive &dive, int idx, pressure_t p)
{
if (idx >= 0 && static_cast<size_t>(idx) < dive.cylinders.size()) {
cylinder_t &cyl = dive.cylinders[idx];
if (p.mbar && !cyl.sample_end.mbar)
cyl.sample_end = p;
}
}
/*
* Check the cylinder pressure sample information and fill in the
* overall cylinder pressures from those.
*
* We ignore surface samples for tank pressure information.
*
* At the beginning of the dive, let the cylinder cool down
* if the diver starts off at the surface. And at the end
* of the dive, there may be surface pressures where the
* diver has already turned off the air supply (especially
* for computers like the Uemis Zurich that end up saving
* quite a bit of samples after the dive has ended).
*/
static void fixup_dive_pressures(struct dive &dive, struct divecomputer &dc)
{
/* Walk the samples from the beginning to find starting pressures.. */
for (auto &sample: dc.samples) {
if (sample.depth.mm < SURFACE_THRESHOLD)
continue;
for (int idx = 0; idx < MAX_SENSORS; idx++)
fixup_start_pressure(dive, sample.sensor[idx], sample.pressure[idx]);
}
/* ..and from the end for ending pressures */
for (auto it = dc.samples.rbegin(); it != dc.samples.rend(); ++it) {
if (it->depth.mm < SURFACE_THRESHOLD)
continue;
for (int idx = 0; idx < MAX_SENSORS; idx++)
fixup_end_pressure(dive, it->sensor[idx], it->pressure[idx]);
}
simplify_dc_pressures(dc);
}
/*
* Match a gas change event against the cylinders we have
*/
static bool validate_gaschange(struct dive &dive, struct event &event)
{
int index;
int o2, he, value;
/* We'll get rid of the per-event gasmix, but for now sanitize it */
if (gasmix_is_air(event.gas.mix))
event.gas.mix.o2 = 0_percent;
/* Do we already have a cylinder index for this gasmix? */
if (event.gas.index >= 0)
return true;
index = find_best_gasmix_match(event.gas.mix, dive.cylinders);
if (index < 0 || static_cast<size_t>(index) >= dive.cylinders.size())
return false;
/* Fix up the event to have the right information */
event.gas.index = index;
event.gas.mix = dive.cylinders[index].gasmix;
/* Convert to odd libdivecomputer format */
o2 = get_o2(event.gas.mix);
he = get_he(event.gas.mix);
o2 = (o2 + 5) / 10;
he = (he + 5) / 10;
value = o2 + (he << 16);
event.value = value;
if (he)
event.type = SAMPLE_EVENT_GASCHANGE2;
return true;
}
/* Clean up event, return true if event is ok, false if it should be dropped as bogus */
static bool validate_event(struct dive &dive, struct event &event)
{
if (event.is_gaschange())
return validate_gaschange(dive, event);
return true;
}
static void fixup_dc_gasswitch(struct dive &dive, struct divecomputer &dc)
{
// erase-remove idiom
auto &events = dc.events;
events.erase(std::remove_if(events.begin(), events.end(),
[&dive](auto &ev) { return !validate_event(dive, ev); }),
events.end());
}
static void fixup_no_o2sensors(struct divecomputer &dc)
{
// Its only relevant to look for sensor values on CCR and PSCR dives without any no_o2sensors recorded.
if (dc.no_o2sensors != 0 || !(dc.divemode == CCR || dc.divemode == PSCR))
return;
for (const auto &sample: dc.samples) {
int nsensor = 0;
// How many o2 sensors can we find in this sample?
for (int j = 0; j < MAX_O2_SENSORS; j++)
if (sample.o2sensor[j].mbar)
nsensor++;
// If we fond more than the previous found max, record it.
if (nsensor > dc.no_o2sensors)
dc.no_o2sensors = nsensor;
// Already found the maximum posible amount.
if (nsensor == MAX_O2_SENSORS)
return;
}
}
static void fixup_dc_sample_sensors(struct dive &dive, struct divecomputer &dc)
{
unsigned long sensor_mask = 0;
for (auto &sample: dc.samples) {
for (int j = 0; j < MAX_SENSORS; j++) {
int sensor = sample.sensor[j];
// No invalid sensor ID's, please
if (sensor < 0 || sensor > MAX_SENSORS) {
sample.sensor[j] = NO_SENSOR;
sample.pressure[j] = 0_bar;
continue;
}
// Don't bother tracking sensors with no data
if (!sample.pressure[j].mbar) {
sample.sensor[j] = NO_SENSOR;
continue;
}
// Remember the set of sensors we had
sensor_mask |= 1ul << sensor;
}
}
// Ignore the sensors we have cylinders for
sensor_mask >>= dive.cylinders.size();
// Do we need to add empty cylinders?
while (sensor_mask) {
dive.cylinders.emplace_back();
sensor_mask >>= 1;
}
}
static void fixup_dive_dc(struct dive &dive, struct divecomputer &dc)
{
/* Fixup duration and mean depth */
fixup_dc_duration(dc);
/* Fix up sample depth data */
fixup_dc_depths(dive, dc);
/* Fix up first sample ndl data */
fixup_dc_ndl(dc);
/* Fix up dive temperatures based on dive computer samples */
fixup_dc_temp(dive, dc);
/* Fix up gas switch events */
fixup_dc_gasswitch(dive, dc);
/* Fix up cylinder ids in pressure sensors */
fixup_dc_sample_sensors(dive, dc);
/* Fix up cylinder pressures based on DC info */
fixup_dive_pressures(dive, dc);
fixup_dc_events(dc);
/* Fixup CCR / PSCR dives with o2sensor values, but without no_o2sensors */
fixup_no_o2sensors(dc);
/* If there are no samples, generate a fake profile based on depth and time */
if (dc.samples.empty())
fake_dc(&dc);
}
void dive::fixup_no_cylinder()
{
sanitize_cylinder_info(*this);
maxcns = cns;
/*
* Use the dive's temperatures for minimum and maximum in case
* we do not have temperatures recorded by DC.
*/
update_min_max_temperatures(*this, watertemp);
for (auto &dc: dcs)
fixup_dive_dc(*this, dc);
fixup_water_salinity(*this);
if (!surface_pressure.mbar)
fixup_surface_pressure(*this);
fixup_meandepth(*this);
fixup_duration(*this);
fixup_watertemp(*this);
fixup_airtemp(*this);
for (auto &cyl: cylinders) {
add_cylinder_description(cyl.type);
if (same_rounded_pressure(cyl.sample_start, cyl.start))
cyl.start = 0_bar;
if (same_rounded_pressure(cyl.sample_end, cyl.end))
cyl.end = 0_bar;
}
for (auto &ws: weightsystems)
add_weightsystem_description(ws);
}
/* Don't pick a zero for MERGE_MIN() */
#define MERGE_MAX(res, a, b, n) res->n = std::max(a.n, b.n)
#define MERGE_MIN(res, a, b, n) res->n = (a.n) ? (b.n) ? std::min(a.n, b.n) : (a.n) : (b.n)
#define MERGE_TXT(res, a, b, n, sep) res->n = merge_text(a.n, b.n, sep)
#define MERGE_NONZERO(res, a, b, n) (res)->n = (a).n ? (a).n : (b).n
/*
* This is like append_sample(), but if the distance from the last sample
* is excessive, we add two surface samples in between.
*
* This is so that if you merge two non-overlapping dives, we make sure
* that the time in between the dives is at the surface, not some "last
* sample that happened to be at a depth of 1.2m".
*/
static void merge_one_sample(const struct sample &sample, struct divecomputer &dc)
{
if (!dc.samples.empty()) {
const struct sample &prev = dc.samples.back();
int last_time = prev.time.seconds;
int last_depth = prev.depth.mm;
/*
* Only do surface events if the samples are more than
* a minute apart, and shallower than 5m
*/
if (sample.time.seconds > last_time + 60 && last_depth < 5000) {
struct sample surface;
/* Init a few values from prev sample to avoid useless info in XML */
surface.bearing.degrees = prev.bearing.degrees;
surface.ndl = prev.ndl;
surface.time.seconds = last_time + 20;
append_sample(surface, &dc);
surface.time = sample.time - 20_sec;
append_sample(surface, &dc);
}
}
append_sample(sample, &dc);
}
static void renumber_last_sample(struct divecomputer &dc, const int mapping[]);
static void sample_renumber(struct sample &s, const struct sample *next, const int mapping[]);
/*
* Merge samples. Dive 'a' is "offset" seconds before Dive 'b'
*/
static void merge_samples(struct divecomputer &res,
const struct divecomputer &a, const struct divecomputer &b,
const int *cylinders_map_a, const int *cylinders_map_b,
int offset)
{
auto as = a.samples.begin();
auto bs = b.samples.begin();
auto a_end = a.samples.end();
auto b_end = b.samples.end();
/*
* We want a positive sample offset, so that sample
* times are always positive. So if the samples for
* 'b' are before the samples for 'a' (so the offset
* is negative), we switch a and b around, and use
* the reverse offset.
*/
if (offset < 0) {
offset = -offset;
std::swap(as, bs);
std::swap(a_end, b_end);
std::swap(cylinders_map_a, cylinders_map_b);
}
for (;;) {
int at = as != a_end ? as->time.seconds : -1;
int bt = bs != b_end ? bs->time.seconds + offset : -1;
/* No samples? All done! */
if (at < 0 && bt < 0)
return;
/* Only samples from a? */
if (bt < 0) {
add_sample_a:
merge_one_sample(*as, res);
renumber_last_sample(res, cylinders_map_a);
as++;
continue;
}
/* Only samples from b? */
if (at < 0) {
add_sample_b:
struct sample sample = *bs;
sample.time.seconds += offset;
merge_one_sample(sample, res);
renumber_last_sample(res, cylinders_map_b);
bs++;
continue;
}
if (at < bt)
goto add_sample_a;
if (at > bt)
goto add_sample_b;
/* same-time sample: add a merged sample. Take the non-zero ones */
struct sample sample = *bs;
sample.time.seconds += offset;
sample_renumber(sample, nullptr, cylinders_map_b);
if (as->depth.mm)
sample.depth = as->depth;
if (as->temperature.mkelvin)
sample.temperature = as->temperature;
for (int j = 0; j < MAX_SENSORS; ++j) {
int sensor_id;
sensor_id = cylinders_map_a[as->sensor[j]];
if (sensor_id < 0)
continue;
if (as->pressure[j].mbar)
sample.pressure[j] = as->pressure[j];
if (as->sensor[j])
sample.sensor[j] = sensor_id;
}
if (as->cns)
sample.cns = as->cns;
if (as->setpoint.mbar)
sample.setpoint = as->setpoint;
if (as->ndl.seconds)
sample.ndl = as->ndl;
if (as->stoptime.seconds)
sample.stoptime = as->stoptime;
if (as->stopdepth.mm)
sample.stopdepth = as->stopdepth;
if (as->in_deco)
sample.in_deco = true;
merge_one_sample(sample, res);
as++;
bs++;
}
}
static bool operator==(const struct extra_data &e1, const struct extra_data &e2)
{
return std::tie(e1.key, e1.value) == std::tie(e2.key, e2.value);
}
/*
* Merge extra_data.
*
* The extra data from 'a' has already been copied into 'res'. So
* we really should just copy over the data from 'b' too.
*
* This is not hugely efficient (with the whole "check this for
* every value you merge" it's O(n**2)) but it's not like we
* have very many extra_data entries per dive computer anyway.
*/
static void merge_extra_data(struct divecomputer &res,
const struct divecomputer &a, const struct divecomputer &b)
{
for (auto &ed: b.extra_data) {
if (range_contains(a.extra_data, ed))
continue;
res.extra_data.push_back(ed);
}
}
static std::string merge_text(const std::string &a, const std::string &b, const char *sep)
{
if (a.empty())
return b;
if (b.empty())
return a;
if (a == b)
return a;
return a + sep + b;
}
#define SORT(a, b) \
if (a != b) \
return a < b ? -1 : 1
#define SORT_FIELD(a, b, field) SORT(a.field, b.field)
static int sort_event(const struct event &a, const struct event &b, int time_a, int time_b)
{
SORT(time_a, time_b);
SORT_FIELD(a, b, type);
SORT_FIELD(a, b, flags);
SORT_FIELD(a, b, value);
return a.name.compare(b.name);
}
static int same_gas(const struct event *a, const struct event *b)
{
if (a->type == b->type && a->flags == b->flags && a->value == b->value && a->name == b->name &&
same_gasmix(a->gas.mix, b->gas.mix)) {
return true;
}
return false;
}
static void event_renumber(struct event &ev, const int mapping[]);
static void add_initial_gaschange(struct dive &dive, struct divecomputer &dc, int offset, int idx);
static void merge_events(struct dive &d, struct divecomputer &res,
const struct divecomputer &src1_in, const struct divecomputer &src2_in,
const int *cylinders_map1, const int *cylinders_map2,
int offset)
{
const struct event *last_gas = NULL;
/* Always use positive offsets */
auto src1 = &src1_in;
auto src2 = &src2_in;
if (offset < 0) {
offset = -offset;
std::swap(src1, src2);
std::swap(cylinders_map1, cylinders_map2); // The pointers, not the contents are swapped.
}
auto a = src1->events.begin();
auto b = src2->events.begin();
while (a != src1->events.end() || b != src2->events.end()) {
int s = 0;
const struct event *pick;
const int *cylinders_map;
int event_offset;
if (b == src2->events.end())
goto pick_a;
if (a == src1->events.end())
goto pick_b;
s = sort_event(*a, *b, a->time.seconds, b->time.seconds + offset);
/* Identical events? Just skip one of them (we skip a) */
if (!s) {
++a;
continue;
}
/* Otherwise, pick the one that sorts first */
if (s < 0) {
pick_a:
pick = &*a;
++a;
event_offset = 0;
cylinders_map = cylinders_map1;
} else {
pick_b:
pick = &*b;
++b;
event_offset = offset;
cylinders_map = cylinders_map2;
}
/*
* If that's a gas-change that matches the previous
* gas change, we'll just skip it
*/
if (pick->is_gaschange()) {
if (last_gas && same_gas(pick, last_gas))
continue;
last_gas = pick;
}
/* Add it to the target list */
res.events.push_back(*pick);
res.events.back().time.seconds += event_offset;
event_renumber(res.events.back(), cylinders_map);
}
/* If the initial cylinder of a divecomputer was remapped, add a gas change event to that cylinder */
if (cylinders_map1[0] > 0)
add_initial_gaschange(d, res, 0, cylinders_map1[0]);
if (cylinders_map2[0] > 0)
add_initial_gaschange(d, res, offset, cylinders_map2[0]);
}
/* Force an initial gaschange event to the (old) gas #0 */
static void add_initial_gaschange(struct dive &dive, struct divecomputer &dc, int offset, int idx)
{
/* if there is a gaschange event up to 30 sec after the initial event,
* refrain from adding the initial event */
gasmix_loop loop(dive, dc);
while (loop.has_next()) {
int time = loop.next().second;
if (time > offset + 30)
break;
else if (time > offset)
return;
}
/* Old starting gas mix */
add_gas_switch_event(&dive, &dc, offset, idx);
}
static void sample_renumber(struct sample &s, const struct sample *prev, const int mapping[])
{
for (int j = 0; j < MAX_SENSORS; j++) {
int sensor = -1;
if (s.sensor[j] != NO_SENSOR)
sensor = mapping[s.sensor[j]];
if (sensor == -1) {
// Remove sensor and gas pressure info
if (!prev) {
s.sensor[j] = 0;
s.pressure[j] = 0_bar;
} else {
s.sensor[j] = prev->sensor[j];
s.pressure[j] = prev->pressure[j];
}
} else {
s.sensor[j] = sensor;
}
}
}
static void renumber_last_sample(struct divecomputer &dc, const int mapping[])
{
if (dc.samples.empty())
return;
sample *prev = dc.samples.size() > 1 ? &dc.samples[dc.samples.size() - 2] : nullptr;
sample_renumber(dc.samples.back(), prev, mapping);
}
static void event_renumber(struct event &ev, const int mapping[])
{
if (!ev.is_gaschange())
return;
if (ev.gas.index < 0)
return;
ev.gas.index = mapping[ev.gas.index];
}
static void dc_cylinder_renumber(struct dive &dive, struct divecomputer &dc, const int mapping[])
{
/* Remap or delete the sensor indices */
for (auto [i, sample]: enumerated_range(dc.samples))
sample_renumber(sample, i > 0 ? &dc.samples[i-1] : nullptr, mapping);
/* Remap the gas change indices */
for (auto &ev: dc.events)
event_renumber(ev, mapping);
/* If the initial cylinder of a dive was remapped, add a gas change event to that cylinder */
if (mapping[0] > 0)
add_initial_gaschange(dive, dc, 0, mapping[0]);
}
/*
* If the cylinder indices change (due to merging dives or deleting
* cylinders in the middle), we need to change the indices in the
* dive computer data for this dive.
*
* Also note that we assume that the initial cylinder is cylinder 0,
* so if that got renamed, we need to create a fake gas change event
*/
void cylinder_renumber(struct dive &dive, int mapping[])
{
for (auto &dc: dive.dcs)
dc_cylinder_renumber(dive, dc, mapping);
}
int same_gasmix_cylinder(const cylinder_t &cyl, int cylid, const struct dive *dive, bool check_unused)
{
struct gasmix mygas = cyl.gasmix;
for (auto [i, cyl]: enumerated_range(dive->cylinders)) {
if (i == cylid)
continue;
struct gasmix gas2 = cyl.gasmix;
if (gasmix_distance(mygas, gas2) == 0 && (dive->is_cylinder_used(i) || check_unused))
return i;
}
return -1;
}
static int pdiff(pressure_t a, pressure_t b)
{
return a.mbar && b.mbar && a.mbar != b.mbar;
}
static int different_manual_pressures(const cylinder_t *a, const cylinder_t *b)
{
return pdiff(a->start, b->start) || pdiff(a->end, b->end);
}
/*
* Can we find an exact match for a cylinder in another dive?
* Take the "already matched" map into account, so that we
* don't match multiple similar cylinders to one target.
*
* To match, the cylinders have to have the same gasmix and the
* same cylinder use (ie OC/Diluent/Oxygen), and if pressures
* have been added manually they need to match.
*/
static int match_cylinder(const cylinder_t *cyl, const struct dive &dive, const bool try_match[])
{
for (auto [i, target]: enumerated_range(dive.cylinders)) {
if (!try_match[i])
continue;
if (!same_gasmix(cyl->gasmix, target.gasmix))
continue;
if (cyl->cylinder_use != target.cylinder_use)
continue;
if (different_manual_pressures(cyl, &target))
continue;
/* open question: Should we check sizes too? */
return i;
}
return -1;
}
/*
* Function used to merge manually set start or end pressures. This
* is used to merge cylinders when merging dives. We store up to two
* values for start _and_ end pressures: one derived from samples and
* one entered manually, whereby the latter takes precedence. It may
* happen that the user merges two dives where one has a manual,
* the other only a sample-derived pressure. In such a case we want to
* supplement the non-existing manual value by a sample derived one.
* Otherwise, the merged dive would end up with incomplete pressure
* information.
* The last argument to the function specifies whether the larger
* or smaller value of the two dives should be returned. Obviously,
* for the starting pressure we want the larger and for the ending
* pressure the smaller value.
*/
static pressure_t merge_pressures(pressure_t a, pressure_t sample_a, pressure_t b, pressure_t sample_b, bool take_min)
{
if (!a.mbar && !b.mbar)
return a;
if (!a.mbar)
a = sample_a;
if (!b.mbar)
b = sample_b;
if (!a.mbar)
a = b;
if (!b.mbar)
b = a;
if (take_min)
return a.mbar < b.mbar? a : b;
return a.mbar > b.mbar? a : b;
}
/*
* We matched things up so that they have the same gasmix and
* use, but we might want to fill in any missing cylinder details
* in 'a' if we had it from 'b'.
*/
static void merge_one_cylinder(cylinder_t *a, const cylinder_t *b)
{
if (!a->type.size.mliter)
a->type.size = b->type.size;
if (!a->type.workingpressure.mbar)
a->type.workingpressure = b->type.workingpressure;
if (a->type.description.empty())
a->type.description = b->type.description;
/* If either cylinder has manually entered pressures, try to merge them.
* Use pressures from divecomputer samples if only one cylinder has such a value.
* Yes, this is an actual use case we encountered.
* Note that we don't merge the sample-derived pressure values, as this is
* perfomed after merging in fixup_dive() */
a->start = merge_pressures(a->start, a->sample_start, b->start, b->sample_start, false);
a->end = merge_pressures(a->end, a->sample_end, b->end, b->sample_end, true);
/* Really? */
a->gas_used += b->gas_used;
a->deco_gas_used += b->deco_gas_used;
a->bestmix_o2 = a->bestmix_o2 && b->bestmix_o2;
a->bestmix_he = a->bestmix_he && b->bestmix_he;
}
static bool cylinder_has_data(const cylinder_t &cyl)
{
return !cyl.type.size.mliter &&
!cyl.type.workingpressure.mbar &&
cyl.type.description.empty() &&
!cyl.gasmix.o2.permille &&
!cyl.gasmix.he.permille &&
!cyl.start.mbar &&
!cyl.end.mbar &&
!cyl.sample_start.mbar &&
!cyl.sample_end.mbar &&
!cyl.gas_used.mliter &&
!cyl.deco_gas_used.mliter;
}
static bool cylinder_in_use(const struct dive *dive, int idx)
{
if (idx < 0 || static_cast<size_t>(idx) >= dive->cylinders.size())
return false;
/* This tests for gaschange events or pressure changes */
if (dive->is_cylinder_used(idx) || prefs.include_unused_tanks)
return true;
/* This tests for typenames or gas contents */
return cylinder_has_data(dive->cylinders[idx]);
}
bool is_cylinder_use_appropriate(const struct divecomputer &dc, const cylinder_t &cyl, bool allowNonUsable)
{
switch (cyl.cylinder_use) {
case OC:
if (dc.divemode == FREEDIVE)
return false;
break;
case OXYGEN:
if (!allowNonUsable)
return false;
case DILUENT:
if (dc.divemode != CCR)
return false;
break;
case NOT_USED:
if (!allowNonUsable)
return false;
break;
default:
return false;
}
return true;
}
/*
* Merging cylinder information is non-trivial, because the two dive computers
* may have different ideas of what the different cylinder indexing is.
*
* Logic: take all the cylinder information from the preferred dive ('a'), and
* then try to match each of the cylinders in the other dive by the gasmix that
* is the best match and hasn't been used yet.
*
* For each dive, a cylinder-renumbering table is returned.
*/
static void merge_cylinders(struct dive &res, const struct dive &a, const struct dive &b,
int mapping_a[], int mapping_b[])
{
size_t max_cylinders = a.cylinders.size() + b.cylinders.size();
auto used_in_a = std::make_unique<bool[]>(max_cylinders);
auto used_in_b = std::make_unique<bool[]>(max_cylinders);
auto try_to_match = std::make_unique<bool[]>(max_cylinders);
std::fill(try_to_match.get(), try_to_match.get() + max_cylinders, false);
/* First, clear all cylinders in destination */
res.cylinders.clear();
/* Clear all cylinder mappings */
std::fill(mapping_a, mapping_a + a.cylinders.size(), -1);
std::fill(mapping_b, mapping_b + b.cylinders.size(), -1);
/* Calculate usage map of cylinders, clear matching map */
for (size_t i = 0; i < max_cylinders; i++) {
used_in_a[i] = cylinder_in_use(&a, i);
used_in_b[i] = cylinder_in_use(&b, i);
}
/*
* For each cylinder in 'a' that is used, copy it to 'res'.
* These are also potential matches for 'b' to use.
*/
for (size_t i = 0; i < max_cylinders; i++) {
size_t res_nr = res.cylinders.size();
if (!used_in_a[i])
continue;
mapping_a[i] = static_cast<int>(res_nr);
try_to_match[res_nr] = true;
res.cylinders.push_back(a.cylinders[i]);
}
/*
* For each cylinder in 'b' that is used, try to match it
* with an existing cylinder in 'res' from 'a'
*/
for (size_t i = 0; i < b.cylinders.size(); i++) {
int j;
if (!used_in_b[i])
continue;
j = match_cylinder(b.get_cylinder(i), res, try_to_match.get());
/* No match? Add it to the result */
if (j < 0) {
size_t res_nr = res.cylinders.size();
mapping_b[i] = static_cast<int>(res_nr);
res.cylinders.push_back(b.cylinders[i]);
continue;
}
/* Otherwise, merge the result to the one we found */
mapping_b[i] = j;
merge_one_cylinder(res.get_cylinder(j), b.get_cylinder(i));
/* Don't match the same target more than once */
try_to_match[j] = false;
}
}
/* Check whether a weightsystem table contains a given weightsystem */
static bool has_weightsystem(const weightsystem_table &t, const weightsystem_t &w)
{
return any_of(t.begin(), t.end(), [&w] (auto &w2) { return w == w2; });
}
static void merge_equipment(struct dive &res, const struct dive &a, const struct dive &b)
{
for (auto &ws: a.weightsystems) {
if (!has_weightsystem(res.weightsystems, ws))
res.weightsystems.push_back(ws);
}
for (auto &ws: b.weightsystems) {
if (!has_weightsystem(res.weightsystems, ws))
res.weightsystems.push_back(ws);
}
}
static void merge_temperatures(struct dive &res, const struct dive &a, const struct dive &b)
{
temperature_t airtemp_a = un_fixup_airtemp(a);
temperature_t airtemp_b = un_fixup_airtemp(b);
res.airtemp = airtemp_a.mkelvin ? airtemp_a : airtemp_b;
MERGE_NONZERO(&res, a, b, watertemp.mkelvin);
}
#if CURRENTLY_NOT_USED
/*
* Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'.
*
* If 's' and 'a' are at the same time, offset is 0.
*/
static int compare_sample(const struct sample &s, const struct sample &a, const struct sample &b, int offset)
{
unsigned int depth = a.depth.mm;
int diff;
if (offset) {
unsigned int interval = (b.time - a.time).seconds;
unsigned int depth_a = a.depth.mm;
unsigned int depth_b = b.depth.mm;
if (offset > interval)
return -1;
/* pick the average depth, scaled by the offset from 'b' */
depth = (depth_a * offset) + (depth_b * (interval - offset));
depth /= interval;
}
diff = s.depth.mm - depth;
if (diff < 0)
diff = -diff;
/* cut off at one meter difference */
if (diff > 1000)
diff = 1000;
return diff * diff;
}
/*
* Calculate a "difference" in samples between the two dives, given
* the offset in seconds between them. Use this to find the best
* match of samples between two different dive computers.
*/
static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset)
{
if (a->samples.empty() || b->samples.empty())
return;
unsigned long error = 0;
int start = -1;
if (!asamples || !bsamples)
return 0;
/*
* skip the first sample - this way we know can always look at
* as/bs[-1] to look at the samples around it in the loop.
*/
auto as = a->samples.begin() + 1;
auto bs = a->samples.begin() + 1;
for (;;) {
/* If we run out of samples, punt */
if (as == a->samples.end())
return INT_MAX;
if (bs == b->samples.end())
return INT_MAX;
int at = as->time.seconds;
int bt = bs->time.seconds + offset;
/* b hasn't started yet? Ignore it */
if (bt < 0) {
++bs;
continue;
}
int diff;
if (at < bt) {
diff = compare_sample(*as, *std::prev(bs), *bs, bt - at);
++as;
} else if (at > bt) {
diff = compare_sample(*bs, *std::prev(as), *as, at - bt);
++bs;
} else {
diff = compare_sample(*as, *bs, *bs, 0);
++as;
++bs;
}
/* Invalid comparison point? */
if (diff < 0)
continue;
if (start < 0)
start = at;
error += diff;
if (at - start > 120)
break;
}
return error;
}
/*
* Dive 'a' is 'offset' seconds before dive 'b'
*
* This is *not* because the dive computers clocks aren't in sync,
* it is because the dive computers may "start" the dive at different
* points in the dive, so the sample at time X in dive 'a' is the
* same as the sample at time X+offset in dive 'b'.
*
* For example, some dive computers take longer to "wake up" when
* they sense that you are under water (ie Uemis Zurich if it was off
* when the dive started). And other dive computers have different
* depths that they activate at, etc etc.
*
* If we cannot find a shared offset, don't try to merge.
*/
static int find_sample_offset(struct divecomputer *a, struct divecomputer *b)
{
/* No samples? Merge at any time (0 offset) */
if (a->samples.empty())
return 0;
if (b->samples.empty())
return 0;
/*
* Common special-case: merging a dive that came from
* the same dive computer, so the samples are identical.
* Check this first, without wasting time trying to find
* some minimal offset case.
*/
int best = 0;
unsigned long max = sample_difference(a, b, 0);
if (!max)
return 0;
/*
* Otherwise, look if we can find anything better within
* a thirty second window..
*/
for (int offset = -30; offset <= 30; offset++) {
unsigned long diff;
int diff = sample_difference(a, b, offset);
if (diff > max)
continue;
best = offset;
max = diff;
}
return best;
}
#endif
/*
* Are a and b "similar" values, when given a reasonable lower end expected
* difference?
*
* So for example, we'd expect different dive computers to give different
* max. depth readings. You might have them on different arms, and they
* have different pressure sensors and possibly different ideas about
* water salinity etc.
*
* So have an expected minimum difference, but also allow a larger relative
* error value.
*/
static int similar(unsigned long a, unsigned long b, unsigned long expected)
{
if (!a && !b)
return 1;
if (a && b) {
unsigned long min, max, diff;
min = a;
max = b;
if (a > b) {
min = b;
max = a;
}
diff = max - min;
/* Smaller than expected difference? */
if (diff < expected)
return 1;
/* Error less than 10% or the maximum */
if (diff * 10 < max)
return 1;
}
return 0;
}
/*
* Match every dive computer against each other to see if
* we have a matching dive.
*
* Return values:
* -1 for "is definitely *NOT* the same dive"
* 0 for "don't know"
* 1 for "is definitely the same dive"
*/
static int match_dc_dive(const struct dive &a, const struct dive &b)
{
for (auto &dc1: a.dcs) {
for (auto &dc2: b.dcs) {
int match = match_one_dc(dc1, dc2);
if (match)
return match;
}
}
return 0;
}
/*
* Do we want to automatically try to merge two dives that
* look like they are the same dive?
*
* This happens quite commonly because you download a dive
* that you already had, or perhaps because you maintained
* multiple dive logs and want to load them all together
* (possibly one of them was imported from another dive log
* application entirely).
*
* NOTE! We mainly look at the dive time, but it can differ
* between two dives due to a few issues:
*
* - rounding the dive date to the nearest minute in other dive
* applications
*
* - dive computers with "relative datestamps" (ie the dive
* computer doesn't actually record an absolute date at all,
* but instead at download-time synchronizes its internal
* time with real-time on the downloading computer)
*
* - using multiple dive computers with different real time on
* the same dive
*
* We do not merge dives that look radically different, and if
* the dates are *too* far off the user will have to join two
* dives together manually. But this tries to handle the sane
* cases.
*/
bool dive::likely_same(const struct dive &b) const
{
/* don't merge manually added dives with anything */
if (is_dc_manually_added_dive(&dcs[0]) ||
is_dc_manually_added_dive(&b.dcs[0]))
return 0;
/*
* Do some basic sanity testing of the values we
* have filled in during 'fixup_dive()'
*/
if (!similar(maxdepth.mm, b.maxdepth.mm, 1000) ||
(meandepth.mm && b.meandepth.mm && !similar(meandepth.mm, b.meandepth.mm, 1000)) ||
!duration.seconds || !b.duration.seconds ||
!similar(duration.seconds, b.duration.seconds, 5 * 60))
return 0;
/* See if we can get an exact match on the dive computer */
if (match_dc_dive(*this, b))
return true;
/*
* Allow a time difference due to dive computer time
* setting etc. Check if they overlap.
*/
int fuzz = std::max(duration.seconds, b.duration.seconds) / 2;
fuzz = std::max(fuzz, 60);
return (when <= b.when + fuzz) && (when >= b.when - fuzz);
}
static bool operator==(const sample &a, const sample &b)
{
if (a.time.seconds != b.time.seconds)
return false;
if (a.depth.mm != b.depth.mm)
return false;
if (a.temperature.mkelvin != b.temperature.mkelvin)
return false;
if (a.pressure[0].mbar != b.pressure[0].mbar)
return false;
return a.sensor[0] == b.sensor[0];
}
static int same_dc(const struct divecomputer &a, const struct divecomputer &b)
{
int i;
i = match_one_dc(a, b);
if (i)
return i > 0;
if (a.when && b.when && a.when != b.when)
return 0;
if (a.samples != b.samples)
return 0;
return a.events == b.events;
}
static int might_be_same_device(const struct divecomputer &a, const struct divecomputer &b)
{
/* No dive computer model? That matches anything */
if (a.model.empty() || b.model.empty())
return 1;
/* Otherwise at least the model names have to match */
if (strcasecmp(a.model.c_str(), b.model.c_str()))
return 0;
/* No device ID? Match */
if (!a.deviceid || !b.deviceid)
return 1;
return a.deviceid == b.deviceid;
}
static void remove_redundant_dc(struct dive &d, bool prefer_downloaded)
{
// Note: since the vector doesn't grow and we only erase
// elements after the iterator, this is fine.
for (auto it = d.dcs.begin(); it != d.dcs.end(); ++it) {
// Remove all following DCs that compare as equal.
// Use the (infamous) erase-remove idiom.
auto it2 = std::remove_if(std::next(it), d.dcs.end(),
[d, prefer_downloaded, &it] (const divecomputer &dc) {
return same_dc(*it, dc) ||
(prefer_downloaded && might_be_same_device(*it, dc));
});
d.dcs.erase(it2, d.dcs.end());
prefer_downloaded = false;
}
}
static const struct divecomputer *find_matching_computer(const struct divecomputer &match, const struct dive &d)
{
for (const auto &dc: d.dcs) {
if (might_be_same_device(match, dc))
return &dc;
}
return nullptr;
}
static void copy_dive_computer(struct divecomputer &res, const struct divecomputer &a)
{
res = a;
res.samples.clear();
res.events.clear();
}
/*
* Join dive computers with a specific time offset between
* them.
*
* Use the dive computer ID's (or names, if ID's are missing)
* to match them up. If we find a matching dive computer, we
* merge them. If not, we just take the data from 'a'.
*/
static void interleave_dive_computers(struct dive &res,
const struct dive &a, const struct dive &b,
const int cylinders_map_a[], const int cylinders_map_b[])
{
res.dcs.clear();
for (const auto &dc1: a.dcs) {
res.dcs.emplace_back();
divecomputer &newdc = res.dcs.back();
copy_dive_computer(newdc, dc1);
const divecomputer *match = find_matching_computer(dc1, b);
if (match) {
int offset = match->when - dc1.when;
merge_events(res, newdc, dc1, *match, cylinders_map_a, cylinders_map_b, offset);
merge_samples(newdc, dc1, *match, cylinders_map_a, cylinders_map_b, offset);
merge_extra_data(newdc, dc1, *match);
/* Use the diveid of the later dive! */
if (offset > 0)
newdc.diveid = match->diveid;
} else {
dc_cylinder_renumber(res, res.dcs.back(), cylinders_map_a);
}
}
}
/*
* Join dive computer information.
*
* If we have old-style dive computer information (no model
* name etc), we will prefer a new-style one and just throw
* away the old. We're assuming it's a re-download.
*
* Otherwise, we'll just try to keep all the information,
* unless the user has specified that they prefer the
* downloaded computer, in which case we'll aggressively
* try to throw out old information that *might* be from
* that one.
*/
static void join_dive_computers(struct dive &d,
const struct dive &a, const struct dive &b,
const int cylinders_map_a[], const int cylinders_map_b[],
bool prefer_downloaded)
{
d.dcs.clear();
if (!a.dcs[0].model.empty() && b.dcs[0].model.empty()) {
copy_dc_renumber(d, a, cylinders_map_a);
return;
}
if (!b.dcs[0].model.empty() && a.dcs[0].model.empty()) {
copy_dc_renumber(d, b, cylinders_map_b);
return;
}
copy_dc_renumber(d, a, cylinders_map_a);
copy_dc_renumber(d, b, cylinders_map_b);
remove_redundant_dc(d, prefer_downloaded);
}
static bool has_dc_type(const struct dive &dive, bool dc_is_planner)
{
return std::any_of(dive.dcs.begin(), dive.dcs.end(),
[dc_is_planner] (const divecomputer &dc)
{ return is_dc_planner(&dc) == dc_is_planner; });
}
// Does this dive have a dive computer for which is_dc_planner has value planned
bool dive::is_planned() const
{
return has_dc_type(*this, true);
}
bool dive::is_logged() const
{
return has_dc_type(*this, false);
}
std::unique_ptr<dive> dive::create_merged_dive(const struct dive &a, const struct dive &b, int offset, bool prefer_downloaded)
{
auto res = std::make_unique<dive>();
if (offset) {
/*
* If "likely_same_dive()" returns true, that means that
* it is *not* the same dive computer, and we do not want
* to try to turn it into a single longer dive. So we'd
* join them as two separate dive computers at zero offset.
*/
if (a.likely_same(b))
offset = 0;
}
res->when = prefer_downloaded ? b.when : a.when;
res->selected = a.selected || b.selected;
MERGE_TXT(res, a, b, notes, "\n--\n");
MERGE_TXT(res, a, b, buddy, ", ");
MERGE_TXT(res, a, b, diveguide, ", ");
MERGE_MAX(res, a, b, rating);
MERGE_TXT(res, a, b, suit, ", ");
MERGE_MAX(res, a, b, number);
MERGE_NONZERO(res, a, b, visibility);
MERGE_NONZERO(res, a, b, wavesize);
MERGE_NONZERO(res, a, b, current);
MERGE_NONZERO(res, a, b, surge);
MERGE_NONZERO(res, a, b, chill);
res->pictures = !a.pictures.empty() ? a.pictures : b.pictures;
res->tags = taglist_merge(a.tags, b.tags);
/* if we get dives without any gas / cylinder information in an import, make sure
* that there is at leatst one entry in the cylinder map for that dive */
auto cylinders_map_a = std::make_unique<int[]>(std::max(size_t(1), a.cylinders.size()));
auto cylinders_map_b = std::make_unique<int[]>(std::max(size_t(1), b.cylinders.size()));
merge_cylinders(*res, a, b, cylinders_map_a.get(), cylinders_map_b.get());
merge_equipment(*res, a, b);
merge_temperatures(*res, a, b);
if (prefer_downloaded) {
/* If we prefer downloaded, do those first, and get rid of "might be same" computers */
join_dive_computers(*res, b, a, cylinders_map_b.get(), cylinders_map_a.get(), true);
} else if (offset && might_be_same_device(a.dcs[0], b.dcs[0])) {
interleave_dive_computers(*res, a, b, cylinders_map_a.get(), cylinders_map_b.get());
} else {
join_dive_computers(*res, a, b, cylinders_map_a.get(), cylinders_map_b.get(), false);
}
return res;
}
/*
* "dc_maxtime()" is how much total time this dive computer
* has for this dive. Note that it can differ from "duration"
* if there are surface events in the middle.
*
* Still, we do ignore all but the last surface samples from the
* end, because some divecomputers just generate lots of them.
*/
static inline int dc_totaltime(const struct divecomputer &dc)
{
int time = dc.duration.seconds;
for (auto it = dc.samples.rbegin(); it != dc.samples.rend(); ++it) {
time = it->time.seconds;
if (it->depth.mm >= SURFACE_THRESHOLD)
break;
}
return time;
}
/*
* The end of a dive is actually not trivial, because "duration"
* is not the duration until the end, but the time we spend under
* water, which can be very different if there are surface events
* during the dive.
*
* So walk the dive computers, looking for the longest actual
* time in the samples (and just default to the dive duration if
* there are no samples).
*/
duration_t dive::totaltime() const
{
int time = duration.seconds;
bool logged = is_logged();
for (auto &dc: dcs) {
if (logged || !is_dc_planner(&dc)) {
int dc_time = dc_totaltime(dc);
if (dc_time > time)
time = dc_time;
}
}
return { .seconds = time };
}
timestamp_t dive::endtime() const
{
return when + totaltime().seconds;
}
bool dive::time_during_dive_with_offset(timestamp_t when, timestamp_t offset) const
{
timestamp_t start = when;
timestamp_t end = endtime();
return start - offset <= when && when <= end + offset;
}
/* this sets a usually unused copy of the preferences with the units
* that were active the last time the dive list was saved to git storage
* (this isn't used in XML files); storing the unit preferences in the
* data file is usually pointless (that's a setting of the software,
* not a property of the data), but it's a great hint of what the user
* might expect to see when creating a backend service that visualizes
* the dive list without Subsurface running - so this is basically a
* functionality for the core library that Subsurface itself doesn't
* use but that another consumer of the library (like an HTML exporter)
* will need */
void set_informational_units(const char *units)
{
if (strstr(units, "METRIC")) {
git_prefs.unit_system = METRIC;
} else if (strstr(units, "IMPERIAL")) {
git_prefs.unit_system = IMPERIAL;
} else if (strstr(units, "PERSONALIZE")) {
git_prefs.unit_system = PERSONALIZE;
if (strstr(units, "METERS"))
git_prefs.units.length = units::METERS;
if (strstr(units, "FEET"))
git_prefs.units.length = units::FEET;
if (strstr(units, "LITER"))
git_prefs.units.volume = units::LITER;
if (strstr(units, "CUFT"))
git_prefs.units.volume = units::CUFT;
if (strstr(units, "BAR"))
git_prefs.units.pressure = units::BAR;
if (strstr(units, "PSI"))
git_prefs.units.pressure = units::PSI;
if (strstr(units, "CELSIUS"))
git_prefs.units.temperature = units::CELSIUS;
if (strstr(units, "FAHRENHEIT"))
git_prefs.units.temperature = units::FAHRENHEIT;
if (strstr(units, "KG"))
git_prefs.units.weight = units::KG;
if (strstr(units, "LBS"))
git_prefs.units.weight = units::LBS;
if (strstr(units, "SECONDS"))
git_prefs.units.vertical_speed_time = units::SECONDS;
if (strstr(units, "MINUTES"))
git_prefs.units.vertical_speed_time = units::MINUTES;
}
}
/* clones a dive and moves given dive computer to front */
std::unique_ptr<dive> clone_make_first_dc(const struct dive &d, int dc_number)
{
/* copy the dive */
auto res = std::make_unique<dive>(d);
/* make a new unique id, since we still can't handle two equal ids */
res->id = dive_getUniqID();
if (dc_number != 0)
move_in_range(res->dcs, dc_number, dc_number + 1, 0);
return res;
}
//Calculate O2 in best mix
fraction_t dive::best_o2(depth_t depth, bool in_planner) const
{
fraction_t fo2;
int po2 = in_planner ? prefs.bottompo2 : (int)(prefs.modpO2 * 1000.0);
fo2.permille = (po2 * 100 / depth_to_mbar(depth.mm)) * 10; //use integer arithmetic to round down to nearest percent
// Don't permit >100% O2
// TODO: use std::min, once we have comparison
if (fo2.permille > 1000)
fo2 = 100_percent;
return fo2;
}
//Calculate He in best mix. O2 is considered narcopic
fraction_t dive::best_he(depth_t depth, bool o2narcotic, fraction_t fo2) const
{
fraction_t fhe;
int pnarcotic, ambient;
pnarcotic = depth_to_mbar(prefs.bestmixend.mm);
ambient = depth_to_mbar(depth.mm);
if (o2narcotic) {
fhe.permille = (100 - 100 * pnarcotic / ambient) * 10; //use integer arithmetic to round up to nearest percent
} else {
fhe.permille = 1000 - fo2.permille - N2_IN_AIR * pnarcotic / ambient;
}
// TODO: use std::max, once we have comparison
if (fhe.permille < 0)
fhe = 0_percent;
return fhe;
}
static constexpr std::array<unsigned char, 20> null_id = {};
void dive::invalidate_cache()
{
git_id = null_id;
}
bool dive::cache_is_valid() const
{
return git_id != null_id;
}
pressure_t dive::get_surface_pressure() const
{
return surface_pressure.mbar > 0 ? surface_pressure
: pressure_t { .mbar = SURFACE_PRESSURE };
}
/* This returns the conversion factor that you need to multiply
* a (relative) depth in mm to obtain a (relative) pressure in mbar.
* As everywhere in Subsurface, the expected unit of a salinity is
* g/10l such that sea water has a salinity of 10300
*/
static double salinity_to_specific_weight(int salinity)
{
return salinity * 0.981 / 100000.0;
}
/* Pa = N/m^2 - so we determine the weight (in N) of the mass of 10m
* of water (and use standard salt water at 1.03kg per liter if we don't know salinity)
* and add that to the surface pressure (or to 1013 if that's unknown) */
static double calculate_depth_to_mbarf(int depth, pressure_t surface_pressure, int salinity)
{
double specific_weight;
int mbar = surface_pressure.mbar;
if (!mbar)
mbar = SURFACE_PRESSURE;
if (!salinity)
salinity = SEAWATER_SALINITY;
if (salinity < 500)
salinity += FRESHWATER_SALINITY;
specific_weight = salinity_to_specific_weight(salinity);
return mbar + depth * specific_weight;
}
int dive::depth_to_mbar(int depth) const
{
return lrint(depth_to_mbarf(depth));
}
double dive::depth_to_mbarf(int depth) const
{
// For downloaded and planned dives, use DC's values
int salinity = dcs[0].salinity;
pressure_t surface_pressure = dcs[0].surface_pressure;
if (is_dc_manually_added_dive(&dcs[0])) { // For manual dives, salinity and pressure in another place...
surface_pressure = this->surface_pressure;
salinity = user_salinity;
}
return calculate_depth_to_mbarf(depth, surface_pressure, salinity);
}
double dive::depth_to_bar(int depth) const
{
return depth_to_mbar(depth) / 1000.0;
}
double dive::depth_to_atm(int depth) const
{
return mbar_to_atm(depth_to_mbar(depth));
}
/* for the inverse calculation we use just the relative pressure
* (that's the one that some dive computers like the Uemis Zurich
* provide - for the other models that do this libdivecomputer has to
* take care of this, but the Uemis we support natively */
int dive::rel_mbar_to_depth(int mbar) const
{
// For downloaded and planned dives, use DC's salinity. Manual dives, use user's salinity
int salinity = is_dc_manually_added_dive(&dcs[0]) ? user_salinity : dcs[0].salinity;
if (!salinity)
salinity = SEAWATER_SALINITY;
/* whole mbar gives us cm precision */
double specific_weight = salinity_to_specific_weight(salinity);
return int_cast<int>(mbar / specific_weight);
}
int dive::mbar_to_depth(int mbar) const
{
// For downloaded and planned dives, use DC's pressure. Manual dives, use user's pressure
pressure_t surface_pressure = is_dc_manually_added_dive(&dcs[0])
? this->surface_pressure
: dcs[0].surface_pressure;
if (!surface_pressure.mbar)
surface_pressure.mbar = SURFACE_PRESSURE;
return rel_mbar_to_depth(mbar - surface_pressure.mbar);
}
/* MOD rounded to multiples of roundto mm */
depth_t dive::gas_mod(struct gasmix mix, pressure_t po2_limit, int roundto) const
{
double depth = (double) mbar_to_depth(po2_limit.mbar * 1000 / get_o2(mix));
return depth_t { .mm = int_cast<int>(depth / roundto) * roundto };
}
/* Maximum narcotic depth rounded to multiples of roundto mm */
depth_t dive::gas_mnd(struct gasmix mix, depth_t end, int roundto) const
{
pressure_t ppo2n2 { .mbar = depth_to_mbar(end.mm) };
int maxambient = prefs.o2narcotic ?
int_cast<int>(ppo2n2.mbar / (1 - get_he(mix) / 1000.0))
:
get_n2(mix) > 0 ?
int_cast<int>(ppo2n2.mbar * N2_IN_AIR / get_n2(mix))
:
// Actually: Infinity
1000000;
return depth_t { .mm = int_cast<int>(((double)mbar_to_depth(maxambient)) / roundto) * roundto };
}
std::string dive::get_country() const
{
return dive_site ? taxonomy_get_country(dive_site->taxonomy) : std::string();
}
std::string dive::get_location() const
{
return dive_site ? dive_site->name : std::string();
}
int dive::number_of_computers() const
{
return static_cast<int>(dcs.size());
}
struct divecomputer *dive::get_dc(int nr)
{
if (dcs.empty()) // Can't happen!
return NULL;
nr = std::max(0, nr);
return &dcs[static_cast<size_t>(nr) % dcs.size()];
}
const struct divecomputer *dive::get_dc(int nr) const
{
return const_cast<dive &>(*this).get_dc(nr);
}
bool dive::dive_has_gps_location() const
{
return dive_site && dive_site->has_gps_location();
}
/* Extract GPS location of a dive computer stored in the GPS1
* or GPS2 extra data fields */
static location_t dc_get_gps_location(const struct divecomputer &dc)
{
location_t res;
for (const auto &data: dc.extra_data) {
if (data.key == "GPS1") {
parse_location(data.value.c_str(), &res);
/* If we found a valid GPS1 field exit early since
* it has priority over GPS2 */
if (has_location(&res))
break;
} else if (data.key == "GPS2") {
/* For GPS2 fields continue searching, as we might
* still find a GPS1 field */
parse_location(data.value.c_str(), &res);
}
}
return res;
}
/* Get GPS location for a dive. Highest priority is given to the GPS1
* extra data written by libdivecomputer, as this comes from a real GPS
* device. If that doesn't exits, use the currently set dive site.
* This function is potentially slow, therefore only call sparingly
* and remember the result.
*/
location_t dive::get_gps_location() const
{
for (const struct divecomputer &dc: dcs) {
location_t res = dc_get_gps_location(dc);
if (has_location(&res))
return res;
}
/* No libdivecomputer generated GPS data found.
* Let's use the location of the current dive site.
*/
return dive_site ? dive_site->location : location_t();
}
gasmix_loop::gasmix_loop(const struct dive &d, const struct divecomputer &dc) :
dive(d), dc(dc), first_run(true), loop("gaschange", dc)
{
}
/* Some dive computers (Cobalt) don't start the dive with cylinder 0 but explicitly
* tell us what the first gas is with a gas change event in the first sample.
* Sneakily we'll use a return value of 0 (or FALSE) when there is no explicit
* first cylinder - in which case cylinder 0 is indeed the first cylinder.
* We likewise return 0 if the event concerns a cylinder that doesn't exist.
* If the dive has no cylinders, -1 is returned. */
std::pair<int, int> gasmix_loop::next_cylinder_index()
{
if (dive.cylinders.empty())
return std::make_pair(-1, INT_MAX);
if (first_run) {
next_event = loop.next();
last_cylinder_index = 0; // default to first cylinder
last_time = 0;
if (next_event && ((!dc.samples.empty() && next_event->time.seconds == dc.samples[0].time.seconds) || next_event->time.seconds <= 1)) {
last_cylinder_index = dive.get_cylinder_index(*next_event);
last_time = next_event->time.seconds;
next_event = loop.next();
} else if (dc.divemode == CCR) {
last_cylinder_index = std::max(get_cylinder_idx_by_use(dive, DILUENT), last_cylinder_index);
}
first_run = false;
} else {
if (next_event) {
last_cylinder_index = dive.get_cylinder_index(*next_event);
last_time = next_event->time.seconds;
next_event = loop.next();
} else {
last_cylinder_index = -1;
last_time = INT_MAX;
}
}
return std::make_pair(last_cylinder_index, last_time);
}
std::pair<gasmix, int> gasmix_loop::next()
{
if (first_run && dive.cylinders.empty()) {
first_run = false;
// return one cylinder of air if we don't have any cylinders
return std::make_pair(gasmix_air, 0);
}
next_cylinder_index();
return std::make_pair(last_cylinder_index < 0 ? gasmix_invalid : dive.get_cylinder(last_cylinder_index)->gasmix, last_time);
}
std::pair<int, int> gasmix_loop::cylinder_index_at(int time)
{
if (first_run)
next_cylinder_index();
while (has_next() && next_event->time.seconds <= time)
next_cylinder_index();
return std::make_pair(last_cylinder_index, last_time);
}
std::pair<gasmix, int> gasmix_loop::at(int time)
{
if (dive.cylinders.empty())
// return air if we don't have any cylinders
return std::make_pair(gasmix_air, 0);
cylinder_index_at(time);
return std::make_pair(last_cylinder_index < 0 ? gasmix_invalid : dive.get_cylinder(last_cylinder_index)->gasmix, last_time);
}
bool gasmix_loop::has_next() const
{
return first_run || (!dive.cylinders.empty() && next_event);
}
/* get the gas at a certain time during the dive */
/* If there is a gasswitch at that time, it returns the new gasmix */
struct gasmix dive::get_gasmix_at_time(const struct divecomputer &dc, duration_t time) const
{
return gasmix_loop(*this, dc).at(time.seconds).first;
}
/* Does that cylinder have any pressure readings? */
bool cylinder_with_sensor_sample(const struct dive *dive, int cylinder_id)
{
for (const auto &dc: dive->dcs) {
for (const auto &sample: dc.samples) {
for (int j = 0; j < MAX_SENSORS; ++j) {
if (!sample.pressure[j].mbar)
continue;
if (sample.sensor[j] == cylinder_id)
return true;
}
}
}
return false;
}
/*
* What do the dive computers say the water temperature is?
* (not in the samples, but as dc property for dcs that support that)
*/
temperature_t dive::dc_watertemp() const
{
int sum = 0, nr = 0;
for (auto &dc: dcs) {
if (dc.watertemp.mkelvin) {
sum += dc.watertemp.mkelvin;
nr++;
}
}
if (!nr)
return temperature_t();
return temperature_t{ .mkelvin = static_cast<uint32_t>((sum + nr / 2) / nr) };
}
/*
* What do the dive computers say the air temperature is?
*/
temperature_t dive::dc_airtemp() const
{
int sum = 0, nr = 0;
for (auto &dc: dcs) {
if (dc.airtemp.mkelvin) {
sum += dc.airtemp.mkelvin;
nr++;
}
}
if (!nr)
return temperature_t();
return temperature_t{ .mkelvin = static_cast<uint32_t>((sum + nr / 2) / nr) };
}
/*
* Get "maximal" dive gas for a dive.
* Rules:
* - Trimix trumps nitrox (highest He wins, O2 breaks ties)
* - Nitrox trumps air (even if hypoxic)
* These are the same rules as the inter-dive sorting rules.
*/
dive::get_maximal_gas_result dive::get_maximal_gas() const
{
int maxo2 = -1, maxhe = -1, mino2 = 1000;
for (auto [i, cyl]: enumerated_range(cylinders)) {
int o2 = get_o2(cyl.gasmix);
int he = get_he(cyl.gasmix);
if (!is_cylinder_used(i))
continue;
if (cyl.cylinder_use == OXYGEN)
continue;
if (cyl.cylinder_use == NOT_USED)
continue;
if (o2 > maxo2)
maxo2 = o2;
if (o2 < mino2 && maxhe <= 0)
mino2 = o2;
if (he > maxhe) {
maxhe = he;
mino2 = o2;
}
}
/* All air? Show/sort as "air"/zero */
if ((!maxhe && maxo2 == O2_IN_AIR && mino2 == maxo2) ||
(maxo2 == -1 && maxhe == -1 && mino2 == 1000))
maxo2 = mino2 = 0;
return { mino2, maxhe, maxo2 };
}
bool dive::has_gaschange_event(const struct divecomputer *dc, int idx) const
{
gasmix_loop loop(*this, *dc);
while (loop.has_next()) {
if (loop.next_cylinder_index().first == idx)
return true;
}
return false;
}
bool dive::is_cylinder_used(int idx) const
{
if (idx < 0 || static_cast<size_t>(idx) >= cylinders.size())
return false;
const cylinder_t &cyl = cylinders[idx];
if ((cyl.start.mbar - cyl.end.mbar) > SOME_GAS)
return true;
if ((cyl.sample_start.mbar - cyl.sample_end.mbar) > SOME_GAS)
return true;
for (auto &dc: dcs) {
if (has_gaschange_event(&dc, idx))
return true;
else if (dc.divemode == CCR && idx == get_cylinder_idx_by_use(*this, OXYGEN))
return true;
}
return false;
}
bool dive::is_cylinder_prot(int idx) const
{
if (idx < 0 || static_cast<size_t>(idx) >= cylinders.size())
return false;
return std::any_of(dcs.begin(), dcs.end(),
[this, idx](auto &dc)
{ return has_gaschange_event(&dc, idx); });
}
weight_t dive::total_weight() const
{
// TODO: implement addition for units.h types
return std::accumulate(weightsystems.begin(), weightsystems.end(), weight_t(),
[] (weight_t w, const weightsystem_t &ws)
{ return weight_t{ .grams = w.grams + ws.weight.grams }; });
}