subsurface/tests/testplan.cpp
Robert C. Helling bd89e33e76 Fix typo in saturation/desatureation rates
This patch eliminates the difference between the saturation and
desaturation rates. This was probably once meant as a conservative
measure but the desaturation rate was increased rather than the
saturation rate (which is probably a typo, as reported by Stefan).

Since there is no good basis for this anyway, this patch sets
both factors to 1.0 (and if accepted the whole factor business
should be removed).

This makes our deco times slightly longer. But in the past,
we had introduced a 1.2% fudge factor in the critical radius
calculation to add conservatism and match the benchmark better.

Removing this fudge factor brings us close to the benchmarks.
Expected test values updated.

Reported-by: Stefan <sjti@gmx.net>
Signed-off-by: Robert C. Helling <helling@atdotde.de>
2017-02-19 15:29:40 -08:00

624 lines
20 KiB
C++

#include "core/dive.h"
#include "testplan.h"
#include "core/planner.h"
#include "core/units.h"
#include "core/subsurfacestartup.h"
#include "core/qthelper.h"
#include <QDebug>
#define DEBUG 1
// testing the dive plan algorithm
extern bool plan(struct diveplan *diveplan, char **cached_datap, bool is_planner, bool show_disclaimer);
extern pressure_t first_ceiling_pressure;
void setupPrefs()
{
copy_prefs(&default_prefs, &prefs);
prefs.ascrate50 = feet_to_mm(30) / 60;
prefs.ascrate75 = prefs.ascrate50;
prefs.ascratestops = prefs.ascrate50;
prefs.ascratelast6m = feet_to_mm(10) / 60;
prefs.last_stop = true;
}
void setupPrefsVpmb()
{
copy_prefs(&default_prefs, &prefs);
prefs.ascrate50 = 10000 / 60;
prefs.ascrate75 = prefs.ascrate50;
prefs.ascratestops = prefs.ascrate50;
prefs.ascratelast6m = prefs.ascrate50;
prefs.descrate = 99000 / 60;
prefs.last_stop = false;
prefs.planner_deco_mode = VPMB;
prefs.vpmb_conservatism = 0;
}
void setupPlan(struct diveplan *dp)
{
dp->salinity = 10300;
dp->surface_pressure = 1013;
dp->gfhigh = 100;
dp->gflow = 100;
dp->bottomsac = 0;
dp->decosac = 0;
struct gasmix bottomgas = { {150}, {450} };
struct gasmix ean36 = { {360}, {0} };
struct gasmix oxygen = { {1000}, {0} };
pressure_t po2 = { 1600 };
displayed_dive.cylinder[0].gasmix = bottomgas;
displayed_dive.cylinder[1].gasmix = ean36;
displayed_dive.cylinder[2].gasmix = oxygen;
reset_cylinders(&displayed_dive, true);
free_dps(dp);
int droptime = M_OR_FT(79, 260) * 60 / M_OR_FT(23, 75);
plan_add_segment(dp, 0, gas_mod(&ean36, po2, &displayed_dive, M_OR_FT(3,10)).mm, 1, 0, 1);
plan_add_segment(dp, 0, gas_mod(&oxygen, po2, &displayed_dive, M_OR_FT(3,10)).mm, 2, 0, 1);
plan_add_segment(dp, droptime, M_OR_FT(79, 260), 0, 0, 1);
plan_add_segment(dp, 30*60 - droptime, M_OR_FT(79, 260), 0, 0, 1);
}
void setupPlanVpmb60m30minAir(struct diveplan *dp)
{
dp->salinity = 10300;
dp->surface_pressure = 1013;
dp->bottomsac = 0;
dp->decosac = 0;
struct gasmix bottomgas = { {210}, {0} };
displayed_dive.cylinder[0].gasmix = bottomgas;
displayed_dive.surface_pressure.mbar = 1013;
reset_cylinders(&displayed_dive, true);
free_dps(dp);
int droptime = M_OR_FT(60, 200) * 60 / M_OR_FT(99, 330);
plan_add_segment(dp, droptime, M_OR_FT(60, 200), 0, 0, 1);
plan_add_segment(dp, 30*60 - droptime, M_OR_FT(60, 200), 0, 0, 1);
}
void setupPlanVpmb60m30minEan50(struct diveplan *dp)
{
dp->salinity = 10300;
dp->surface_pressure = 1013;
dp->bottomsac = 0;
dp->decosac = 0;
struct gasmix bottomgas = { {210}, {0} };
struct gasmix ean50 = { {500}, {0} };
pressure_t po2 = { 1600 };
displayed_dive.cylinder[0].gasmix = bottomgas;
displayed_dive.cylinder[1].gasmix = ean50;
displayed_dive.surface_pressure.mbar = 1013;
reset_cylinders(&displayed_dive, true);
free_dps(dp);
int droptime = M_OR_FT(60, 200) * 60 / M_OR_FT(99, 330);
plan_add_segment(dp, 0, gas_mod(&ean50, po2, &displayed_dive, M_OR_FT(3,10)).mm, 1, 0, 1);
plan_add_segment(dp, droptime, M_OR_FT(60, 200), 0, 0, 1);
plan_add_segment(dp, 30*60 - droptime, M_OR_FT(60, 200), 0, 0, 1);
}
void setupPlanVpmb60m30minTx(struct diveplan *dp)
{
dp->salinity = 10300;
dp->surface_pressure = 1013;
dp->bottomsac = 0;
dp->decosac = 0;
struct gasmix bottomgas = { {180}, {450} };
struct gasmix ean50 = { {500}, {0} };
pressure_t po2 = { 1600 };
displayed_dive.cylinder[0].gasmix = bottomgas;
displayed_dive.cylinder[1].gasmix = ean50;
displayed_dive.surface_pressure.mbar = 1013;
reset_cylinders(&displayed_dive, true);
free_dps(dp);
int droptime = M_OR_FT(60, 200) * 60 / M_OR_FT(99, 330);
plan_add_segment(dp, 0, gas_mod(&ean50, po2, &displayed_dive, M_OR_FT(3,10)).mm, 1, 0, 1);
plan_add_segment(dp, droptime, M_OR_FT(60, 200), 0, 0, 1);
plan_add_segment(dp, 30*60 - droptime, M_OR_FT(60, 200), 0, 0, 1);
}
void setupPlanVpmbMultiLevelAir(struct diveplan *dp)
{
dp->salinity = 10300;
dp->surface_pressure = 1013;
dp->bottomsac = 0;
dp->decosac = 0;
struct gasmix bottomgas = { {210}, {0} };
displayed_dive.cylinder[0].gasmix = bottomgas;
displayed_dive.surface_pressure.mbar = 1013;
reset_cylinders(&displayed_dive, true);
free_dps(dp);
int droptime = M_OR_FT(20, 66) * 60 / M_OR_FT(99, 330);
plan_add_segment(dp, droptime, M_OR_FT(20, 66), 0, 0, 1);
plan_add_segment(dp, 10*60 - droptime, M_OR_FT(20, 66), 0, 0, 1);
plan_add_segment(dp, 1*60, M_OR_FT(60, 200), 0, 0, 1);
plan_add_segment(dp, 29*60, M_OR_FT(60, 200), 0, 0, 1);
}
void setupPlanVpmb100m60min(struct diveplan *dp)
{
dp->salinity = 10300;
dp->surface_pressure = 1013;
dp->bottomsac = 0;
dp->decosac = 0;
struct gasmix bottomgas = { {180}, {450} };
struct gasmix ean50 = { {500}, {0} };
struct gasmix oxygen = { {1000}, {0} };
pressure_t po2 = { 1600 };
displayed_dive.cylinder[0].gasmix = bottomgas;
displayed_dive.cylinder[1].gasmix = ean50;
displayed_dive.cylinder[2].gasmix = oxygen;
displayed_dive.surface_pressure.mbar = 1013;
reset_cylinders(&displayed_dive, true);
free_dps(dp);
int droptime = M_OR_FT(100, 330) * 60 / M_OR_FT(99, 330);
plan_add_segment(dp, 0, gas_mod(&ean50, po2, &displayed_dive, M_OR_FT(3,10)).mm, 1, 0, 1);
plan_add_segment(dp, 0, gas_mod(&oxygen, po2, &displayed_dive, M_OR_FT(3,10)).mm, 2, 0, 1);
plan_add_segment(dp, droptime, M_OR_FT(100, 330), 0, 0, 1);
plan_add_segment(dp, 60*60 - droptime, M_OR_FT(100, 330), 0, 0, 1);
}
void setupPlanVpmb100m10min(struct diveplan *dp)
{
dp->salinity = 10300;
dp->surface_pressure = 1013;
dp->bottomsac = 0;
dp->decosac = 0;
struct gasmix bottomgas = { {180}, {450} };
struct gasmix ean50 = { {500}, {0} };
struct gasmix oxygen = { {1000}, {0} };
pressure_t po2 = { 1600 };
displayed_dive.cylinder[0].gasmix = bottomgas;
displayed_dive.cylinder[1].gasmix = ean50;
displayed_dive.cylinder[2].gasmix = oxygen;
displayed_dive.surface_pressure.mbar = 1013;
reset_cylinders(&displayed_dive, true);
free_dps(dp);
int droptime = M_OR_FT(100, 330) * 60 / M_OR_FT(99, 330);
plan_add_segment(dp, 0, gas_mod(&ean50, po2, &displayed_dive, M_OR_FT(3,10)).mm, 1, 0, 1);
plan_add_segment(dp, 0, gas_mod(&oxygen, po2, &displayed_dive, M_OR_FT(3,10)).mm, 2, 0, 1);
plan_add_segment(dp, droptime, M_OR_FT(100, 330), 0, 0, 1);
plan_add_segment(dp, 10*60 - droptime, M_OR_FT(100, 330), 0, 0, 1);
}
void setupPlanVpmb30m20min(struct diveplan *dp)
{
dp->salinity = 10300;
dp->surface_pressure = 1013;
dp->bottomsac = 0;
dp->decosac = 0;
struct gasmix bottomgas = { {210}, {0} };
displayed_dive.cylinder[0].gasmix = bottomgas;
displayed_dive.surface_pressure.mbar = 1013;
reset_cylinders(&displayed_dive, true);
free_dps(dp);
int droptime = M_OR_FT(30, 100) * 60 / M_OR_FT(18, 60);
plan_add_segment(dp, droptime, M_OR_FT(30, 100), 0, 0, 1);
plan_add_segment(dp, 20*60 - droptime, M_OR_FT(30, 100), 0, 0, 1);
}
void setupPlanVpmb100mTo70m30min(struct diveplan *dp)
{
dp->salinity = 10300;
dp->surface_pressure = 1013;
dp->bottomsac = 0;
dp->decosac = 0;
struct gasmix bottomgas = { {120}, {650} };
struct gasmix tx21_35 = { {210}, {350} };
struct gasmix ean50 = { {500}, {0} };
struct gasmix oxygen = { {1000}, {0} };
pressure_t po2 = { 1600 };
displayed_dive.cylinder[0].gasmix = bottomgas;
displayed_dive.cylinder[1].gasmix = tx21_35;
displayed_dive.cylinder[2].gasmix = ean50;
displayed_dive.cylinder[3].gasmix = oxygen;
displayed_dive.surface_pressure.mbar = 1013;
reset_cylinders(&displayed_dive, true);
free_dps(dp);
int droptime = M_OR_FT(100, 330) * 60 / M_OR_FT(18, 60);
plan_add_segment(dp, 0, gas_mod(&tx21_35, po2, &displayed_dive, M_OR_FT(3,10)).mm, 1, 0, 1);
plan_add_segment(dp, 0, gas_mod(&ean50, po2, &displayed_dive, M_OR_FT(3,10)).mm, 2, 0, 1);
plan_add_segment(dp, 0, gas_mod(&oxygen, po2, &displayed_dive, M_OR_FT(3,10)).mm, 3, 0, 1);
plan_add_segment(dp, droptime, M_OR_FT(100, 330), 0, 0, 1);
plan_add_segment(dp, 20*60 - droptime, M_OR_FT(100, 330), 0, 0, 1);
plan_add_segment(dp, 3*60, M_OR_FT(70, 230), 0, 0, 1);
plan_add_segment(dp, (30 - 20 - 3) * 60, M_OR_FT(70, 230), 0, 0, 1);
}
/* We compare the calculated runtimes against two values:
* - Known runtime calculated by Subsurface previously (to detect if anything has changed)
* - Benchmark runtime (we should be close, but not always exactly the same)
*/
bool compareDecoTime(int actualRunTimeSeconds, int benchmarkRunTimeSeconds, int knownSsrfRunTimeSeconds)
{
bool result;
// If the calculated run time equals the expected run time, do a simple comparison
if (actualRunTimeSeconds == benchmarkRunTimeSeconds) {
result = true;
} else {
/* We want the difference between the expected and calculated total run time to be not more than
* 1% of total run time + 1 minute */
int permilDifferenceAllowed = 1 * 10;
int absoluteDifferenceAllowedSeconds = 60;
int totalDifferenceAllowed = 0.001 * permilDifferenceAllowed * benchmarkRunTimeSeconds + absoluteDifferenceAllowedSeconds;
int totalDifference = abs(actualRunTimeSeconds - benchmarkRunTimeSeconds);
qDebug("Calculated run time = %d seconds", actualRunTimeSeconds);
qDebug("Expected run time = %d seconds", benchmarkRunTimeSeconds);
qDebug("Allowed time difference is %g percent plus %d seconds = %d seconds",
permilDifferenceAllowed * 0.1, absoluteDifferenceAllowedSeconds, totalDifferenceAllowed);
qDebug("total difference = %d seconds", totalDifference);
result = (totalDifference <= totalDifferenceAllowed);
}
if ((knownSsrfRunTimeSeconds > 0) && (actualRunTimeSeconds != knownSsrfRunTimeSeconds)) {
QWARN("Calculated run time does not match known Subsurface runtime");
qWarning("Calculated runtime: %d", actualRunTimeSeconds);
qWarning("Known Subsurface runtime: %d", knownSsrfRunTimeSeconds);
}
return result;
}
void TestPlan::testMetric()
{
char *cache = NULL;
setupPrefs();
prefs.unit_system = METRIC;
prefs.units.length = units::METERS;
prefs.planner_deco_mode = BUEHLMANN;
struct diveplan testPlan = {};
setupPlan(&testPlan);
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// check first gas change to EAN36 at 33m
struct event *ev = displayed_dive.dc.events;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 1);
QCOMPARE(ev->value, 36);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 33000);
// check second gas change to Oxygen at 6m
ev = ev->next;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 2);
QCOMPARE(ev->value, 100);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 6000);
// check expected run time of 109 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 109u * 60u, 109u * 60u));
}
void TestPlan::testImperial()
{
char *cache = NULL;
setupPrefs();
prefs.unit_system = IMPERIAL;
prefs.units.length = units::FEET;
prefs.planner_deco_mode = BUEHLMANN;
struct diveplan testPlan = {};
setupPlan(&testPlan);
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// check first gas change to EAN36 at 33m
struct event *ev = displayed_dive.dc.events;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 1);
QCOMPARE(ev->value, 36);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 33528);
// check second gas change to Oxygen at 6m
ev = ev->next;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 2);
QCOMPARE(ev->value, 100);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 6096);
// check expected run time of 111 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 111u * 60u - 2u, 111u * 60u - 2u));
}
void TestPlan::testVpmbMetric60m30minAir()
{
char *cache = NULL;
setupPrefsVpmb();
prefs.unit_system = METRIC;
prefs.units.length = units::METERS;
struct diveplan testPlan = {};
setupPlanVpmb60m30minAir(&testPlan);
setCurrentAppState("PlanDive");
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// print first ceiling
printf("First ceiling %.1f m\n", (mbar_to_depth(first_ceiling_pressure.mbar, &displayed_dive) * 0.001));
// check benchmark run time of 141 minutes, and known Subsurface runtime of 139 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 141u * 60u + 20u, 139u * 60u + 20u));
}
void TestPlan::testVpmbMetric60m30minEan50()
{
char *cache = NULL;
setupPrefsVpmb();
prefs.unit_system = METRIC;
prefs.units.length = units::METERS;
struct diveplan testPlan = {};
setupPlanVpmb60m30minEan50(&testPlan);
setCurrentAppState("PlanDive");
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// print first ceiling
printf("First ceiling %.1f m\n", (mbar_to_depth(first_ceiling_pressure.mbar, &displayed_dive) * 0.001));
// check first gas change to EAN50 at 21m
struct event *ev = displayed_dive.dc.events;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 1);
QCOMPARE(ev->value, 50);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 21000);
// check benchmark run time of 95 minutes, and known Subsurface runtime of 96 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 95u * 60u + 20u, 96u * 60u + 20u));
}
void TestPlan::testVpmbMetric60m30minTx()
{
char *cache = NULL;
setupPrefsVpmb();
prefs.unit_system = METRIC;
prefs.units.length = units::METERS;
struct diveplan testPlan = {};
setupPlanVpmb60m30minTx(&testPlan);
setCurrentAppState("PlanDive");
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// print first ceiling
printf("First ceiling %.1f m\n", (mbar_to_depth(first_ceiling_pressure.mbar, &displayed_dive) * 0.001));
// check first gas change to EAN50 at 21m
struct event *ev = displayed_dive.dc.events;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 1);
QCOMPARE(ev->value, 50);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 21000);
// check benchmark run time of 89 minutes, and known Subsurface runtime of 89 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 89u * 60u + 20u, 89u * 60u + 20u));
}
void TestPlan::testVpmbMetric100m60min()
{
char *cache = NULL;
setupPrefsVpmb();
prefs.unit_system = METRIC;
prefs.units.length = units::METERS;
struct diveplan testPlan = {};
setupPlanVpmb100m60min(&testPlan);
setCurrentAppState("PlanDive");
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// print first ceiling
printf("First ceiling %.1f m\n", (mbar_to_depth(first_ceiling_pressure.mbar, &displayed_dive) * 0.001));
// check first gas change to EAN50 at 21m
struct event *ev = displayed_dive.dc.events;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 1);
QCOMPARE(ev->value, 50);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 21000);
// check second gas change to Oxygen at 6m
ev = ev->next;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 2);
QCOMPARE(ev->value, 100);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 6000);
// check benchmark run time of 311 minutes, and known Subsurface runtime of 314 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 311u * 60u + 20u, 315u * 60u + 20u));
}
void TestPlan::testVpmbMetricMultiLevelAir()
{
char *cache = NULL;
setupPrefsVpmb();
prefs.unit_system = METRIC;
prefs.units.length = units::METERS;
struct diveplan testPlan = {};
setupPlanVpmbMultiLevelAir(&testPlan);
setCurrentAppState("PlanDive");
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// print first ceiling
printf("First ceiling %.1f m\n", (mbar_to_depth(first_ceiling_pressure.mbar, &displayed_dive) * 0.001));
// check benchmark run time of 167 minutes, and known Subsurface runtime of 169 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 167u * 60u + 20u, 169u * 60u + 20u));
}
void TestPlan::testVpmbMetric100m10min()
{
char *cache = NULL;
setupPrefsVpmb();
prefs.unit_system = METRIC;
prefs.units.length = units::METERS;
struct diveplan testPlan = {};
setupPlanVpmb100m10min(&testPlan);
setCurrentAppState("PlanDive");
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// print first ceiling
printf("First ceiling %.1f m\n", (mbar_to_depth(first_ceiling_pressure.mbar, &displayed_dive) * 0.001));
// check first gas change to EAN50 at 21m
struct event *ev = displayed_dive.dc.events;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 1);
QCOMPARE(ev->value, 50);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 21000);
// check second gas change to Oxygen at 6m
ev = ev->next;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 2);
QCOMPARE(ev->value, 100);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 6000);
// check benchmark run time of 58 minutes, and known Subsurface runtime of 57 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 58u * 60u + 20u, 57u * 60u + 20u));
}
/* This tests that a previously calculated plan isn't affecting the calculations of the next plan.
* It is NOT a 'repetitive dive' test (i.e. with a surface interval and considering tissue
* saturation from the previous dive).
*/
void TestPlan::testVpmbMetricRepeat()
{
char *cache = NULL;
setupPrefsVpmb();
prefs.unit_system = METRIC;
prefs.units.length = units::METERS;
struct diveplan testPlan = {};
setupPlanVpmb30m20min(&testPlan);
setCurrentAppState("PlanDive");
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// print first ceiling
printf("First ceiling %.1f m\n", (mbar_to_depth(first_ceiling_pressure.mbar, &displayed_dive) * 0.001));
// check benchmark run time of 27 minutes, and known Subsurface runtime of 28 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 27u * 60u + 20u, 27u * 60u + 20u));
int firstDiveRunTimeSeconds = displayed_dive.dc.duration.seconds;
setupPlanVpmb100mTo70m30min(&testPlan);
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// print first ceiling
printf("First ceiling %.1f m\n", (mbar_to_depth(first_ceiling_pressure.mbar, &displayed_dive) * 0.001));
// check first gas change to 21/35 at 66m
struct event *ev = displayed_dive.dc.events;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 1);
QCOMPARE(ev->gas.mix.o2.permille, 210);
QCOMPARE(ev->gas.mix.he.permille, 350);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 66000);
// check second gas change to EAN50 at 21m
ev = ev->next;
QCOMPARE(ev->gas.index, 2);
QCOMPARE(ev->value, 50);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 21000);
// check third gas change to Oxygen at 6m
ev = ev->next;
QVERIFY(ev != NULL);
QCOMPARE(ev->gas.index, 3);
QCOMPARE(ev->value, 100);
QCOMPARE(get_depth_at_time(&displayed_dive.dc, ev->time.seconds), 6000);
// we don't have a benchmark, known Subsurface runtime is 126 minutes
QVERIFY(compareDecoTime(displayed_dive.dc.duration.seconds, 127u * 60u + 20u, 127u * 60u + 20u));
setupPlanVpmb30m20min(&testPlan);
plan(&testPlan, &cache, 1, 0);
#if DEBUG
free(displayed_dive.notes);
displayed_dive.notes = NULL;
save_dive(stdout, &displayed_dive);
#endif
// print first ceiling
printf("First ceiling %.1f m\n", (mbar_to_depth(first_ceiling_pressure.mbar, &displayed_dive) * 0.001));
// check runtime is exactly the same as the first time
int finalDiveRunTimeSeconds = displayed_dive.dc.duration.seconds;
QCOMPARE(finalDiveRunTimeSeconds, firstDiveRunTimeSeconds);
}
QTEST_GUILESS_MAIN(TestPlan)