subsurface/core/parse-xml.c
willemferguson d2cf58e07e core: read and write the user-specified salinity
Both XML and git storage are added.

Signed-off-by: willemferguson <willemferguson@zoology.up.ac.za>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2020-01-06 07:00:34 +09:00

2307 lines
65 KiB
C

// SPDX-License-Identifier: GPL-2.0
#ifdef __clang__
// Clang has a bug on zero-initialization of C structs.
#pragma clang diagnostic ignored "-Wmissing-field-initializers"
#endif
#include "ssrf.h"
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <unistd.h>
#include <assert.h>
#define __USE_XOPEN
#include <time.h>
#include <libxml/parser.h>
#include <libxml/parserInternals.h>
#include <libxml/tree.h>
#include <libxslt/transform.h>
#include <libdivecomputer/parser.h>
#include "gettext.h"
#include "divesite.h"
#include "errorhelper.h"
#include "subsurface-string.h"
#include "parse.h"
#include "trip.h"
#include "device.h"
#include "membuffer.h"
#include "qthelper.h"
#include "tag.h"
int quit, force_root;
int last_xml_version = -1;
static xmlDoc *test_xslt_transforms(xmlDoc *doc, const char **params);
const struct units SI_units = SI_UNITS;
const struct units IMPERIAL_units = IMPERIAL_UNITS;
static void divedate(const char *buffer, timestamp_t *when, struct parser_state *state)
{
int d, m, y;
int hh, mm, ss;
hh = 0;
mm = 0;
ss = 0;
if (sscanf(buffer, "%d.%d.%d %d:%d:%d", &d, &m, &y, &hh, &mm, &ss) >= 3) {
/* This is ok, and we got at least the date */
} else if (sscanf(buffer, "%d-%d-%d %d:%d:%d", &y, &m, &d, &hh, &mm, &ss) >= 3) {
/* This is also ok */
} else {
fprintf(stderr, "Unable to parse date '%s'\n", buffer);
return;
}
state->cur_tm.tm_year = y;
state->cur_tm.tm_mon = m - 1;
state->cur_tm.tm_mday = d;
state->cur_tm.tm_hour = hh;
state->cur_tm.tm_min = mm;
state->cur_tm.tm_sec = ss;
*when = utc_mktime(&state->cur_tm);
}
static void divetime(const char *buffer, timestamp_t *when, struct parser_state *state)
{
int h, m, s = 0;
if (sscanf(buffer, "%d:%d:%d", &h, &m, &s) >= 2) {
state->cur_tm.tm_hour = h;
state->cur_tm.tm_min = m;
state->cur_tm.tm_sec = s;
*when = utc_mktime(&state->cur_tm);
}
}
/* Libdivecomputer: "2011-03-20 10:22:38" */
static void divedatetime(char *buffer, timestamp_t *when, struct parser_state *state)
{
int y, m, d;
int hr, min, sec;
if (sscanf(buffer, "%d-%d-%d %d:%d:%d",
&y, &m, &d, &hr, &min, &sec) == 6) {
state->cur_tm.tm_year = y;
state->cur_tm.tm_mon = m - 1;
state->cur_tm.tm_mday = d;
state->cur_tm.tm_hour = hr;
state->cur_tm.tm_min = min;
state->cur_tm.tm_sec = sec;
*when = utc_mktime(&state->cur_tm);
}
}
enum ParseState {
FINDSTART,
FINDEND
};
static void divetags(char *buffer, struct tag_entry **tags)
{
int i = 0, start = 0, end = 0;
enum ParseState state = FINDEND;
int len = buffer ? strlen(buffer) : 0;
while (i < len) {
if (buffer[i] == ',') {
if (state == FINDSTART) {
/* Detect empty tags */
} else if (state == FINDEND) {
/* Found end of tag */
if (i > 0 && buffer[i - 1] != '\\') {
buffer[i] = '\0';
state = FINDSTART;
taglist_add_tag(tags, buffer + start);
} else {
state = FINDSTART;
}
}
} else if (buffer[i] == ' ') {
/* Handled */
} else {
/* Found start of tag */
if (state == FINDSTART) {
state = FINDEND;
start = i;
} else if (state == FINDEND) {
end = i;
}
}
i++;
}
if (state == FINDEND) {
if (end < start)
end = len - 1;
if (len > 0) {
buffer[end + 1] = '\0';
taglist_add_tag(tags, buffer + start);
}
}
}
enum number_type {
NEITHER,
FLOATVAL
};
static enum number_type parse_float(const char *buffer, double *res, const char **endp)
{
double val;
static bool first_time = true;
errno = 0;
val = ascii_strtod(buffer, endp);
if (errno || *endp == buffer)
return NEITHER;
if (**endp == ',') {
if (IS_FP_SAME(val, rint(val))) {
/* we really want to send an error if this is a Subsurface native file
* as this is likely indication of a bug - but right now we don't have
* that information available */
if (first_time) {
fprintf(stderr, "Floating point value with decimal comma (%s)?\n", buffer);
first_time = false;
}
/* Try again in permissive mode*/
val = strtod_flags(buffer, endp, 0);
}
}
*res = val;
return FLOATVAL;
}
union int_or_float {
double fp;
};
static enum number_type integer_or_float(char *buffer, union int_or_float *res)
{
const char *end;
return parse_float(buffer, &res->fp, &end);
}
static void pressure(char *buffer, pressure_t *pressure, struct parser_state *state)
{
double mbar = 0.0;
union int_or_float val;
switch (integer_or_float(buffer, &val)) {
case FLOATVAL:
/* Just ignore zero values */
if (!val.fp)
break;
switch (state->xml_parsing_units.pressure) {
case PASCALS:
mbar = val.fp / 100;
break;
case BAR:
/* Assume mbar, but if it's really small, it's bar */
mbar = val.fp;
if (fabs(mbar) < 5000)
mbar = mbar * 1000;
break;
case PSI:
mbar = psi_to_mbar(val.fp);
break;
}
if (fabs(mbar) > 5 && fabs(mbar) < 5000000) {
pressure->mbar = lrint(mbar);
break;
}
/* fallthrough */
default:
printf("Strange pressure reading %s\n", buffer);
}
}
static void cylinder_use(char *buffer, enum cylinderuse *cyl_use, struct parser_state *state)
{
if (trimspace(buffer)) {
int use = cylinderuse_from_text(buffer);
*cyl_use = use;
if (use == OXYGEN)
state->o2pressure_sensor = state->cur_dive->cylinders.nr - 1;
}
}
static void salinity(char *buffer, int *salinity)
{
union int_or_float val;
switch (integer_or_float(buffer, &val)) {
case FLOATVAL:
*salinity = lrint(val.fp * 10.0);
break;
default:
printf("Strange salinity reading %s\n", buffer);
}
}
static void depth(char *buffer, depth_t *depth, struct parser_state *state)
{
union int_or_float val;
switch (integer_or_float(buffer, &val)) {
case FLOATVAL:
switch (state->xml_parsing_units.length) {
case METERS:
depth->mm = lrint(val.fp * 1000);
break;
case FEET:
depth->mm = feet_to_mm(val.fp);
break;
}
break;
default:
printf("Strange depth reading %s\n", buffer);
}
}
static void extra_data_start(struct parser_state *state)
{
memset(&state->cur_extra_data, 0, sizeof(struct extra_data));
}
static void extra_data_end(struct parser_state *state)
{
// don't save partial structures - we must have both key and value
if (state->cur_extra_data.key && state->cur_extra_data.value)
add_extra_data(get_dc(state), state->cur_extra_data.key, state->cur_extra_data.value);
free((void *)state->cur_extra_data.key);
free((void *)state->cur_extra_data.value);
state->cur_extra_data.key = state->cur_extra_data.value = NULL;
}
static void weight(char *buffer, weight_t *weight, struct parser_state *state)
{
union int_or_float val;
switch (integer_or_float(buffer, &val)) {
case FLOATVAL:
switch (state->xml_parsing_units.weight) {
case KG:
weight->grams = lrint(val.fp * 1000);
break;
case LBS:
weight->grams = lbs_to_grams(val.fp);
break;
}
break;
default:
printf("Strange weight reading %s\n", buffer);
}
}
static void temperature(char *buffer, temperature_t *temperature, struct parser_state *state)
{
union int_or_float val;
switch (integer_or_float(buffer, &val)) {
case FLOATVAL:
switch (state->xml_parsing_units.temperature) {
case KELVIN:
temperature->mkelvin = lrint(val.fp * 1000);
break;
case CELSIUS:
temperature->mkelvin = C_to_mkelvin(val.fp);
break;
case FAHRENHEIT:
temperature->mkelvin = F_to_mkelvin(val.fp);
break;
}
break;
default:
printf("Strange temperature reading %s\n", buffer);
}
/* temperatures outside -40C .. +70C should be ignored */
if (temperature->mkelvin < ZERO_C_IN_MKELVIN - 40000 ||
temperature->mkelvin > ZERO_C_IN_MKELVIN + 70000)
temperature->mkelvin = 0;
}
static void sampletime(char *buffer, duration_t *time)
{
int i;
int hr, min, sec;
i = sscanf(buffer, "%d:%d:%d", &hr, &min, &sec);
switch (i) {
case 1:
min = hr;
hr = 0;
/* fallthrough */
case 2:
sec = min;
min = hr;
hr = 0;
/* fallthrough */
case 3:
time->seconds = (hr * 60 + min) * 60 + sec;
break;
default:
time->seconds = 0;
printf("Strange sample time reading %s\n", buffer);
}
}
static void offsettime(char *buffer, offset_t *time)
{
duration_t uoffset;
int sign = 1;
if (*buffer == '-') {
sign = -1;
buffer++;
}
/* yes, this could indeed fail if we have an offset > 34yrs
* - too bad */
sampletime(buffer, &uoffset);
time->seconds = sign * uoffset.seconds;
}
static void duration(char *buffer, duration_t *time)
{
/* DivingLog 5.08 (and maybe other versions) appear to sometimes
* store the dive time as 44.00 instead of 44:00;
* This attempts to parse this in a fairly robust way */
if (!strchr(buffer, ':') && strchr(buffer, '.')) {
char *mybuffer = strdup(buffer);
char *dot = strchr(mybuffer, '.');
*dot = ':';
sampletime(mybuffer, time);
free(mybuffer);
} else {
sampletime(buffer, time);
}
}
static void percent(char *buffer, fraction_t *fraction)
{
double val;
const char *end;
switch (parse_float(buffer, &val, &end)) {
case FLOATVAL:
/* Turn fractions into percent unless explicit.. */
if (val <= 1.0) {
while (isspace(*end))
end++;
if (*end != '%')
val *= 100;
}
/* Then turn percent into our integer permille format */
if (val >= 0 && val <= 100.0) {
fraction->permille = lrint(val * 10);
break;
}
default:
printf(translate("gettextFromC", "Strange percentage reading %s\n"), buffer);
break;
}
}
static void gasmix(char *buffer, fraction_t *fraction, struct parser_state *state)
{
/* libdivecomputer does negative percentages. */
if (*buffer == '-')
return;
percent(buffer, fraction);
}
static void gasmix_nitrogen(char *buffer, struct gasmix *gasmix)
{
UNUSED(buffer);
UNUSED(gasmix);
/* Ignore n2 percentages. There's no value in them. */
}
static void cylindersize(char *buffer, volume_t *volume)
{
union int_or_float val;
switch (integer_or_float(buffer, &val)) {
case FLOATVAL:
volume->mliter = lrint(val.fp * 1000);
break;
default:
printf("Strange volume reading %s\n", buffer);
break;
}
}
static void event_name(char *buffer, char *name)
{
int size = trimspace(buffer);
if (size >= MAX_EVENT_NAME)
size = MAX_EVENT_NAME - 1;
memcpy(name, buffer, size);
name[size] = 0;
}
// We don't use gauge as a mode, and pscr doesn't exist as a libdc divemode
const char *libdc_divemode_text[] = { "oc", "cc", "pscr", "freedive", "gauge"};
/* Extract the dive computer type from the xml text buffer */
static void get_dc_type(char *buffer, enum divemode_t *dct)
{
if (trimspace(buffer)) {
for (enum divemode_t i = 0; i < NUM_DIVEMODE; i++) {
if (strcmp(buffer, divemode_text[i]) == 0)
*dct = i;
else if (strcmp(buffer, libdc_divemode_text[i]) == 0)
*dct = i;
}
}
}
/* For divemode_text[] (defined in dive.h) determine the index of
* the string contained in the xml divemode attribute and passed
* in buffer, below. Typical xml input would be:
* <event name='modechange' divemode='OC' /> */
static void event_divemode(char *buffer, int *value)
{
int size = trimspace(buffer);
if (size >= MAX_EVENT_NAME)
size = MAX_EVENT_NAME - 1;
buffer[size] = 0x0;
for (int i = 0; i < NUM_DIVEMODE; i++) {
if (!strcmp(buffer,divemode_text[i])) {
*value = i;
break;
}
}
}
/* Compare a pattern with a name, whereby the name may end in '\0' or '.'. */
static int match_name(const char *pattern, const char *name)
{
while (*pattern == *name && *pattern) {
pattern++;
name++;
}
return *pattern == '\0' && (*name == '\0' || *name == '.');
}
typedef void (*matchfn_t)(char *buffer, void *);
static int match(const char *pattern, const char *name,
matchfn_t fn, char *buf, void *data)
{
if (!match_name(pattern, name))
return 0;
fn(buf, data);
return 1;
}
typedef void (*matchfn_state_t)(char *buffer, void *, struct parser_state *state);
static int match_state(const char *pattern, const char *name,
matchfn_state_t fn, char *buf, void *data, struct parser_state *state)
{
if (!match_name(pattern, name))
return 0;
fn(buf, data, state);
return 1;
}
#define MATCH(pattern, fn, dest) ({ \
/* Silly type compatibility test */ \
if (0) (fn)("test", dest); \
match(pattern, name, (matchfn_t) (fn), buf, dest); })
#define MATCH_STATE(pattern, fn, dest) ({ \
/* Silly type compatibility test */ \
if (0) (fn)("test", dest, state); \
match_state(pattern, name, (matchfn_state_t) (fn), buf, dest, state); })
static void get_index(char *buffer, int *i)
{
*i = atoi(buffer);
}
static void get_bool(char *buffer, bool *i)
{
*i = atoi(buffer);
}
static void get_uint8(char *buffer, uint8_t *i)
{
*i = atoi(buffer);
}
static void get_uint16(char *buffer, uint16_t *i)
{
*i = atoi(buffer);
}
static void get_bearing(char *buffer, bearing_t *bearing)
{
bearing->degrees = atoi(buffer);
}
static void get_rating(char *buffer, int *i)
{
int j = atoi(buffer);
if (j >= 0 && j <= 5) {
*i = j;
}
}
static void double_to_o2pressure(char *buffer, o2pressure_t *i)
{
i->mbar = lrint(ascii_strtod(buffer, NULL) * 1000.0);
}
static void hex_value(char *buffer, uint32_t *i)
{
*i = strtoul(buffer, NULL, 16);
}
static void dive_site(char *buffer, struct dive *d, struct parser_state *state)
{
uint32_t uuid;
hex_value(buffer, &uuid);
add_dive_to_dive_site(d, get_dive_site_by_uuid(uuid, state->sites));
}
static void get_notrip(char *buffer, bool *notrip)
{
*notrip = !strcmp(buffer, "NOTRIP");
}
/*
* Divinglog is crazy. The temperatures are in celsius. EXCEPT
* for the sample temperatures, that are in Fahrenheit.
* WTF?
*
* Oh, and I think Diving Log *internally* probably kept them
* in celsius, because I'm seeing entries like
*
* <Temp>32.0</Temp>
*
* in there. Which is freezing, aka 0 degC. I bet the "0" is
* what Diving Log uses for "no temperature".
*
* So throw away crap like that.
*
* It gets worse. Sometimes the sample temperatures are in
* Celsius, which apparently happens if you are in a SI
* locale. So we now do:
*
* - temperatures < 32.0 == Celsius
* - temperature == 32.0 -> garbage, it's a missing temperature (zero converted from C to F)
* - temperatures > 32.0 == Fahrenheit
*/
static void fahrenheit(char *buffer, temperature_t *temperature)
{
union int_or_float val;
switch (integer_or_float(buffer, &val)) {
case FLOATVAL:
if (IS_FP_SAME(val.fp, 32.0))
break;
if (val.fp < 32.0)
temperature->mkelvin = C_to_mkelvin(val.fp);
else
temperature->mkelvin = F_to_mkelvin(val.fp);
break;
default:
fprintf(stderr, "Crazy Diving Log temperature reading %s\n", buffer);
}
}
/*
* Did I mention how bat-shit crazy divinglog is? The sample
* pressures are in PSI. But the tank working pressure is in
* bar. WTF^2?
*
* Crazy stuff like this is why subsurface has everything in
* these inconvenient typed structures, and you have to say
* "pressure->mbar" to get the actual value. Exactly so that
* you can never have unit confusion.
*
* It gets worse: sometimes apparently the pressures are in
* bar, sometimes in psi. Dirk suspects that this may be a
* DivingLog Uemis importer bug, and that they are always
* supposed to be in bar, but that the importer got the
* sample importing wrong.
*
* Sadly, there's no way to really tell. So I think we just
* have to have some arbitrary cut-off point where we assume
* that smaller values mean bar.. Not good.
*/
static void psi_or_bar(char *buffer, pressure_t *pressure)
{
union int_or_float val;
switch (integer_or_float(buffer, &val)) {
case FLOATVAL:
if (val.fp > 400)
pressure->mbar = psi_to_mbar(val.fp);
else
pressure->mbar = lrint(val.fp * 1000);
break;
default:
fprintf(stderr, "Crazy Diving Log PSI reading %s\n", buffer);
}
}
static int divinglog_fill_sample(struct sample *sample, const char *name, char *buf, struct parser_state *state)
{
return MATCH("time.p", sampletime, &sample->time) ||
MATCH_STATE("depth.p", depth, &sample->depth) ||
MATCH("temp.p", fahrenheit, &sample->temperature) ||
MATCH("press1.p", psi_or_bar, &sample->pressure[0]) ||
0;
}
static void uddf_gasswitch(char *buffer, struct sample *sample, struct parser_state *state)
{
int idx = atoi(buffer);
int seconds = sample->time.seconds;
struct dive *dive = state->cur_dive;
struct divecomputer *dc = get_dc(state);
add_gas_switch_event(dive, dc, seconds, idx);
}
static int uddf_fill_sample(struct sample *sample, const char *name, char *buf, struct parser_state *state)
{
return MATCH("divetime", sampletime, &sample->time) ||
MATCH_STATE("depth", depth, &sample->depth) ||
MATCH_STATE("temperature", temperature, &sample->temperature) ||
MATCH_STATE("tankpressure", pressure, &sample->pressure[0]) ||
MATCH_STATE("ref.switchmix", uddf_gasswitch, sample) ||
0;
}
static void eventtime(char *buffer, duration_t *duration, struct parser_state *state)
{
sampletime(buffer, duration);
if (state->cur_sample)
duration->seconds += state->cur_sample->time.seconds;
}
static void try_to_match_autogroup(const char *name, char *buf)
{
bool autogroupvalue;
start_match("autogroup", name, buf);
if (MATCH("state.autogroup", get_bool, &autogroupvalue)) {
set_autogroup(autogroupvalue);
return;
}
nonmatch("autogroup", name, buf);
}
void add_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx)
{
/* sanity check so we don't crash */
if (idx < 0 || idx >= dive->cylinders.nr) {
report_error("Unknown cylinder index: %d", idx);
return;
}
/* The gas switch event format is insane for historical reasons */
struct gasmix mix = get_cylinder(dive, idx)->gasmix;
int o2 = get_o2(mix);
int he = get_he(mix);
struct event *ev;
int value;
o2 = (o2 + 5) / 10;
he = (he + 5) / 10;
value = o2 + (he << 16);
ev = add_event(dc, seconds, he ? SAMPLE_EVENT_GASCHANGE2 : SAMPLE_EVENT_GASCHANGE, 0, value, "gaschange");
if (ev) {
ev->gas.index = idx;
ev->gas.mix = mix;
}
}
static void get_cylinderindex(char *buffer, uint8_t *i, struct parser_state *state)
{
*i = atoi(buffer);
if (state->lastcylinderindex != *i) {
add_gas_switch_event(state->cur_dive, get_dc(state), state->cur_sample->time.seconds, *i);
state->lastcylinderindex = *i;
}
}
static void get_sensor(char *buffer, uint8_t *i)
{
*i = atoi(buffer);
}
static void parse_libdc_deco(char *buffer, struct sample *s)
{
if (strcmp(buffer, "deco") == 0) {
s->in_deco = true;
} else if (strcmp(buffer, "ndl") == 0) {
s->in_deco = false;
// The time wasn't stoptime, it was ndl
s->ndl = s->stoptime;
s->stoptime.seconds = 0;
}
}
static void try_to_fill_dc_settings(const char *name, char *buf, struct parser_state *state)
{
start_match("divecomputerid", name, buf);
if (MATCH("model.divecomputerid", utf8_string, &state->cur_settings.dc.model))
return;
if (MATCH("deviceid.divecomputerid", hex_value, &state->cur_settings.dc.deviceid))
return;
if (MATCH("nickname.divecomputerid", utf8_string, &state->cur_settings.dc.nickname))
return;
if (MATCH("serial.divecomputerid", utf8_string, &state->cur_settings.dc.serial_nr))
return;
if (MATCH("firmware.divecomputerid", utf8_string, &state->cur_settings.dc.firmware))
return;
nonmatch("divecomputerid", name, buf);
}
static void try_to_fill_event(const char *name, char *buf, struct parser_state *state)
{
start_match("event", name, buf);
if (MATCH("event", event_name, state->cur_event.name))
return;
if (MATCH("name", event_name, state->cur_event.name))
return;
if (MATCH_STATE("time", eventtime, &state->cur_event.time))
return;
if (MATCH("type", get_index, &state->cur_event.type))
return;
if (MATCH("flags", get_index, &state->cur_event.flags))
return;
if (MATCH("value", get_index, &state->cur_event.value))
return;
if (MATCH("divemode", event_divemode, &state->cur_event.value))
return;
if (MATCH("cylinder", get_index, &state->cur_event.gas.index)) {
/* We add one to indicate that we got an actual cylinder index value */
state->cur_event.gas.index++;
return;
}
if (MATCH("o2", percent, &state->cur_event.gas.mix.o2))
return;
if (MATCH("he", percent, &state->cur_event.gas.mix.he))
return;
nonmatch("event", name, buf);
}
static int match_dc_data_fields(struct divecomputer *dc, const char *name, char *buf, struct parser_state *state)
{
if (MATCH_STATE("maxdepth", depth, &dc->maxdepth))
return 1;
if (MATCH_STATE("meandepth", depth, &dc->meandepth))
return 1;
if (MATCH_STATE("max.depth", depth, &dc->maxdepth))
return 1;
if (MATCH_STATE("mean.depth", depth, &dc->meandepth))
return 1;
if (MATCH("duration", duration, &dc->duration))
return 1;
if (MATCH("divetime", duration, &dc->duration))
return 1;
if (MATCH("divetimesec", duration, &dc->duration))
return 1;
if (MATCH("last-manual-time", duration, &dc->last_manual_time))
return 1;
if (MATCH("surfacetime", duration, &dc->surfacetime))
return 1;
if (MATCH_STATE("airtemp", temperature, &dc->airtemp))
return 1;
if (MATCH_STATE("watertemp", temperature, &dc->watertemp))
return 1;
if (MATCH_STATE("air.temperature", temperature, &dc->airtemp))
return 1;
if (MATCH_STATE("water.temperature", temperature, &dc->watertemp))
return 1;
if (MATCH_STATE("pressure.surface", pressure, &dc->surface_pressure))
return 1;
if (MATCH("salinity.water", salinity, &dc->salinity))
return 1;
if (MATCH("key.extradata", utf8_string, &state->cur_extra_data.key))
return 1;
if (MATCH("value.extradata", utf8_string, &state->cur_extra_data.value))
return 1;
if (MATCH("divemode", get_dc_type, &dc->divemode))
return 1;
if (MATCH("salinity", salinity, &dc->salinity))
return 1;
if (MATCH_STATE("atmospheric", pressure, &dc->surface_pressure))
return 1;
return 0;
}
/* We're in the top-level dive xml. Try to convert whatever value to a dive value */
static void try_to_fill_dc(struct divecomputer *dc, const char *name, char *buf, struct parser_state *state)
{
unsigned int deviceid;
start_match("divecomputer", name, buf);
if (MATCH_STATE("date", divedate, &dc->when))
return;
if (MATCH_STATE("time", divetime, &dc->when))
return;
if (MATCH("model", utf8_string, &dc->model))
return;
if (MATCH("deviceid", hex_value, &deviceid)) {
set_dc_deviceid(dc, deviceid);
return;
}
if (MATCH("diveid", hex_value, &dc->diveid))
return;
if (MATCH("dctype", get_dc_type, &dc->divemode))
return;
if (MATCH("no_o2sensors", get_sensor, &dc->no_o2sensors))
return;
if (match_dc_data_fields(dc, name, buf, state))
return;
nonmatch("divecomputer", name, buf);
}
/* We're in samples - try to convert the random xml value to something useful */
static void try_to_fill_sample(struct sample *sample, const char *name, char *buf, struct parser_state *state)
{
int in_deco;
pressure_t p;
start_match("sample", name, buf);
if (MATCH_STATE("pressure.sample", pressure, &sample->pressure[0]))
return;
if (MATCH_STATE("cylpress.sample", pressure, &sample->pressure[0]))
return;
if (MATCH_STATE("pdiluent.sample", pressure, &sample->pressure[0]))
return;
if (MATCH_STATE("o2pressure.sample", pressure, &sample->pressure[1]))
return;
/* Christ, this is ugly */
if (MATCH_STATE("pressure0.sample", pressure, &p)) {
add_sample_pressure(sample, 0, p.mbar);
return;
}
if (MATCH_STATE("pressure1.sample", pressure, &p)) {
add_sample_pressure(sample, 1, p.mbar);
return;
}
if (MATCH_STATE("pressure2.sample", pressure, &p)) {
add_sample_pressure(sample, 2, p.mbar);
return;
}
if (MATCH_STATE("pressure3.sample", pressure, &p)) {
add_sample_pressure(sample, 3, p.mbar);
return;
}
if (MATCH_STATE("pressure4.sample", pressure, &p)) {
add_sample_pressure(sample, 4, p.mbar);
return;
}
if (MATCH_STATE("cylinderindex.sample", get_cylinderindex, &sample->sensor[0]))
return;
if (MATCH("sensor.sample", get_sensor, &sample->sensor[0]))
return;
if (MATCH_STATE("depth.sample", depth, &sample->depth))
return;
if (MATCH_STATE("temp.sample", temperature, &sample->temperature))
return;
if (MATCH_STATE("temperature.sample", temperature, &sample->temperature))
return;
if (MATCH("sampletime.sample", sampletime, &sample->time))
return;
if (MATCH("time.sample", sampletime, &sample->time))
return;
if (MATCH("ndl.sample", sampletime, &sample->ndl))
return;
if (MATCH("tts.sample", sampletime, &sample->tts))
return;
if (MATCH("in_deco.sample", get_index, &in_deco)) {
sample->in_deco = (in_deco == 1);
return;
}
if (MATCH("stoptime.sample", sampletime, &sample->stoptime))
return;
if (MATCH_STATE("stopdepth.sample", depth, &sample->stopdepth))
return;
if (MATCH("cns.sample", get_uint16, &sample->cns))
return;
if (MATCH("rbt.sample", sampletime, &sample->rbt))
return;
if (MATCH("sensor1.sample", double_to_o2pressure, &sample->o2sensor[0])) // CCR O2 sensor data
return;
if (MATCH("sensor2.sample", double_to_o2pressure, &sample->o2sensor[1]))
return;
if (MATCH("sensor3.sample", double_to_o2pressure, &sample->o2sensor[2])) // up to 3 CCR sensors
return;
if (MATCH("po2.sample", double_to_o2pressure, &sample->setpoint))
return;
if (MATCH("heartbeat", get_uint8, &sample->heartbeat))
return;
if (MATCH("bearing", get_bearing, &sample->bearing))
return;
if (MATCH("setpoint.sample", double_to_o2pressure, &sample->setpoint))
return;
if (MATCH("ppo2.sample", double_to_o2pressure, &sample->o2sensor[state->next_o2_sensor])) {
state->next_o2_sensor++;
return;
}
if (MATCH("deco.sample", parse_libdc_deco, sample))
return;
if (MATCH("time.deco", sampletime, &sample->stoptime))
return;
if (MATCH_STATE("depth.deco", depth, &sample->stopdepth))
return;
switch (state->import_source) {
case DIVINGLOG:
if (divinglog_fill_sample(sample, name, buf, state))
return;
break;
case UDDF:
if (uddf_fill_sample(sample, name, buf, state))
return;
break;
default:
break;
}
nonmatch("sample", name, buf);
}
static void divinglog_place(char *place, struct dive *d, struct parser_state *state)
{
char buffer[1024];
struct dive_site *ds;
snprintf(buffer, sizeof(buffer),
"%s%s%s%s%s",
place,
state->city ? ", " : "",
state->city ? state->city : "",
state->country ? ", " : "",
state->country ? state->country : "");
ds = get_dive_site_by_name(buffer, state->sites);
if (!ds)
ds = create_dive_site(buffer, state->sites);
add_dive_to_dive_site(d, ds);
// TODO: capture the country / city info in the taxonomy instead
free(state->city);
free(state->country);
state->city = NULL;
state->country = NULL;
}
static int divinglog_dive_match(struct dive *dive, const char *name, char *buf, struct parser_state *state)
{
/* For cylinder related fields, we might have to create a cylinder first. */
cylinder_t cyl = { 0 };
if (MATCH("tanktype", utf8_string, &cyl.type.description)) {
cylinder_t *cyl0 = get_or_create_cylinder(dive, 0);
free((void *)cyl0->type.description);
cyl0->type.description = cyl.type.description;
return 1;
}
if (MATCH("tanksize", cylindersize, &cyl.type.size)) {
get_or_create_cylinder(dive, 0)->type.size = cyl.type.size;
return 1;
}
if (MATCH_STATE("presw", pressure, &cyl.type.workingpressure)) {
get_or_create_cylinder(dive, 0)->type.workingpressure = cyl.type.workingpressure;
return 1;
}
if (MATCH_STATE("press", pressure, &cyl.start)) {
get_or_create_cylinder(dive, 0)->start = cyl.start;
return 1;
}
if (MATCH_STATE("prese", pressure, &cyl.end)) {
get_or_create_cylinder(dive, 0)->end = cyl.end;
return 1;
}
return MATCH_STATE("divedate", divedate, &dive->when) ||
MATCH_STATE("entrytime", divetime, &dive->when) ||
MATCH("divetime", duration, &dive->dc.duration) ||
MATCH_STATE("depth", depth, &dive->dc.maxdepth) ||
MATCH_STATE("depthavg", depth, &dive->dc.meandepth) ||
MATCH("comments", utf8_string, &dive->notes) ||
MATCH("names.buddy", utf8_string, &dive->buddy) ||
MATCH("name.country", utf8_string, &state->country) ||
MATCH("name.city", utf8_string, &state->city) ||
MATCH_STATE("name.place", divinglog_place, dive) ||
0;
}
/*
* Uddf specifies ISO 8601 time format.
*
* There are many variations on that. This handles the useful cases.
*/
static void uddf_datetime(char *buffer, timestamp_t *when, struct parser_state *state)
{
char c;
int y, m, d, hh, mm, ss;
struct tm tm = { 0 };
int i;
i = sscanf(buffer, "%d-%d-%d%c%d:%d:%d", &y, &m, &d, &c, &hh, &mm, &ss);
if (i == 7)
goto success;
ss = 0;
if (i == 6)
goto success;
i = sscanf(buffer, "%04d%02d%02d%c%02d%02d%02d", &y, &m, &d, &c, &hh, &mm, &ss);
if (i == 7)
goto success;
ss = 0;
if (i == 6)
goto success;
bad_date:
printf("Bad date time %s\n", buffer);
return;
success:
if (c != 'T' && c != ' ')
goto bad_date;
tm.tm_year = y;
tm.tm_mon = m - 1;
tm.tm_mday = d;
tm.tm_hour = hh;
tm.tm_min = mm;
tm.tm_sec = ss;
*when = utc_mktime(&tm);
}
#define uddf_datedata(name, offset) \
static void uddf_##name(char *buffer, timestamp_t *when, struct parser_state *state) \
{ \
state->cur_tm.tm_##name = atoi(buffer) + offset; \
*when = utc_mktime(&state->cur_tm); \
}
uddf_datedata(year, 0)
uddf_datedata(mon, -1)
uddf_datedata(mday, 0)
uddf_datedata(hour, 0)
uddf_datedata(min, 0)
static int uddf_dive_match(struct dive *dive, const char *name, char *buf, struct parser_state *state)
{
return MATCH_STATE("datetime", uddf_datetime, &dive->when) ||
MATCH("diveduration", duration, &dive->dc.duration) ||
MATCH_STATE("greatestdepth", depth, &dive->dc.maxdepth) ||
MATCH_STATE("year.date", uddf_year, &dive->when) ||
MATCH_STATE("month.date", uddf_mon, &dive->when) ||
MATCH_STATE("day.date", uddf_mday, &dive->when) ||
MATCH_STATE("hour.time", uddf_hour, &dive->when) ||
MATCH_STATE("minute.time", uddf_min, &dive->when) ||
0;
}
/*
* This parses "floating point" into micro-degrees.
* We don't do exponentials etc, if somebody does
* GPS locations in that format, they are insane.
*/
static degrees_t parse_degrees(const char *buf, const char **end)
{
int sign = 1, decimals = 6, value = 0;
degrees_t ret;
while (isspace(*buf))
buf++;
switch (*buf) {
case '-':
sign = -1;
/* fallthrough */
case '+':
buf++;
}
while (isdigit(*buf)) {
value = 10 * value + *buf - '0';
buf++;
}
/* Get the first six decimals if they exist */
if (*buf == '.')
buf++;
do {
value *= 10;
if (isdigit(*buf)) {
value += *buf - '0';
buf++;
}
} while (--decimals);
/* Rounding */
switch (*buf) {
case '5' ... '9':
value++;
}
while (isdigit(*buf))
buf++;
*end = buf;
ret.udeg = value * sign;
return ret;
}
static void gps_lat(char *buffer, struct dive *dive, struct parser_state *state)
{
const char *end;
location_t location = { };
struct dive_site *ds = get_dive_site_for_dive(dive);
location.lat = parse_degrees(buffer, &end);
if (!ds) {
add_dive_to_dive_site(dive, create_dive_site_with_gps(NULL, &location, state->sites));
} else {
if (ds->location.lat.udeg && ds->location.lat.udeg != location.lat.udeg)
fprintf(stderr, "Oops, changing the latitude of existing dive site id %8x name %s; not good\n", ds->uuid, ds->name ?: "(unknown)");
ds->location.lat = location.lat;
}
}
static void gps_long(char *buffer, struct dive *dive, struct parser_state *state)
{
const char *end;
location_t location = { };
struct dive_site *ds = get_dive_site_for_dive(dive);
location.lon = parse_degrees(buffer, &end);
if (!ds) {
add_dive_to_dive_site(dive, create_dive_site_with_gps(NULL, &location, state->sites));
} else {
if (ds->location.lon.udeg && ds->location.lon.udeg != location.lon.udeg)
fprintf(stderr, "Oops, changing the longitude of existing dive site id %8x name %s; not good\n", ds->uuid, ds->name ?: "(unknown)");
ds->location.lon = location.lon;
}
}
/* We allow either spaces or a comma between the decimal degrees */
void parse_location(const char *buffer, location_t *loc)
{
const char *end;
loc->lat = parse_degrees(buffer, &end);
if (*end == ',') end++;
loc->lon = parse_degrees(end, &end);
}
static void gps_location(char *buffer, struct dive_site *ds)
{
parse_location(buffer, &ds->location);
}
static void gps_in_dive(char *buffer, struct dive *dive, struct parser_state *state)
{
struct dive_site *ds = dive->dive_site;
location_t location;
parse_location(buffer, &location);
if (!ds) {
// check if we have a dive site within 20 meters of that gps fix
ds = get_dive_site_by_gps_proximity(&location, 20, state->sites);
if (ds) {
// found a site nearby; in case it turns out this one had a different name let's
// remember the original coordinates so we can create the correct dive site later
state->cur_location = location;
} else {
ds = create_dive_site_with_gps("", &location, state->sites);
}
add_dive_to_dive_site(dive, ds);
} else {
if (dive_site_has_gps_location(ds) &&
has_location(&location) && !same_location(&ds->location, &location)) {
// Houston, we have a problem
fprintf(stderr, "dive site uuid in dive, but gps location (%10.6f/%10.6f) different from dive location (%10.6f/%10.6f)\n",
ds->location.lat.udeg / 1000000.0, ds->location.lon.udeg / 1000000.0,
location.lat.udeg / 1000000.0, location.lon.udeg / 1000000.0);
char *coords = printGPSCoordsC(&location);
ds->notes = add_to_string(ds->notes, translate("gettextFromC", "multiple GPS locations for this dive site; also %s\n"), coords);
free(coords);
} else {
ds->location = location;
}
}
}
static void gps_picture_location(char *buffer, struct picture *pic)
{
parse_location(buffer, &pic->location);
}
/* We're in the top-level dive xml. Try to convert whatever value to a dive value */
static void try_to_fill_dive(struct dive *dive, const char *name, char *buf, struct parser_state *state)
{
char *hash = NULL;
cylinder_t *cyl = dive->cylinders.nr > 0 ? get_cylinder(dive, dive->cylinders.nr - 1) : NULL;
pressure_t p;
start_match("dive", name, buf);
switch (state->import_source) {
case DIVINGLOG:
if (divinglog_dive_match(dive, name, buf, state))
return;
break;
case UDDF:
if (uddf_dive_match(dive, name, buf, state))
return;
break;
default:
break;
}
if (MATCH_STATE("divesiteid", dive_site, dive))
return;
if (MATCH("number", get_index, &dive->number))
return;
if (MATCH("tags", divetags, &dive->tag_list))
return;
if (MATCH("tripflag", get_notrip, &dive->notrip))
return;
if (MATCH_STATE("date", divedate, &dive->when))
return;
if (MATCH_STATE("time", divetime, &dive->when))
return;
if (MATCH_STATE("datetime", divedatetime, &dive->when))
return;
/*
* Legacy format note: per-dive depths and duration get saved
* in the first dive computer entry
*/
if (match_dc_data_fields(&dive->dc, name, buf, state))
return;
if (MATCH("filename.picture", utf8_string, &state->cur_picture->filename))
return;
if (MATCH("offset.picture", offsettime, &state->cur_picture->offset))
return;
if (MATCH("gps.picture", gps_picture_location, state->cur_picture))
return;
if (MATCH("hash.picture", utf8_string, &hash)) {
/* Legacy -> ignore. */
free(hash);
return;
}
if (MATCH_STATE("cylinderstartpressure", pressure, &p)) {
get_or_create_cylinder(dive, 0)->start = p;
return;
}
if (MATCH_STATE("cylinderendpressure", pressure, &p)) {
get_or_create_cylinder(dive, 0)->end = p;
return;
}
if (MATCH_STATE("gps", gps_in_dive, dive))
return;
if (MATCH_STATE("Place", gps_in_dive, dive))
return;
if (MATCH_STATE("latitude", gps_lat, dive))
return;
if (MATCH_STATE("sitelat", gps_lat, dive))
return;
if (MATCH_STATE("lat", gps_lat, dive))
return;
if (MATCH_STATE("longitude", gps_long, dive))
return;
if (MATCH_STATE("sitelon", gps_long, dive))
return;
if (MATCH_STATE("lon", gps_long, dive))
return;
if (MATCH_STATE("location", add_dive_site, dive))
return;
if (MATCH_STATE("name.dive", add_dive_site, dive))
return;
if (MATCH("suit", utf8_string, &dive->suit))
return;
if (MATCH("divesuit", utf8_string, &dive->suit))
return;
if (MATCH("notes", utf8_string, &dive->notes))
return;
if (MATCH("divemaster", utf8_string, &dive->divemaster))
return;
if (MATCH("buddy", utf8_string, &dive->buddy))
return;
if (MATCH("watersalinity", salinity, &dive->user_salinity))
return;
if (MATCH("rating.dive", get_rating, &dive->rating))
return;
if (MATCH("visibility.dive", get_rating, &dive->visibility))
return;
if (MATCH("wavesize.dive", get_rating, &dive->wavesize))
return;
if (MATCH("current.dive", get_rating, &dive->current))
return;
if (MATCH("surge.dive", get_rating, &dive->surge))
return;
if (MATCH("chill.dive", get_rating, &dive->chill))
return;
if (MATCH_STATE("airpressure.dive", pressure, &dive->surface_pressure))
return;
if (MATCH("description.weightsystem", utf8_string, &dive->weightsystems.weightsystems[dive->weightsystems.nr - 1].description))
return;
if (MATCH_STATE("weight.weightsystem", weight, &dive->weightsystems.weightsystems[dive->weightsystems.nr - 1].weight))
return;
if (MATCH_STATE("weight", weight, &dive->weightsystems.weightsystems[dive->weightsystems.nr - 1].weight))
return;
if (cyl) {
if (MATCH("size.cylinder", cylindersize, &cyl->type.size))
return;
if (MATCH_STATE("workpressure.cylinder", pressure, &cyl->type.workingpressure))
return;
if (MATCH("description.cylinder", utf8_string, &cyl->type.description))
return;
if (MATCH_STATE("start.cylinder", pressure, &cyl->start))
return;
if (MATCH_STATE("end.cylinder", pressure, &cyl->end))
return;
if (MATCH_STATE("use.cylinder", cylinder_use, &cyl->cylinder_use))
return;
if (MATCH_STATE("depth.cylinder", depth, &cyl->depth))
return;
if (MATCH_STATE("o2", gasmix, &cyl->gasmix.o2))
return;
if (MATCH_STATE("o2percent", gasmix, &cyl->gasmix.o2))
return;
if (MATCH("n2", gasmix_nitrogen, &cyl->gasmix))
return;
if (MATCH_STATE("he", gasmix, &cyl->gasmix.he))
return;
}
if (MATCH_STATE("air.divetemperature", temperature, &dive->airtemp))
return;
if (MATCH_STATE("water.divetemperature", temperature, &dive->watertemp))
return;
nonmatch("dive", name, buf);
}
/* We're in the top-level trip xml. Try to convert whatever value to a trip value */
static void try_to_fill_trip(dive_trip_t **dive_trip_p, const char *name, char *buf, struct parser_state *state)
{
start_match("trip", name, buf);
dive_trip_t *dive_trip = *dive_trip_p;
if (MATCH("location", utf8_string, &dive_trip->location))
return;
if (MATCH("notes", utf8_string, &dive_trip->notes))
return;
nonmatch("trip", name, buf);
}
/* We're processing a divesite entry - try to fill the components */
static void try_to_fill_dive_site(struct dive_site **ds_p, const char *name, char *buf)
{
start_match("divesite", name, buf);
struct dive_site *ds = *ds_p;
if (ds->taxonomy.category == NULL)
ds->taxonomy.category = alloc_taxonomy();
if (MATCH("uuid", hex_value, &ds->uuid))
return;
if (MATCH("name", utf8_string, &ds->name))
return;
if (MATCH("description", utf8_string, &ds->description))
return;
if (MATCH("notes", utf8_string, &ds->notes))
return;
if (MATCH("gps", gps_location, ds))
return;
if (MATCH("cat.geo", get_index, (int *)&ds->taxonomy.category[ds->taxonomy.nr].category))
return;
if (MATCH("origin.geo", get_index, (int *)&ds->taxonomy.category[ds->taxonomy.nr].origin))
return;
if (MATCH("value.geo", utf8_string, &ds->taxonomy.category[ds->taxonomy.nr].value)) {
if (ds->taxonomy.nr < TC_NR_CATEGORIES)
ds->taxonomy.nr++;
return;
}
nonmatch("divesite", name, buf);
}
static bool entry(const char *name, char *buf, struct parser_state *state)
{
if (!strncmp(name, "version.program", sizeof("version.program") - 1) ||
!strncmp(name, "version.divelog", sizeof("version.divelog") - 1)) {
last_xml_version = atoi(buf);
report_datafile_version(last_xml_version);
}
if (state->in_userid) {
return true;
}
if (state->in_settings) {
try_to_fill_dc_settings(name, buf, state);
try_to_match_autogroup(name, buf);
return true;
}
if (state->cur_dive_site) {
try_to_fill_dive_site(&state->cur_dive_site, name, buf);
return true;
}
if (!state->cur_event.deleted) {
try_to_fill_event(name, buf, state);
return true;
}
if (state->cur_sample) {
try_to_fill_sample(state->cur_sample, name, buf, state);
return true;
}
if (state->cur_dc) {
try_to_fill_dc(state->cur_dc, name, buf, state);
return true;
}
if (state->cur_dive) {
try_to_fill_dive(state->cur_dive, name, buf, state);
return true;
}
if (state->cur_trip) {
try_to_fill_trip(&state->cur_trip, name, buf, state);
return true;
}
return true;
}
static const char *nodename(xmlNode *node, char *buf, int len)
{
int levels = 2;
char *p = buf;
if (!node || (node->type != XML_CDATA_SECTION_NODE && !node->name)) {
return "root";
}
if (node->type == XML_CDATA_SECTION_NODE || (node->parent && !strcmp((const char *)node->name, "text")))
node = node->parent;
/* Make sure it's always NUL-terminated */
p[--len] = 0;
for (;;) {
const char *name = (const char *)node->name;
char c;
while ((c = *name++) != 0) {
/* Cheaper 'tolower()' for ASCII */
c = (c >= 'A' && c <= 'Z') ? c - 'A' + 'a' : c;
*p++ = c;
if (!--len)
return buf;
}
*p = 0;
node = node->parent;
if (!node || !node->name)
return buf;
*p++ = '.';
if (!--len)
return buf;
if (!--levels)
return buf;
}
}
#define MAXNAME 32
static bool visit_one_node(xmlNode *node, struct parser_state *state)
{
xmlChar *content;
char buffer[MAXNAME];
const char *name;
content = node->content;
if (!content || xmlIsBlankNode(node))
return true;
name = nodename(node, buffer, sizeof(buffer));
return entry(name, (char *)content, state);
}
static bool traverse(xmlNode *root, struct parser_state *state);
static bool traverse_properties(xmlNode *node, struct parser_state *state)
{
xmlAttr *p;
bool ret = true;
for (p = node->properties; p; p = p->next)
if ((ret = traverse(p->children, state)) == false)
break;
return ret;
}
static bool visit(xmlNode *n, struct parser_state *state)
{
return visit_one_node(n, state) && traverse_properties(n, state) && traverse(n->children, state);
}
static void DivingLog_importer(struct parser_state *state)
{
state->import_source = DIVINGLOG;
/*
* Diving Log units are really strange.
*
* Temperatures are in C, except in samples,
* when they are in Fahrenheit. Depths are in
* meters, an dpressure is in PSI in the samples,
* but in bar when it comes to working pressure.
*
* Crazy f*%^ morons.
*/
state->xml_parsing_units = SI_units;
}
static void uddf_importer(struct parser_state *state)
{
state->import_source = UDDF;
state->xml_parsing_units = SI_units;
state->xml_parsing_units.pressure = PASCALS;
state->xml_parsing_units.temperature = KELVIN;
}
typedef void (*parser_func)(struct parser_state *);
/*
* I'm sure this could be done as some fancy DTD rules.
* It's just not worth the headache.
*/
static struct nesting {
const char *name;
parser_func start, end;
} nesting[] = {
{ "divecomputerid", dc_settings_start, dc_settings_end },
{ "settings", settings_start, settings_end },
{ "site", dive_site_start, dive_site_end },
{ "dive", dive_start, dive_end },
{ "Dive", dive_start, dive_end },
{ "trip", trip_start, trip_end },
{ "sample", sample_start, sample_end },
{ "waypoint", sample_start, sample_end },
{ "SAMPLE", sample_start, sample_end },
{ "reading", sample_start, sample_end },
{ "event", event_start, event_end },
{ "mix", (parser_func)cylinder_start, (parser_func)cylinder_end },
{ "gasmix", (parser_func)cylinder_start, (parser_func)cylinder_end },
{ "cylinder", (parser_func)cylinder_start, (parser_func)cylinder_end },
{ "weightsystem", ws_start, ws_end },
{ "divecomputer", divecomputer_start, divecomputer_end },
{ "P", sample_start, sample_end },
{ "userid", userid_start, userid_stop},
{ "picture", picture_start, picture_end },
{ "extradata", extra_data_start, extra_data_end },
/* Import type recognition */
{ "Divinglog", DivingLog_importer },
{ "uddf", uddf_importer },
{ NULL, }
};
static bool traverse(xmlNode *root, struct parser_state *state)
{
xmlNode *n;
bool ret = true;
for (n = root; n; n = n->next) {
struct nesting *rule = nesting;
if (!n->name) {
if ((ret = visit(n, state)) == false)
break;
continue;
}
do {
if (!strcmp(rule->name, (const char *)n->name))
break;
rule++;
} while (rule->name);
if (rule->start)
rule->start(state);
if ((ret = visit(n, state)) == false)
break;
if (rule->end)
rule->end(state);
}
return ret;
}
/* Per-file reset */
static void reset_all(struct parser_state *state)
{
/*
* We reset the units for each file. You'd think it was
* a per-dive property, but I'm not going to trust people
* to do per-dive setup. If the xml does have per-dive
* data within one file, we might have to reset it per
* dive for that format.
*/
state->xml_parsing_units = SI_units;
state->import_source = UNKNOWN;
}
/* divelog.de sends us xml files that claim to be iso-8859-1
* but once we decode the HTML encoded characters they turn
* into UTF-8 instead. So skip the incorrect encoding
* declaration and decode the HTML encoded characters */
static const char *preprocess_divelog_de(const char *buffer)
{
char *ret = strstr(buffer, "<DIVELOGSDATA>");
if (ret) {
xmlParserCtxtPtr ctx;
char buf[] = "";
size_t i;
for (i = 0; i < strlen(ret); ++i)
if (!isascii(ret[i]))
return buffer;
ctx = xmlCreateMemoryParserCtxt(buf, sizeof(buf));
ret = (char *)xmlStringLenDecodeEntities(ctx, (xmlChar *)ret, strlen(ret), XML_SUBSTITUTE_REF, 0, 0, 0);
return ret;
}
return buffer;
}
int parse_xml_buffer(const char *url, const char *buffer, int size,
struct dive_table *table, struct trip_table *trips, struct dive_site_table *sites,
const char **params)
{
UNUSED(size);
xmlDoc *doc;
const char *res = preprocess_divelog_de(buffer);
int ret = 0;
struct parser_state state;
init_parser_state(&state);
state.target_table = table;
state.trips = trips;
state.sites = sites;
doc = xmlReadMemory(res, strlen(res), url, NULL, 0);
if (!doc)
doc = xmlReadMemory(res, strlen(res), url, "latin1", 0);
if (res != buffer)
free((char *)res);
if (!doc)
return report_error(translate("gettextFromC", "Failed to parse '%s'"), url);
reset_all(&state);
dive_start(&state);
doc = test_xslt_transforms(doc, params);
if (!traverse(xmlDocGetRootElement(doc), &state)) {
// we decided to give up on parsing... why?
ret = -1;
}
dive_end(&state);
free_parser_state(&state);
xmlFreeDoc(doc);
return ret;
}
/*
* Parse a unsigned 32-bit integer in little-endian mode,
* that is seconds since Jan 1, 2000.
*/
static timestamp_t parse_dlf_timestamp(unsigned char *buffer)
{
timestamp_t offset;
offset = buffer[3];
offset = (offset << 8) + buffer[2];
offset = (offset << 8) + buffer[1];
offset = (offset << 8) + buffer[0];
// Jan 1, 2000 is 946684800 seconds after Jan 1, 1970, which is
// the Unix epoch date that "timestamp_t" uses.
return offset + 946684800;
}
int parse_dlf_buffer(unsigned char *buffer, size_t size, struct dive_table *table, struct trip_table *trips, struct dive_site_table *sites)
{
unsigned char *ptr = buffer;
unsigned char event;
bool found;
unsigned int time = 0;
int i;
char serial[6];
struct battery_status {
uint16_t volt1;
uint8_t percent1;
uint16_t volt2;
uint8_t percent2;
};
struct battery_status battery_start = {0, 0, 0, 0};
struct battery_status battery_end = {0, 0, 0, 0};
uint16_t o2_sensor_calibration_values[4] = {0};
cylinder_t *cyl;
struct parser_state state;
init_parser_state(&state);
state.target_table = table;
state.trips = trips;
state.sites = sites;
// Check for the correct file magic
if (ptr[0] != 'D' || ptr[1] != 'i' || ptr[2] != 'v' || ptr[3] != 'E')
return -1;
dive_start(&state);
divecomputer_start(&state);
state.cur_dc->model = strdup("DLF import");
// (ptr[7] << 8) + ptr[6] Is "Serial"
snprintf(serial, sizeof(serial), "%d", (ptr[7] << 8) + ptr[6]);
state.cur_dc->serial = strdup(serial);
state.cur_dc->when = parse_dlf_timestamp(ptr + 8);
state.cur_dive->when = state.cur_dc->when;
state.cur_dc->duration.seconds = ((ptr[14] & 0xFE) << 16) + (ptr[13] << 8) + ptr[12];
// ptr[14] >> 1 is scrubber used in %
// 3 bit dive type
switch((ptr[15] & 0x30) >> 3) {
case 0: // unknown
case 1:
state.cur_dc->divemode = OC;
break;
case 2:
state.cur_dc->divemode = CCR;
break;
case 3:
state.cur_dc->divemode = CCR; // mCCR
break;
case 4:
state.cur_dc->divemode = FREEDIVE;
break;
case 5:
state.cur_dc->divemode = OC; // Gauge
break;
case 6:
state.cur_dc->divemode = PSCR; // ASCR
break;
case 7:
state.cur_dc->divemode = PSCR;
break;
}
state.cur_dc->maxdepth.mm = ((ptr[21] << 8) + ptr[20]) * 10;
state.cur_dc->surface_pressure.mbar = ((ptr[25] << 8) + ptr[24]) / 10;
// Declare initial mix as first cylinder
cyl = get_or_create_cylinder(state.cur_dive, 0);
cyl->gasmix.o2.permille = ptr[26] * 10;
cyl->gasmix.he.permille = ptr[27] * 10;
/* Done with parsing what we know about the dive header */
ptr += 32;
// We're going to interpret ppO2 saved as a sensor value in these modes.
if (state.cur_dc->divemode == CCR || state.cur_dc->divemode == PSCR)
state.cur_dc->no_o2sensors = 1;
for (; ptr < buffer + size; ptr += 16) {
time = ((ptr[0] >> 4) & 0x0f) +
((ptr[1] << 4) & 0xff0) +
((ptr[2] << 12) & 0x1f000);
event = ptr[0] & 0x0f;
switch (event) {
case 0:
/* Regular sample */
sample_start(&state);
state.cur_sample->time.seconds = time;
state.cur_sample->depth.mm = ((ptr[5] << 8) + ptr[4]) * 10;
// Crazy precision on these stored values...
// Only store value if we're in CCR/PSCR mode,
// because we rather calculate ppo2 our selfs.
if (state.cur_dc->divemode == CCR || state.cur_dc->divemode == PSCR)
state.cur_sample->o2sensor[0].mbar = ((ptr[7] << 8) + ptr[6]) / 10;
// In some test files, ndl / tts / temp is bogus if this bits are 1
// flag bits in ptr[11] & 0xF0 is probably involved to,
if ((ptr[2] >> 5) != 1) {
// NDL in minutes, 10 bit
state.cur_sample->ndl.seconds = (((ptr[9] & 0x03) << 8) + ptr[8]) * 60;
// TTS in minutes, 10 bit
state.cur_sample->tts.seconds = (((ptr[10] & 0x0F) << 6) + (ptr[9] >> 2)) * 60;
// Temperature in 1/10 C, 10 bit signed
state.cur_sample->temperature.mkelvin = ((ptr[11] & 0x20) ? -1 : 1) * (((ptr[11] & 0x1F) << 4) + (ptr[10] >> 4)) * 100 + ZERO_C_IN_MKELVIN;
}
state.cur_sample->stopdepth.mm = ((ptr[13] << 8) + ptr[12]) * 10;
if (state.cur_sample->stopdepth.mm)
state.cur_sample->in_deco = true;
//ptr[14] is helium content, always zero?
//ptr[15] is setpoint, what the computer thinks you should aim for?
sample_end(&state);
break;
case 1: /* dive event */
case 2: /* automatic parameter change */
case 3: /* diver error */
case 4: /* internal error */
case 5: /* device activity log */
//Event 18 is a button press. Lets ingore that event.
if (ptr[4] == 18)
continue;
event_start(&state);
state.cur_event.time.seconds = time;
switch (ptr[4]) {
case 1:
strcpy(state.cur_event.name, "Setpoint Manual");
state.cur_event.value = ptr[6];
sample_start(&state);
state.cur_sample->setpoint.mbar = ptr[6] * 10;
sample_end(&state);
break;
case 2:
strcpy(state.cur_event.name, "Setpoint Auto");
state.cur_event.value = ptr[6];
sample_start(&state);
state.cur_sample->setpoint.mbar = ptr[6] * 10;
sample_end(&state);
switch (ptr[7]) {
case 0:
strcat(state.cur_event.name, " Manual");
break;
case 1:
strcat(state.cur_event.name, " Auto Start");
break;
case 2:
strcat(state.cur_event.name, " Auto Hypox");
break;
case 3:
strcat(state.cur_event.name, " Auto Timeout");
break;
case 4:
strcat(state.cur_event.name, " Auto Ascent");
break;
case 5:
strcat(state.cur_event.name, " Auto Stall");
break;
case 6:
strcat(state.cur_event.name, " Auto SP Low");
break;
default:
break;
}
break;
case 3:
// obsolete
strcpy(state.cur_event.name, "OC");
break;
case 4:
// obsolete
strcpy(state.cur_event.name, "CCR");
break;
case 5:
strcpy(state.cur_event.name, "gaschange");
state.cur_event.type = SAMPLE_EVENT_GASCHANGE2;
state.cur_event.value = ptr[7] << 8 ^ ptr[6];
found = false;
for (i = 0; i < state.cur_dive->cylinders.nr; ++i) {
const cylinder_t *cyl = get_cylinder(state.cur_dive, i);
if (cyl->gasmix.o2.permille == ptr[6] * 10 && cyl->gasmix.he.permille == ptr[7] * 10) {
found = true;
break;
}
}
if (!found) {
cyl = cylinder_start(&state);
cyl->gasmix.o2.permille = ptr[6] * 10;
cyl->gasmix.he.permille = ptr[7] * 10;
cylinder_end(&state);
state.cur_event.gas.index = state.cur_dive->cylinders.nr - 1;
} else {
state.cur_event.gas.index = i;
}
break;
case 6:
strcpy(state.cur_event.name, "Start");
break;
case 7:
strcpy(state.cur_event.name, "Too Fast");
break;
case 8:
strcpy(state.cur_event.name, "Above Ceiling");
break;
case 9:
strcpy(state.cur_event.name, "Toxic");
break;
case 10:
strcpy(state.cur_event.name, "Hypox");
break;
case 11:
strcpy(state.cur_event.name, "Critical");
break;
case 12:
strcpy(state.cur_event.name, "Sensor Disabled");
break;
case 13:
strcpy(state.cur_event.name, "Sensor Enabled");
break;
case 14:
strcpy(state.cur_event.name, "O2 Backup");
break;
case 15:
strcpy(state.cur_event.name, "Peer Down");
break;
case 16:
strcpy(state.cur_event.name, "HS Down");
break;
case 17:
strcpy(state.cur_event.name, "Inconsistent");
break;
case 18:
// key pressed - It should never get in here
// as we ingored it at the parent 'case 5'.
break;
case 19:
// obsolete
strcpy(state.cur_event.name, "SCR");
break;
case 20:
strcpy(state.cur_event.name, "Above Stop");
break;
case 21:
strcpy(state.cur_event.name, "Safety Miss");
break;
case 22:
strcpy(state.cur_event.name, "Fatal");
break;
case 23:
strcpy(state.cur_event.name, "gaschange");
state.cur_event.type = SAMPLE_EVENT_GASCHANGE2;
state.cur_event.value = ptr[7] << 8 ^ ptr[6];
event_end(&state);
break;
case 24:
strcpy(state.cur_event.name, "gaschange");
state.cur_event.type = SAMPLE_EVENT_GASCHANGE2;
state.cur_event.value = ptr[7] << 8 ^ ptr[6];
event_end(&state);
// This is both a mode change and a gas change event
// so we encode it as two separate events.
event_start(&state);
strcpy(state.cur_event.name, "Change Mode");
switch (ptr[8]) {
case 1:
strcat(state.cur_event.name, ": OC");
break;
case 2:
strcat(state.cur_event.name, ": CCR");
break;
case 3:
strcat(state.cur_event.name, ": mCCR");
break;
case 4:
strcat(state.cur_event.name, ": Free");
break;
case 5:
strcat(state.cur_event.name, ": Gauge");
break;
case 6:
strcat(state.cur_event.name, ": ASCR");
break;
case 7:
strcat(state.cur_event.name, ": PSCR");
break;
default:
break;
}
event_end(&state);
break;
case 25:
// uint16_t solenoid_bitmap = (ptr[7] << 8) + (ptr[6] << 0);
// uint32_t time = (ptr[11] << 24) + (ptr[10] << 16) + (ptr[9] << 8) + (ptr[8] << 0);
snprintf(state.cur_event.name, MAX_EVENT_NAME, "CCR O2 solenoid %s", ptr[12] ? "opened": "closed");
break;
case 26:
strcpy(state.cur_event.name, "User mark");
break;
case 27:
snprintf(state.cur_event.name, MAX_EVENT_NAME, "%sGF Switch (%d/%d)", ptr[6] ? "Bailout, ": "", ptr[7], ptr[8]);
break;
case 28:
strcpy(state.cur_event.name, "Peer Up");
break;
case 29:
strcpy(state.cur_event.name, "HS Up");
break;
case 30:
snprintf(state.cur_event.name, MAX_EVENT_NAME, "CNS %d%%", ptr[6]);
break;
default:
// No values above 30 had any description
break;
}
event_end(&state);
break;
case 6:
/* device configuration */
switch (((ptr[3] & 0x7f) << 3) + ((ptr[2] & 0xe0) >> 5)) {
// Buffer to print extra string into
char config_buf[256];
// Local variables to temporary decode into
struct tm tm;
char *device;
char *deep_stops;
case 0: // TEST_CCR_FULL_1
utc_mkdate(parse_dlf_timestamp(ptr + 12), &tm);
snprintf(config_buf, sizeof(config_buf), "START=%04u-%02u-%02u %02u:%02u:%02u,TEST=%02X%02X%02X%02X,RESULT=%02X%02X%02X%02X", tm.tm_year, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, ptr[7], ptr[6], ptr[5], ptr[4], ptr[11], ptr[10], ptr[9], ptr[8]);
add_extra_data(state.cur_dc, "TEST_CCR_FULL_1", config_buf);
break;
case 1: // TEST_CCR_PARTIAL_1
utc_mkdate(parse_dlf_timestamp(ptr + 12), &tm);
snprintf(config_buf, sizeof(config_buf), "START=%04u-%02u-%02u %02u:%02u:%02u,TEST=%02X%02X%02X%02X,RESULT=%02X%02X%02X%02X", tm.tm_year, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, ptr[7], ptr[6], ptr[5], ptr[4], ptr[11], ptr[10], ptr[9], ptr[8]);
add_extra_data(state.cur_dc, "TEST_CCR_PARTIAL_1", config_buf);
break;
case 2: // CFG_OXYGEN_CALIBRATION
utc_mkdate(parse_dlf_timestamp(ptr + 12), &tm);
o2_sensor_calibration_values[0] = (ptr[5] << 8) + ptr[4];
o2_sensor_calibration_values[1] = (ptr[7] << 8) + ptr[6];
o2_sensor_calibration_values[2] = (ptr[9] << 8) + ptr[8];
o2_sensor_calibration_values[3] = (ptr[11] << 8) + ptr[10];
snprintf(config_buf, sizeof(config_buf), "%04u,%04u,%04u,%04u,TIME=%04u-%02u-%02u %02u:%02u:%02u", o2_sensor_calibration_values[0], o2_sensor_calibration_values[1], o2_sensor_calibration_values[2], o2_sensor_calibration_values[3], tm.tm_year, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);
add_extra_data(state.cur_dc, "CFG_OXYGEN_CALIBRATION", config_buf);
break;
case 3: // CFG_SERIAL
snprintf(config_buf, sizeof(config_buf), "PRODUCT=%c%c%c%c,SERIAL=%c%c%c%c%c%c%c%c", ptr[4], ptr[5], ptr[6], ptr[7], ptr[8], ptr[9], ptr[10], ptr[11], ptr[12], ptr[13], ptr[14], ptr[15]);
add_extra_data(state.cur_dc, "CFG_SERIAL", config_buf);
break;
case 4: // CFG_CONFIG_DECO
switch ((ptr[5] & 0xC0) >> 6) {
case 0:
deep_stops = "none";
break;
case 1:
deep_stops = "Pyle";
break;
case 2:
deep_stops = "Sladek";
break;
default:
deep_stops = "unknown";
break;
}
snprintf(config_buf, sizeof(config_buf), "%s,%s,%s,safety stop required=%s,last_stop=%s,deco_algorithm=%s,stop_rounding=%u,deep_stops=%s", (ptr[4] & 0x80) ? "imperial" : "metric", (ptr[4] & 0x40) ? "sea" : "fresh", (ptr[4] & 0x30) ? "stops" : "ceiling", (ptr[4] & 0x10) ? "yes" : "no", (ptr[4] & 0x08) ? "6m" : "3m", (ptr[4] & 0x04) ? "VPM" : "Buhlmann+GF", (ptr[4] & 0x03) ? (ptr[4] & 0x03) * 30 : 1, deep_stops);
add_extra_data(state.cur_dc, "CFG_CONFIG_DECO part 1", config_buf);
snprintf(config_buf, sizeof(config_buf), "deep_stop_len=%u min,gas_switch_len=%u min,gf_low=%u,gf_high=%u,gf_low_bailout=%u,gf_high_bailout=%u,ppO2_low=%4.2f,ppO2_high=%4.2f", (ptr[5] & 0x38) >> 3, ptr[5] & 0x07, ptr[6], ptr[7], ptr[8], ptr[9], ptr[10] / 100.0f, ptr[11] / 100.0f);
add_extra_data(state.cur_dc, "CFG_CONFIG_DECO part 2", config_buf);
snprintf(config_buf, sizeof(config_buf), "alarm_global=%u,alarm_cns=%u,alarm_ppO2=%u,alarm_ceiling=%u,alarm_stop_miss=%u,alarm_decentrate=%u,alarm_ascentrate=%u", (ptr[12] & 0x80) >> 7, (ptr[12] & 0x40) >> 6, (ptr[12] & 0x20) >> 5, (ptr[12] & 0x10) >> 4, (ptr[12] & 0x08) >> 3, (ptr[12] & 0x04) >> 2, (ptr[12] & 0x02) >> 1);
add_extra_data(state.cur_dc, "CFG_CONFIG_DECO part 3", config_buf);
break;
case 5: // CFG_VERSION
switch (ptr[4]) {
case 0:
device = "FREEDOM";
break;
case 1:
device = "LIBERTY_CU";
break;
case 2:
device = "LIBERTY_HS";
break;
default:
device = "UNKNOWN";
break;
}
snprintf(config_buf, sizeof(config_buf), "DEVICE=%s,HW=%d.%d,FW=%d.%d.%d.%d,FLAGS=%04X", device, ptr[5], ptr[6], ptr[7], ptr[8], ptr[9], (ptr[15] << 24) + (ptr[14] << 16) + (ptr[13] << 8) + (ptr[12]), (ptr[11] << 8) + ptr[10]);
add_extra_data(state.cur_dc, "CFG_VERSION", config_buf);
break;
}
break;
case 7:
/* measure record */
switch (ptr[2] >> 5) {
case 1:
/* Record starting battery level */
if (!battery_start.volt1 && !battery_start.volt2) {
battery_start.volt1 = (ptr[5] << 8) + ptr[4];
battery_start.percent1 = ptr[6];
battery_start.volt2 = (ptr[9] << 8) + ptr[8];
battery_start.percent2 = ptr[10];
}
/* Measure Battery, recording the last reading only */
battery_end.volt1 = (ptr[5] << 8) + ptr[4];
battery_end.percent1 = ptr[6];
battery_end.volt2 = (ptr[9] << 8) + ptr[8];
battery_end.percent2 = ptr[10];
break;
case 2:
/* Measure He */
//printf("%ds he2 cells(0.01 mV): %d %d\n", time, (ptr[5] << 8) + ptr[4], (ptr[9] << 8) + ptr[8]);
break;
case 3:
/* Measure Oxygen */
//printf("%d s: o2 cells(0.01 mV): %d %d %d %d\n", time, (ptr[5] << 8) + ptr[4], (ptr[7] << 8) + ptr[6], (ptr[9] << 8) + ptr[8], (ptr[11] << 8) + ptr[10]);
// [Pa/mV] coeficient O2
// 100 Pa == 1 mbar
sample_start(&state);
state.cur_sample->time.seconds = time;
state.cur_sample->o2sensor[0].mbar = ( ((ptr[5] << 8) + ptr[4]) * o2_sensor_calibration_values[0]) / 10000;
state.cur_sample->o2sensor[1].mbar = ( ((ptr[7] << 8) + ptr[6]) * o2_sensor_calibration_values[1]) / 10000;
state.cur_sample->o2sensor[2].mbar = ( ((ptr[9] << 8) + ptr[8]) * o2_sensor_calibration_values[2]) / 10000;
// Subsurface only handles 3 o2 sensors.
//state.cur_sample->o2sensor[3].mbar = ( ((ptr[11] << 8) + ptr[10]) * o2_sensor_calibration_values[3]) / 10000;
sample_end(&state);
break;
case 4:
/* Measure GPS */
state.cur_location.lat.udeg = (int)((ptr[7] << 24) + (ptr[6] << 16) + (ptr[5] << 8) + (ptr[4] << 0));
state.cur_location.lon.udeg = (int)((ptr[11] << 24) + (ptr[10] << 16) + (ptr[9] << 8) + (ptr[8] << 0));
add_dive_to_dive_site(state.cur_dive, create_dive_site_with_gps("DLF imported", &state.cur_location, state.sites));
break;
default:
break;
}
break;
case 8:
/* Deco event */
break;
default:
/* Unknown... */
break;
}
}
/* Recording the starting battery status to extra data */
if (battery_start.volt1) {
size_t stringsize = snprintf(NULL, 0, "%dmV (%d%%)", battery_start.volt1, battery_start.percent1) + 1;
char *ptr = malloc(size);
if (ptr) {
snprintf(ptr, stringsize, "%dmV (%d%%)", battery_start.volt1, battery_start.percent1);
add_extra_data(state.cur_dc, "Battery 1 (start)", ptr);
free(ptr);
}
stringsize = snprintf(NULL, 0, "%dmV (%d%%)", battery_start.volt2, battery_start.percent2) + 1;
ptr = malloc(stringsize);
if (ptr) {
snprintf(ptr, stringsize, "%dmV (%d%%)", battery_start.volt2, battery_start.percent2);
add_extra_data(state.cur_dc, "Battery 2 (start)", ptr);
free(ptr);
}
}
/* Recording the ending battery status to extra data */
if (battery_end.volt1) {
size_t stringsize = snprintf(NULL, 0, "%dmV (%d%%)", battery_end.volt1, battery_end.percent1) + 1;
char *ptr = malloc(stringsize);
if (ptr) {
snprintf(ptr, stringsize, "%dmV (%d%%)", battery_end.volt1, battery_end.percent1);
add_extra_data(state.cur_dc, "Battery 1 (end)", ptr);
free(ptr);
}
stringsize = snprintf(NULL, 0, "%dmV (%d%%)", battery_end.volt2, battery_end.percent2) + 1;
ptr = malloc(stringsize);
if (ptr) {
snprintf(ptr, stringsize, "%dmV (%d%%)", battery_end.volt2, battery_end.percent2);
add_extra_data(state.cur_dc, "Battery 2 (end)", ptr);
free(ptr);
}
}
divecomputer_end(&state);
dive_end(&state);
free_parser_state(&state);
return 0;
}
void parse_xml_init(void)
{
LIBXML_TEST_VERSION
}
void parse_xml_exit(void)
{
xmlCleanupParser();
}
static struct xslt_files {
const char *root;
const char *file;
const char *attribute;
} xslt_files[] = {
{ "SUUNTO", "SuuntoSDM.xslt", NULL },
{ "Dive", "SuuntoDM4.xslt", "xmlns" },
{ "Dive", "shearwater.xslt", "version" },
{ "JDiveLog", "jdivelog2subsurface.xslt", NULL },
{ "dives", "MacDive.xslt", NULL },
{ "DIVELOGSDATA", "divelogs.xslt", NULL },
{ "uddf", "uddf.xslt", NULL },
{ "UDDF", "uddf.xslt", NULL },
{ "profile", "udcf.xslt", NULL },
{ "Divinglog", "DivingLog.xslt", NULL },
{ "csv", "csv2xml.xslt", NULL },
{ "sensuscsv", "sensuscsv.xslt", NULL },
{ "SubsurfaceCSV", "subsurfacecsv.xslt", NULL },
{ "manualcsv", "manualcsv2xml.xslt", NULL },
{ "logbook", "DiveLog.xslt", NULL },
{ "AV1", "av1.xslt", NULL },
{ "exportTrak", "Mares.xslt", NULL },
{ NULL, }
};
static xmlDoc *test_xslt_transforms(xmlDoc *doc, const char **params)
{
struct xslt_files *info = xslt_files;
xmlDoc *transformed;
xsltStylesheetPtr xslt = NULL;
xmlNode *root_element = xmlDocGetRootElement(doc);
char *attribute;
while (info->root) {
if ((strcasecmp((const char *)root_element->name, info->root) == 0)) {
if (info->attribute == NULL)
break;
else if (xmlGetProp(root_element, (const xmlChar *)info->attribute) != NULL)
break;
}
info++;
}
if (info->root) {
attribute = (char *)xmlGetProp(xmlFirstElementChild(root_element), (const xmlChar *)"name");
if (attribute) {
if (strcasecmp(attribute, "subsurface") == 0) {
free((void *)attribute);
return doc;
}
free((void *)attribute);
}
xmlSubstituteEntitiesDefault(1);
xslt = get_stylesheet(info->file);
if (xslt == NULL) {
report_error(translate("gettextFromC", "Can't open stylesheet %s"), info->file);
return doc;
}
transformed = xsltApplyStylesheet(xslt, doc, params);
xmlFreeDoc(doc);
xsltFreeStylesheet(xslt);
return transformed;
}
return doc;
}