subsurface/subsurface-core/serial_ftdi.c
Tomaz Canabrava 4c0156e3d5 Move all core-functionality to subsurface-core
And adapt a new CMakeLists.txt file for it. On the way I've also
found out that we where double-compilling a few files. I've also
set the subsurface-core as a include_path but that was just to
reduce the noise on this commit, since I plan to remove it from
the include path to make it obligatory to specify something like

 include "subsurface-core/dive.h"

for the header files. Since the app is growing quite a bit we ended
up having a few different files with almost same name that did
similar things, I want to kill that (for instance Dive.h, dive.h,
PrintDive.h and such).

Signed-off-by: Tomaz Canabrava <tomaz.canabrava@intel.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2015-10-30 10:36:48 -07:00

664 lines
17 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
* Copyright (C) 2014 Venkatesh Shukla
* Copyright (C) 2015 Anton Lundin
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h> // malloc, free
#include <string.h> // strerror
#include <errno.h> // errno
#include <sys/time.h> // gettimeofday
#include <time.h> // nanosleep
#include <stdio.h>
#include <libusb.h>
#include <ftdi.h>
#ifndef __ANDROID__
#define INFO(context, fmt, ...) fprintf(stderr, "INFO: " fmt "\n", ##__VA_ARGS__)
#define ERROR(context, fmt, ...) fprintf(stderr, "ERROR: " fmt "\n", ##__VA_ARGS__)
#else
#include <android/log.h>
#define INFO(context, fmt, ...) __android_log_print(ANDROID_LOG_DEBUG, __FILE__, "INFO: " fmt "\n", ##__VA_ARGS__)
#define ERROR(context, fmt, ...) __android_log_print(ANDROID_LOG_DEBUG, __FILE__, "ERROR: " fmt "\n", ##__VA_ARGS__)
#endif
//#define SYSERROR(context, errcode) ERROR(__FILE__ ":" __LINE__ ": %s", strerror(errcode))
#define SYSERROR(context, errcode) ;
#include <libdivecomputer/custom_serial.h>
/* Verbatim copied libdivecomputer enums to support configure */
typedef enum serial_parity_t {
SERIAL_PARITY_NONE,
SERIAL_PARITY_EVEN,
SERIAL_PARITY_ODD
} serial_parity_t;
typedef enum serial_flowcontrol_t {
SERIAL_FLOWCONTROL_NONE,
SERIAL_FLOWCONTROL_HARDWARE,
SERIAL_FLOWCONTROL_SOFTWARE
} serial_flowcontrol_t;
typedef enum serial_queue_t {
SERIAL_QUEUE_INPUT = 0x01,
SERIAL_QUEUE_OUTPUT = 0x02,
SERIAL_QUEUE_BOTH = SERIAL_QUEUE_INPUT | SERIAL_QUEUE_OUTPUT
} serial_queue_t;
typedef enum serial_line_t {
SERIAL_LINE_DCD, // Data carrier detect
SERIAL_LINE_CTS, // Clear to send
SERIAL_LINE_DSR, // Data set ready
SERIAL_LINE_RNG, // Ring indicator
} serial_line_t;
#define VID 0x0403 // Vendor ID of FTDI
#define MAX_BACKOFF 500 // Max milliseconds to wait before timing out.
typedef struct serial_t {
/* Library context. */
dc_context_t *context;
/*
* The file descriptor corresponding to the serial port.
* Also a libftdi_ftdi_ctx could be used?
*/
struct ftdi_context *ftdi_ctx;
long timeout;
/*
* Serial port settings are saved into this variable immediately
* after the port is opened. These settings are restored when the
* serial port is closed.
* Saving this using libftdi context or libusb. Search further.
* Custom implementation using libftdi functions could be done.
*/
/* Half-duplex settings */
int halfduplex;
unsigned int baudrate;
unsigned int nbits;
} serial_t;
static int serial_ftdi_get_received (serial_t *device)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
// Direct access is not encouraged. But function implementation
// is not available. The return quantity might be anything.
// Find out further about its possible values and correct way of
// access.
int bytes = device->ftdi_ctx->readbuffer_remaining;
return bytes;
}
static int serial_ftdi_get_transmitted (serial_t *device)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
// This is not possible using libftdi. Look further into it.
return -1;
}
static int serial_ftdi_sleep (serial_t *device, unsigned long timeout)
{
if (device == NULL)
return -1;
INFO (device->context, "Sleep: value=%lu", timeout);
struct timespec ts;
ts.tv_sec = (timeout / 1000);
ts.tv_nsec = (timeout % 1000) * 1000000;
while (nanosleep (&ts, &ts) != 0) {
if (errno != EINTR ) {
SYSERROR (device->context, errno);
return -1;
}
}
return 0;
}
// Used internally for opening ftdi devices
static int serial_ftdi_open_device (struct ftdi_context *ftdi_ctx)
{
int accepted_pids[] = { 0x6001, 0x6010, 0x6011, // Suunto (Smart Interface), Heinrichs Weikamp
0xF460, // Oceanic
0xF680, // Suunto
0x87D0, // Cressi (Leonardo)
};
int num_accepted_pids = 6;
int i, pid, ret;
for (i = 0; i < num_accepted_pids; i++) {
pid = accepted_pids[i];
ret = ftdi_usb_open (ftdi_ctx, VID, pid);
if (ret == -3) // Device not found
continue;
else
return ret;
}
// No supported devices are attached.
return ret;
}
//
// Open the serial port.
// Initialise ftdi_context and use it to open the device
//
//FIXME: ugly forward declaration of serial_ftdi_configure, util we support configure for real...
static dc_status_t serial_ftdi_configure (serial_t *device, int baudrate, int databits, int parity, int stopbits, int flowcontrol);
static dc_status_t serial_ftdi_open (serial_t **out, dc_context_t *context, const char* name)
{
if (out == NULL)
return -1; // EINVAL (Invalid argument)
INFO (context, "Open: name=%s", name ? name : "");
// Allocate memory.
serial_t *device = (serial_t *) malloc (sizeof (serial_t));
if (device == NULL) {
SYSERROR (context, errno);
return DC_STATUS_NOMEMORY;
}
struct ftdi_context *ftdi_ctx = ftdi_new();
if (ftdi_ctx == NULL) {
free(device);
SYSERROR (context, errno);
return DC_STATUS_NOMEMORY;
}
// Library context.
device->context = context;
// Default to blocking reads.
device->timeout = -1;
// Default to full-duplex.
device->halfduplex = 0;
device->baudrate = 0;
device->nbits = 0;
// Initialize device ftdi context
ftdi_init(ftdi_ctx);
if (ftdi_set_interface(ftdi_ctx,INTERFACE_ANY)) {
free(device);
ERROR (context, "%s", ftdi_get_error_string(ftdi_ctx));
return DC_STATUS_IO;
}
if (serial_ftdi_open_device(ftdi_ctx) < 0) {
free(device);
ERROR (context, "%s", ftdi_get_error_string(ftdi_ctx));
return DC_STATUS_IO;
}
if (ftdi_usb_reset(ftdi_ctx)) {
ERROR (context, "%s", ftdi_get_error_string(ftdi_ctx));
return DC_STATUS_IO;
}
if (ftdi_usb_purge_buffers(ftdi_ctx)) {
free(device);
ERROR (context, "%s", ftdi_get_error_string(ftdi_ctx));
return DC_STATUS_IO;
}
device->ftdi_ctx = ftdi_ctx;
//FIXME: remove this when custom-serial have support for configure calls
serial_ftdi_configure (device, 115200, 8, 0, 1, 0);
*out = device;
return DC_STATUS_SUCCESS;
}
//
// Close the serial port.
//
static int serial_ftdi_close (serial_t *device)
{
if (device == NULL)
return 0;
// Restore the initial terminal attributes.
// See if it is possible using libusb or libftdi
int ret = ftdi_usb_close(device->ftdi_ctx);
if (ret < 0) {
ERROR (device->context, "Unable to close the ftdi device : %d (%s)\n",
ret, ftdi_get_error_string(device->ftdi_ctx));
return ret;
}
ftdi_free(device->ftdi_ctx);
// Free memory.
free (device);
return 0;
}
//
// Configure the serial port (baudrate, databits, parity, stopbits and flowcontrol).
//
static dc_status_t serial_ftdi_configure (serial_t *device, int baudrate, int databits, int parity, int stopbits, int flowcontrol)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
INFO (device->context, "Configure: baudrate=%i, databits=%i, parity=%i, stopbits=%i, flowcontrol=%i",
baudrate, databits, parity, stopbits, flowcontrol);
enum ftdi_bits_type ft_bits;
enum ftdi_stopbits_type ft_stopbits;
enum ftdi_parity_type ft_parity;
if (ftdi_set_baudrate(device->ftdi_ctx, baudrate) < 0) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return -1;
}
// Set the character size.
switch (databits) {
case 7:
ft_bits = BITS_7;
break;
case 8:
ft_bits = BITS_8;
break;
default:
return DC_STATUS_INVALIDARGS;
}
// Set the parity type.
switch (parity) {
case SERIAL_PARITY_NONE: // No parity
ft_parity = NONE;
break;
case SERIAL_PARITY_EVEN: // Even parity
ft_parity = EVEN;
break;
case SERIAL_PARITY_ODD: // Odd parity
ft_parity = ODD;
break;
default:
return DC_STATUS_INVALIDARGS;
}
// Set the number of stop bits.
switch (stopbits) {
case 1: // One stopbit
ft_stopbits = STOP_BIT_1;
break;
case 2: // Two stopbits
ft_stopbits = STOP_BIT_2;
break;
default:
return DC_STATUS_INVALIDARGS;
}
// Set the attributes
if (ftdi_set_line_property(device->ftdi_ctx, ft_bits, ft_stopbits, ft_parity)) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return DC_STATUS_IO;
}
// Set the flow control.
switch (flowcontrol) {
case SERIAL_FLOWCONTROL_NONE: // No flow control.
if (ftdi_setflowctrl(device->ftdi_ctx, SIO_DISABLE_FLOW_CTRL) < 0) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return DC_STATUS_IO;
}
break;
case SERIAL_FLOWCONTROL_HARDWARE: // Hardware (RTS/CTS) flow control.
if (ftdi_setflowctrl(device->ftdi_ctx, SIO_RTS_CTS_HS) < 0) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return DC_STATUS_IO;
}
break;
case SERIAL_FLOWCONTROL_SOFTWARE: // Software (XON/XOFF) flow control.
if (ftdi_setflowctrl(device->ftdi_ctx, SIO_XON_XOFF_HS) < 0) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return DC_STATUS_IO;
}
break;
default:
return DC_STATUS_INVALIDARGS;
}
device->baudrate = baudrate;
device->nbits = 1 + databits + stopbits + (parity ? 1 : 0);
return DC_STATUS_SUCCESS;
}
//
// Configure the serial port (timeouts).
//
static int serial_ftdi_set_timeout (serial_t *device, long timeout)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
INFO (device->context, "Timeout: value=%li", timeout);
device->timeout = timeout;
return 0;
}
static int serial_ftdi_set_halfduplex (serial_t *device, int value)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
// Most ftdi chips support full duplex operation. ft232rl does.
// Crosscheck other chips.
device->halfduplex = value;
return 0;
}
static int serial_ftdi_read (serial_t *device, void *data, unsigned int size)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
// The total timeout.
long timeout = device->timeout;
// The absolute target time.
struct timeval tve;
static int backoff = 1;
int init = 1;
unsigned int nbytes = 0;
while (nbytes < size) {
struct timeval tvt;
if (timeout > 0) {
struct timeval now;
if (gettimeofday (&now, NULL) != 0) {
SYSERROR (device->context, errno);
return -1;
}
if (init) {
// Calculate the initial timeout.
tvt.tv_sec = (timeout / 1000);
tvt.tv_usec = (timeout % 1000) * 1000;
// Calculate the target time.
timeradd (&now, &tvt, &tve);
} else {
// Calculate the remaining timeout.
if (timercmp (&now, &tve, <))
timersub (&tve, &now, &tvt);
else
timerclear (&tvt);
}
init = 0;
} else if (timeout == 0) {
timerclear (&tvt);
}
int n = ftdi_read_data (device->ftdi_ctx, (char *) data + nbytes, size - nbytes);
if (n < 0) {
if (n == LIBUSB_ERROR_INTERRUPTED)
continue; //Retry.
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return -1; //Error during read call.
} else if (n == 0) {
// Exponential backoff.
if (backoff > MAX_BACKOFF) {
ERROR(device->context, "%s", "FTDI read timed out.");
return -1;
}
serial_ftdi_sleep (device, backoff);
backoff *= 2;
} else {
// Reset backoff to 1 on success.
backoff = 1;
}
nbytes += n;
}
INFO (device->context, "Read %d bytes", nbytes);
return nbytes;
}
static int serial_ftdi_write (serial_t *device, const void *data, unsigned int size)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
struct timeval tve, tvb;
if (device->halfduplex) {
// Get the current time.
if (gettimeofday (&tvb, NULL) != 0) {
SYSERROR (device->context, errno);
return -1;
}
}
unsigned int nbytes = 0;
while (nbytes < size) {
int n = ftdi_write_data (device->ftdi_ctx, (char *) data + nbytes, size - nbytes);
if (n < 0) {
if (n == LIBUSB_ERROR_INTERRUPTED)
continue; // Retry.
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return -1; // Error during write call.
} else if (n == 0) {
break; // EOF.
}
nbytes += n;
}
if (device->halfduplex) {
// Get the current time.
if (gettimeofday (&tve, NULL) != 0) {
SYSERROR (device->context, errno);
return -1;
}
// Calculate the elapsed time (microseconds).
struct timeval tvt;
timersub (&tve, &tvb, &tvt);
unsigned long elapsed = tvt.tv_sec * 1000000 + tvt.tv_usec;
// Calculate the expected duration (microseconds). A 2 millisecond fudge
// factor is added because it improves the success rate significantly.
unsigned long expected = 1000000.0 * device->nbits / device->baudrate * size + 0.5 + 2000;
// Wait for the remaining time.
if (elapsed < expected) {
unsigned long remaining = expected - elapsed;
// The remaining time is rounded up to the nearest millisecond to
// match the Windows implementation. The higher resolution is
// pointless anyway, since we already added a fudge factor above.
serial_ftdi_sleep (device, (remaining + 999) / 1000);
}
}
INFO (device->context, "Wrote %d bytes", nbytes);
return nbytes;
}
static int serial_ftdi_flush (serial_t *device, int queue)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
INFO (device->context, "Flush: queue=%u, input=%i, output=%i", queue,
serial_ftdi_get_received (device),
serial_ftdi_get_transmitted (device));
switch (queue) {
case SERIAL_QUEUE_INPUT:
if (ftdi_usb_purge_tx_buffer(device->ftdi_ctx)) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return -1;
}
break;
case SERIAL_QUEUE_OUTPUT:
if (ftdi_usb_purge_rx_buffer(device->ftdi_ctx)) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return -1;
}
break;
default:
if (ftdi_usb_purge_buffers(device->ftdi_ctx)) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return -1;
}
break;
}
return 0;
}
static int serial_ftdi_send_break (serial_t *device)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)a
INFO (device->context, "Break : One time period.");
// no direct functions for sending break signals in libftdi.
// there is a suggestion to lower the baudrate and sending NUL
// and resetting the baudrate up again. But it has flaws.
// Not implementing it before researching more.
return -1;
}
static int serial_ftdi_set_break (serial_t *device, int level)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
INFO (device->context, "Break: value=%i", level);
// Not implemented in libftdi yet. Research it further.
return -1;
}
static int serial_ftdi_set_dtr (serial_t *device, int level)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
INFO (device->context, "DTR: value=%i", level);
if (ftdi_setdtr(device->ftdi_ctx, level)) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return -1;
}
return 0;
}
static int serial_ftdi_set_rts (serial_t *device, int level)
{
if (device == NULL)
return -1; // EINVAL (Invalid argument)
INFO (device->context, "RTS: value=%i", level);
if (ftdi_setrts(device->ftdi_ctx, level)) {
ERROR (device->context, "%s", ftdi_get_error_string(device->ftdi_ctx));
return -1;
}
return 0;
}
const dc_serial_operations_t serial_ftdi_ops = {
.open = serial_ftdi_open,
.close = serial_ftdi_close,
.read = serial_ftdi_read,
.write = serial_ftdi_write,
.flush = serial_ftdi_flush,
.get_received = serial_ftdi_get_received,
.get_transmitted = NULL, /*NOT USED ANYWHERE! serial_ftdi_get_transmitted */
.set_timeout = serial_ftdi_set_timeout
#ifdef FIXED_SSRF_CUSTOM_SERIAL
,
.configure = serial_ftdi_configure,
//static int serial_ftdi_configure (serial_t *device, int baudrate, int databits, int parity, int stopbits, int flowcontrol)
.set_halfduplex = serial_ftdi_set_halfduplex,
//static int serial_ftdi_set_halfduplex (serial_t *device, int value)
.send_break = serial_ftdi_send_break,
//static int serial_ftdi_send_break (serial_t *device)
.set_break = serial_ftdi_set_break,
//static int serial_ftdi_set_break (serial_t *device, int level)
.set_dtr = serial_ftdi_set_dtr,
//static int serial_ftdi_set_dtr (serial_t *device, int level)
.set_rts = serial_ftdi_set_rts
//static int serial_ftdi_set_rts (serial_t *device, int level)
#endif
};
dc_status_t dc_serial_ftdi_open(dc_serial_t **out, dc_context_t *context)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
dc_serial_t *serial_device = (dc_serial_t *) malloc (sizeof (dc_serial_t));
if (serial_device == NULL) {
return DC_STATUS_NOMEMORY;
}
// Initialize data and function pointers
dc_serial_init(serial_device, NULL, &serial_ftdi_ops);
// Open the serial device.
dc_status_t rc = (dc_status_t) serial_ftdi_open (&serial_device->port, context, NULL);
if (rc != DC_STATUS_SUCCESS) {
free (serial_device);
return rc;
}
// Set the type of the device
serial_device->type = DC_TRANSPORT_USB;;
*out = serial_device;
return DC_STATUS_SUCCESS;
}