mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-29 21:50:26 +00:00
e362afe43c
At some places we use UTF8 string literals. Therefore, we effectively only support UTF8 build systems. We might just as well remove all the other UTF_* macros and use direct string literals. Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
4580 lines
121 KiB
C
4580 lines
121 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
||
/* dive.c */
|
||
/* maintains the internal dive list structure */
|
||
#include <string.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <limits.h>
|
||
#include "gettext.h"
|
||
#include "subsurface-string.h"
|
||
#include "libdivecomputer.h"
|
||
#include "device.h"
|
||
#include "divelist.h"
|
||
#include "divesite.h"
|
||
#include "qthelper.h"
|
||
#include "metadata.h"
|
||
#include "membuffer.h"
|
||
|
||
/* one could argue about the best place to have this variable -
|
||
* it's used in the UI, but it seems to make the most sense to have it
|
||
* here */
|
||
struct dive displayed_dive;
|
||
|
||
struct tag_entry *g_tag_list = NULL;
|
||
|
||
static const char *default_tags[] = {
|
||
QT_TRANSLATE_NOOP("gettextFromC", "boat"), QT_TRANSLATE_NOOP("gettextFromC", "shore"), QT_TRANSLATE_NOOP("gettextFromC", "drift"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "deep"), QT_TRANSLATE_NOOP("gettextFromC", "cavern"), QT_TRANSLATE_NOOP("gettextFromC", "ice"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "wreck"), QT_TRANSLATE_NOOP("gettextFromC", "cave"), QT_TRANSLATE_NOOP("gettextFromC", "altitude"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "pool"), QT_TRANSLATE_NOOP("gettextFromC", "lake"), QT_TRANSLATE_NOOP("gettextFromC", "river"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "night"), QT_TRANSLATE_NOOP("gettextFromC", "fresh"), QT_TRANSLATE_NOOP("gettextFromC", "student"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "instructor"), QT_TRANSLATE_NOOP("gettextFromC", "photo"), QT_TRANSLATE_NOOP("gettextFromC", "video"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "deco")
|
||
};
|
||
|
||
const char *cylinderuse_text[] = {
|
||
QT_TRANSLATE_NOOP("gettextFromC", "OC-gas"), QT_TRANSLATE_NOOP("gettextFromC", "diluent"), QT_TRANSLATE_NOOP("gettextFromC", "oxygen"), QT_TRANSLATE_NOOP("gettextFromC", "not used")
|
||
};
|
||
|
||
// For user visible text but still not translated
|
||
const char *divemode_text_ui[] = {
|
||
QT_TRANSLATE_NOOP("gettextFromC", "Open circuit"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "CCR"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "pSCR"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "Freedive")
|
||
};
|
||
|
||
// For writing/reading files.
|
||
const char *divemode_text[] = {"OC", "CCR", "PSCR", "Freedive"};
|
||
|
||
/*
|
||
* Adding a cylinder pressure sample field is not quite as trivial as it
|
||
* perhaps should be.
|
||
*
|
||
* We try to keep the same sensor index for the same sensor, so that even
|
||
* if the dive computer doesn't give pressure information for every sample,
|
||
* we don't move pressure information around between the different sensor
|
||
* indexes.
|
||
*
|
||
* The "prepare_sample()" function will always copy the sensor indices
|
||
* from the previous sample, so the indexes are pre-populated (but the
|
||
* pressures obviously are not)
|
||
*/
|
||
void add_sample_pressure(struct sample *sample, int sensor, int mbar)
|
||
{
|
||
int idx;
|
||
|
||
if (!mbar)
|
||
return;
|
||
|
||
/* Do we already have a slot for this sensor */
|
||
for (idx = 0; idx < MAX_SENSORS; idx++) {
|
||
if (sensor != sample->sensor[idx])
|
||
continue;
|
||
sample->pressure[idx].mbar = mbar;
|
||
return;
|
||
}
|
||
|
||
/* Pick the first unused index if we couldn't reuse one */
|
||
for (idx = 0; idx < MAX_SENSORS; idx++) {
|
||
if (sample->pressure[idx].mbar)
|
||
continue;
|
||
sample->sensor[idx] = sensor;
|
||
sample->pressure[idx].mbar = mbar;
|
||
return;
|
||
}
|
||
|
||
/* We do not have enough slots for the pressure samples. */
|
||
/* Should we warn the user about dropping pressure data? */
|
||
}
|
||
|
||
/*
|
||
* The legacy format for sample pressures has a single pressure
|
||
* for each sample that can have any sensor, plus a possible
|
||
* "o2pressure" that is fixed to the Oxygen sensor for a CCR dive.
|
||
*
|
||
* For more complex pressure data, we have to use explicit
|
||
* cylinder indexes for each sample.
|
||
*
|
||
* This function returns a negative number for "no legacy mode",
|
||
* or a non-negative number that indicates the o2 sensor index.
|
||
*/
|
||
int legacy_format_o2pressures(const struct dive *dive, const struct divecomputer *dc)
|
||
{
|
||
int i, o2sensor;
|
||
|
||
o2sensor = (dc->divemode == CCR) ? get_cylinder_idx_by_use(dive, OXYGEN) : -1;
|
||
for (i = 0; i < dc->samples; i++) {
|
||
const struct sample *s = dc->sample + i;
|
||
int seen_pressure = 0, idx;
|
||
|
||
for (idx = 0; idx < MAX_SENSORS; idx++) {
|
||
int sensor = s->sensor[idx];
|
||
pressure_t p = s->pressure[idx];
|
||
|
||
if (!p.mbar)
|
||
continue;
|
||
if (sensor == o2sensor)
|
||
continue;
|
||
if (seen_pressure)
|
||
return -1;
|
||
seen_pressure = 1;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Use legacy mode: if we have no O2 sensor we return a
|
||
* positive sensor index that is guaranmteed to not match
|
||
* any sensor (we encode it as 8 bits).
|
||
*/
|
||
return o2sensor < 0 ? 256 : o2sensor;
|
||
}
|
||
|
||
int event_is_gaschange(const struct event *ev)
|
||
{
|
||
return ev->type == SAMPLE_EVENT_GASCHANGE ||
|
||
ev->type == SAMPLE_EVENT_GASCHANGE2;
|
||
}
|
||
|
||
struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const char *name)
|
||
{
|
||
int gas_index = -1;
|
||
struct event *ev, **p;
|
||
unsigned int size, len = strlen(name);
|
||
|
||
size = sizeof(*ev) + len + 1;
|
||
ev = malloc(size);
|
||
if (!ev)
|
||
return NULL;
|
||
memset(ev, 0, size);
|
||
memcpy(ev->name, name, len);
|
||
ev->time.seconds = time;
|
||
ev->type = type;
|
||
ev->flags = flags;
|
||
ev->value = value;
|
||
|
||
/*
|
||
* Expand the events into a sane format. Currently
|
||
* just gas switches
|
||
*/
|
||
switch (type) {
|
||
case SAMPLE_EVENT_GASCHANGE2:
|
||
/* High 16 bits are He percentage */
|
||
ev->gas.mix.he.permille = (value >> 16) * 10;
|
||
|
||
/* Extension to the GASCHANGE2 format: cylinder index in 'flags' */
|
||
if (flags > 0 && flags <= MAX_CYLINDERS)
|
||
gas_index = flags-1;
|
||
/* Fallthrough */
|
||
case SAMPLE_EVENT_GASCHANGE:
|
||
/* Low 16 bits are O2 percentage */
|
||
ev->gas.mix.o2.permille = (value & 0xffff) * 10;
|
||
ev->gas.index = gas_index;
|
||
break;
|
||
}
|
||
|
||
p = &dc->events;
|
||
|
||
/* insert in the sorted list of events */
|
||
while (*p && (*p)->time.seconds <= time)
|
||
p = &(*p)->next;
|
||
ev->next = *p;
|
||
*p = ev;
|
||
remember_event(name);
|
||
return ev;
|
||
}
|
||
|
||
static int same_event(const struct event *a, const struct event *b)
|
||
{
|
||
if (a->time.seconds != b->time.seconds)
|
||
return 0;
|
||
if (a->type != b->type)
|
||
return 0;
|
||
if (a->flags != b->flags)
|
||
return 0;
|
||
if (a->value != b->value)
|
||
return 0;
|
||
return !strcmp(a->name, b->name);
|
||
}
|
||
|
||
void remove_event(struct event *event)
|
||
{
|
||
struct event **ep = ¤t_dc->events;
|
||
while (ep && !same_event(*ep, event))
|
||
ep = &(*ep)->next;
|
||
if (ep) {
|
||
/* we can't link directly with event->next
|
||
* because 'event' can be a copy from another
|
||
* dive (for instance the displayed_dive
|
||
* that we use on the interface to show things). */
|
||
struct event *temp = (*ep)->next;
|
||
free(*ep);
|
||
*ep = temp;
|
||
}
|
||
}
|
||
|
||
/* since the name is an array as part of the structure (how silly is that?) we
|
||
* have to actually remove the existing event and replace it with a new one.
|
||
* WARNING, WARNING... this may end up freeing event in case that event is indeed
|
||
* WARNING, WARNING... part of this divecomputer on this dive! */
|
||
void update_event_name(struct dive *d, struct event *event, const char *name)
|
||
{
|
||
if (!d || !event)
|
||
return;
|
||
struct divecomputer *dc = get_dive_dc(d, dc_number);
|
||
if (!dc)
|
||
return;
|
||
struct event **removep = &dc->events;
|
||
struct event *remove;
|
||
while ((*removep)->next && !same_event(*removep, event))
|
||
removep = &(*removep)->next;
|
||
if (!same_event(*removep, event))
|
||
return;
|
||
remove = *removep;
|
||
*removep = (*removep)->next;
|
||
add_event(dc, event->time.seconds, event->type, event->flags, event->value, name);
|
||
free(remove);
|
||
invalidate_dive_cache(d);
|
||
}
|
||
|
||
void add_extra_data(struct divecomputer *dc, const char *key, const char *value)
|
||
{
|
||
struct extra_data **ed = &dc->extra_data;
|
||
|
||
while (*ed)
|
||
ed = &(*ed)->next;
|
||
*ed = malloc(sizeof(struct extra_data));
|
||
if (*ed) {
|
||
(*ed)->key = strdup(key);
|
||
(*ed)->value = strdup(value);
|
||
(*ed)->next = NULL;
|
||
}
|
||
}
|
||
|
||
/* Find the divemode at time 'time' (in seconds) into the dive. Sequentially step through the divemode-change events,
|
||
* saving the dive mode for each event. When the events occur AFTER 'time' seconds, the last stored divemode
|
||
* is returned. This function is self-tracking, relying on setting the event pointer 'evp' so that, in each iteration
|
||
* that calls this function, the search does not have to begin at the first event of the dive */
|
||
enum divemode_t get_current_divemode(const struct divecomputer *dc, int time, const struct event **evp, enum divemode_t *divemode)
|
||
{
|
||
const struct event *ev = *evp;
|
||
if (*divemode == UNDEF_COMP_TYPE) {
|
||
*divemode = dc->divemode;
|
||
ev = dc ? get_next_event(dc->events, "modechange") : NULL;
|
||
}
|
||
while (ev && ev->time.seconds < time) {
|
||
*divemode = (enum divemode_t) ev->value;
|
||
ev = get_next_event(ev->next, "modechange");
|
||
}
|
||
*evp = ev;
|
||
return *divemode;
|
||
}
|
||
|
||
struct gasmix get_gasmix_from_event(const struct dive *dive, const struct event *ev)
|
||
{
|
||
struct gasmix dummy = { 0 };
|
||
if (ev && event_is_gaschange(ev)) {
|
||
int index = ev->gas.index;
|
||
if (index >= 0 && index < MAX_CYLINDERS)
|
||
return dive->cylinder[index].gasmix;
|
||
return ev->gas.mix;
|
||
}
|
||
return dummy;
|
||
}
|
||
|
||
int get_pressure_units(int mb, const char **units)
|
||
{
|
||
int pressure;
|
||
const char *unit;
|
||
const struct units *units_p = get_units();
|
||
|
||
switch (units_p->pressure) {
|
||
case PASCAL:
|
||
pressure = mb * 100;
|
||
unit = translate("gettextFromC", "pascal");
|
||
break;
|
||
case BAR:
|
||
default:
|
||
pressure = (mb + 500) / 1000;
|
||
unit = translate("gettextFromC", "bar");
|
||
break;
|
||
case PSI:
|
||
pressure = mbar_to_PSI(mb);
|
||
unit = translate("gettextFromC", "psi");
|
||
break;
|
||
}
|
||
if (units)
|
||
*units = unit;
|
||
return pressure;
|
||
}
|
||
|
||
double get_temp_units(unsigned int mk, const char **units)
|
||
{
|
||
double deg;
|
||
const char *unit;
|
||
const struct units *units_p = get_units();
|
||
|
||
if (units_p->temperature == FAHRENHEIT) {
|
||
deg = mkelvin_to_F(mk);
|
||
unit = "°F";
|
||
} else {
|
||
deg = mkelvin_to_C(mk);
|
||
unit = "°C";
|
||
}
|
||
if (units)
|
||
*units = unit;
|
||
return deg;
|
||
}
|
||
|
||
double get_volume_units(unsigned int ml, int *frac, const char **units)
|
||
{
|
||
int decimals;
|
||
double vol;
|
||
const char *unit;
|
||
const struct units *units_p = get_units();
|
||
|
||
switch (units_p->volume) {
|
||
case LITER:
|
||
default:
|
||
vol = ml / 1000.0;
|
||
unit = translate("gettextFromC", "ℓ");
|
||
decimals = 1;
|
||
break;
|
||
case CUFT:
|
||
vol = ml_to_cuft(ml);
|
||
unit = translate("gettextFromC", "cuft");
|
||
decimals = 2;
|
||
break;
|
||
}
|
||
if (frac)
|
||
*frac = decimals;
|
||
if (units)
|
||
*units = unit;
|
||
return vol;
|
||
}
|
||
|
||
int units_to_sac(double volume)
|
||
{
|
||
if (get_units()->volume == CUFT)
|
||
return lrint(cuft_to_l(volume) * 1000.0);
|
||
else
|
||
return lrint(volume * 1000);
|
||
}
|
||
|
||
depth_t units_to_depth(double depth)
|
||
{
|
||
depth_t internaldepth;
|
||
if (get_units()->length == METERS) {
|
||
internaldepth.mm = lrint(depth * 1000);
|
||
} else {
|
||
internaldepth.mm = feet_to_mm(depth);
|
||
}
|
||
return internaldepth;
|
||
}
|
||
|
||
double get_depth_units(int mm, int *frac, const char **units)
|
||
{
|
||
int decimals;
|
||
double d;
|
||
const char *unit;
|
||
const struct units *units_p = get_units();
|
||
|
||
switch (units_p->length) {
|
||
case METERS:
|
||
default:
|
||
d = mm / 1000.0;
|
||
unit = translate("gettextFromC", "m");
|
||
decimals = d < 20;
|
||
break;
|
||
case FEET:
|
||
d = mm_to_feet(mm);
|
||
unit = translate("gettextFromC", "ft");
|
||
decimals = 0;
|
||
break;
|
||
}
|
||
if (frac)
|
||
*frac = decimals;
|
||
if (units)
|
||
*units = unit;
|
||
return d;
|
||
}
|
||
|
||
double get_vertical_speed_units(unsigned int mms, int *frac, const char **units)
|
||
{
|
||
double d;
|
||
const char *unit;
|
||
const struct units *units_p = get_units();
|
||
const double time_factor = units_p->vertical_speed_time == MINUTES ? 60.0 : 1.0;
|
||
|
||
switch (units_p->length) {
|
||
case METERS:
|
||
default:
|
||
d = mms / 1000.0 * time_factor;
|
||
if (units_p->vertical_speed_time == MINUTES)
|
||
unit = translate("gettextFromC", "m/min");
|
||
else
|
||
unit = translate("gettextFromC", "m/s");
|
||
break;
|
||
case FEET:
|
||
d = mm_to_feet(mms) * time_factor;
|
||
if (units_p->vertical_speed_time == MINUTES)
|
||
unit = translate("gettextFromC", "ft/min");
|
||
else
|
||
unit = translate("gettextFromC", "ft/s");
|
||
break;
|
||
}
|
||
if (frac)
|
||
*frac = d < 10;
|
||
if (units)
|
||
*units = unit;
|
||
return d;
|
||
}
|
||
|
||
double get_weight_units(unsigned int grams, int *frac, const char **units)
|
||
{
|
||
int decimals;
|
||
double value;
|
||
const char *unit;
|
||
const struct units *units_p = get_units();
|
||
|
||
if (units_p->weight == LBS) {
|
||
value = grams_to_lbs(grams);
|
||
unit = translate("gettextFromC", "lbs");
|
||
decimals = 0;
|
||
} else {
|
||
value = grams / 1000.0;
|
||
unit = translate("gettextFromC", "kg");
|
||
decimals = 1;
|
||
}
|
||
if (frac)
|
||
*frac = decimals;
|
||
if (units)
|
||
*units = unit;
|
||
return value;
|
||
}
|
||
|
||
// we need this to be uniq. oh, and it has no meaning whatsoever
|
||
// - that's why we have the silly initial number and increment by 3 :-)
|
||
int dive_getUniqID()
|
||
{
|
||
static int maxId = 83529;
|
||
maxId += 3;
|
||
return maxId;
|
||
}
|
||
|
||
struct dive *alloc_dive(void)
|
||
{
|
||
struct dive *dive;
|
||
|
||
dive = malloc(sizeof(*dive));
|
||
if (!dive)
|
||
exit(1);
|
||
memset(dive, 0, sizeof(*dive));
|
||
dive->id = dive_getUniqID();
|
||
return dive;
|
||
}
|
||
|
||
/* Clear everything but the first element;
|
||
* this works for taglist, picturelist, even dive computers */
|
||
#define STRUCTURED_LIST_FREE(_type, _start, _free) \
|
||
{ \
|
||
_type *_ptr = _start; \
|
||
while (_ptr) { \
|
||
_type *_next = _ptr->next; \
|
||
_free(_ptr); \
|
||
_ptr = _next; \
|
||
} \
|
||
}
|
||
|
||
#define STRUCTURED_LIST_COPY(_type, _first, _dest, _cpy) \
|
||
{ \
|
||
_type *_sptr = _first; \
|
||
_type **_dptr = &_dest; \
|
||
while (_sptr) { \
|
||
*_dptr = malloc(sizeof(_type)); \
|
||
_cpy(_sptr, *_dptr); \
|
||
_sptr = _sptr->next; \
|
||
_dptr = &(*_dptr)->next; \
|
||
} \
|
||
*_dptr = 0; \
|
||
}
|
||
|
||
static void free_dc(struct divecomputer *dc);
|
||
static void free_dc_contents(struct divecomputer *dc);
|
||
|
||
/* copy an element in a list of dive computer extra data */
|
||
static void copy_extra_data(struct extra_data *sed, struct extra_data *ded)
|
||
{
|
||
ded->key = copy_string(sed->key);
|
||
ded->value = copy_string(sed->value);
|
||
}
|
||
|
||
/* this is very different from the copy_divecomputer later in this file;
|
||
* this function actually makes full copies of the content */
|
||
static void copy_dc(const struct divecomputer *sdc, struct divecomputer *ddc)
|
||
{
|
||
*ddc = *sdc;
|
||
ddc->model = copy_string(sdc->model);
|
||
ddc->serial = copy_string(sdc->serial);
|
||
ddc->fw_version = copy_string(sdc->fw_version);
|
||
copy_samples(sdc, ddc);
|
||
copy_events(sdc, ddc);
|
||
STRUCTURED_LIST_COPY(struct extra_data, sdc->extra_data, ddc->extra_data, copy_extra_data);
|
||
}
|
||
|
||
static void dc_cylinder_renumber(struct dive *dive, struct divecomputer *dc, const int mapping[]);
|
||
|
||
/* copy dive computer list and renumber the cylinders
|
||
* space for the first divecomputer is provided by the
|
||
* caller, the remainder is allocated */
|
||
static void copy_dc_renumber(struct dive *d, const struct divecomputer *sdc, struct divecomputer *ddc, const int cylinders_map[])
|
||
{
|
||
for (;;) {
|
||
copy_dc(sdc, ddc);
|
||
dc_cylinder_renumber(d, ddc, cylinders_map);
|
||
if (!sdc->next)
|
||
break;
|
||
sdc = sdc->next;
|
||
ddc->next = calloc(1, sizeof(struct divecomputer));
|
||
ddc = ddc->next;
|
||
}
|
||
ddc->next = NULL;
|
||
}
|
||
|
||
/* copy an element in a list of pictures */
|
||
static void copy_pl(struct picture *sp, struct picture *dp)
|
||
{
|
||
*dp = *sp;
|
||
dp->filename = copy_string(sp->filename);
|
||
}
|
||
|
||
/* copy an element in a list of tags */
|
||
static void copy_tl(struct tag_entry *st, struct tag_entry *dt)
|
||
{
|
||
dt->tag = malloc(sizeof(struct divetag));
|
||
dt->tag->name = copy_string(st->tag->name);
|
||
dt->tag->source = copy_string(st->tag->source);
|
||
}
|
||
|
||
static void free_dive_structures(struct dive *d)
|
||
{
|
||
if (!d)
|
||
return;
|
||
/* free the strings */
|
||
free(d->buddy);
|
||
free(d->divemaster);
|
||
free(d->notes);
|
||
free(d->suit);
|
||
/* free tags, additional dive computers, and pictures */
|
||
taglist_free(d->tag_list);
|
||
free_dc_contents(&d->dc);
|
||
STRUCTURED_LIST_FREE(struct divecomputer, d->dc.next, free_dc);
|
||
STRUCTURED_LIST_FREE(struct picture, d->picture_list, free_picture);
|
||
for (int i = 0; i < MAX_CYLINDERS; i++)
|
||
free((void *)d->cylinder[i].type.description);
|
||
for (int i = 0; i < MAX_WEIGHTSYSTEMS; i++)
|
||
free((void *)d->weightsystem[i].description);
|
||
}
|
||
|
||
void free_dive(struct dive *d)
|
||
{
|
||
free_dive_structures(d);
|
||
free(d);
|
||
}
|
||
|
||
/* copy_dive makes duplicates of many components of a dive;
|
||
* in order not to leak memory, we need to free those .
|
||
* copy_dive doesn't play with the divetrip and forward/backward pointers
|
||
* so we can ignore those */
|
||
void clear_dive(struct dive *d)
|
||
{
|
||
if (!d)
|
||
return;
|
||
free_dive_structures(d);
|
||
memset(d, 0, sizeof(struct dive));
|
||
}
|
||
|
||
/* make a true copy that is independent of the source dive;
|
||
* all data structures are duplicated, so the copy can be modified without
|
||
* any impact on the source */
|
||
static void copy_dive_nodc(const struct dive *s, struct dive *d)
|
||
{
|
||
clear_dive(d);
|
||
/* simply copy things over, but then make actual copies of the
|
||
* relevant components that are referenced through pointers,
|
||
* so all the strings and the structured lists */
|
||
*d = *s;
|
||
invalidate_dive_cache(d);
|
||
d->buddy = copy_string(s->buddy);
|
||
d->divemaster = copy_string(s->divemaster);
|
||
d->notes = copy_string(s->notes);
|
||
d->suit = copy_string(s->suit);
|
||
for (int i = 0; i < MAX_CYLINDERS; i++)
|
||
d->cylinder[i].type.description = copy_string(s->cylinder[i].type.description);
|
||
for (int i = 0; i < MAX_WEIGHTSYSTEMS; i++)
|
||
d->weightsystem[i].description = copy_string(s->weightsystem[i].description);
|
||
STRUCTURED_LIST_COPY(struct picture, s->picture_list, d->picture_list, copy_pl);
|
||
STRUCTURED_LIST_COPY(struct tag_entry, s->tag_list, d->tag_list, copy_tl);
|
||
}
|
||
|
||
void copy_dive(const struct dive *s, struct dive *d)
|
||
{
|
||
copy_dive_nodc(s, d);
|
||
|
||
// Copy the first dc explicitly, then the list of subsequent dc's
|
||
copy_dc(&s->dc, &d->dc);
|
||
STRUCTURED_LIST_COPY(struct divecomputer, s->dc.next, d->dc.next, copy_dc);
|
||
}
|
||
|
||
static void copy_dive_onedc(const struct dive *s, const struct divecomputer *sdc, struct dive *d)
|
||
{
|
||
copy_dive_nodc(s, d);
|
||
copy_dc(sdc, &d->dc);
|
||
d->dc.next = NULL;
|
||
}
|
||
|
||
/* make a clone of the source dive and clean out the source dive;
|
||
* this is specifically so we can create a dive in the displayed_dive and then
|
||
* add it to the divelist.
|
||
* Note the difference to copy_dive() / clean_dive() */
|
||
struct dive *clone_dive(struct dive *s)
|
||
{
|
||
struct dive *dive = alloc_dive();
|
||
*dive = *s; // so all the pointers in dive point to the things s pointed to
|
||
memset(s, 0, sizeof(struct dive)); // and now the pointers in s are gone
|
||
return dive;
|
||
}
|
||
|
||
#define CONDITIONAL_COPY_STRING(_component) \
|
||
if (what._component) \
|
||
d->_component = copy_string(s->_component)
|
||
|
||
void copy_weights(const struct dive *s, struct dive *d)
|
||
{
|
||
for (int i = 0; i < MAX_WEIGHTSYSTEMS; i++) {
|
||
free((void *)d->weightsystem[i].description);
|
||
d->weightsystem[i] = s->weightsystem[i];
|
||
d->weightsystem[i].description = copy_string(s->weightsystem[i].description);
|
||
}
|
||
}
|
||
|
||
// copy elements, depending on bits in what that are set
|
||
void selective_copy_dive(const struct dive *s, struct dive *d, struct dive_components what, bool clear)
|
||
{
|
||
if (clear)
|
||
clear_dive(d);
|
||
CONDITIONAL_COPY_STRING(notes);
|
||
CONDITIONAL_COPY_STRING(divemaster);
|
||
CONDITIONAL_COPY_STRING(buddy);
|
||
CONDITIONAL_COPY_STRING(suit);
|
||
if (what.rating)
|
||
d->rating = s->rating;
|
||
if (what.visibility)
|
||
d->visibility = s->visibility;
|
||
if (what.divesite) {
|
||
unregister_dive_from_dive_site(d);
|
||
add_dive_to_dive_site(d, s->dive_site);
|
||
}
|
||
if (what.tags)
|
||
d->tag_list = taglist_copy(s->tag_list);
|
||
if (what.cylinders)
|
||
copy_cylinders(s, d, false);
|
||
if (what.weights)
|
||
copy_weights(s, d);
|
||
}
|
||
#undef CONDITIONAL_COPY_STRING
|
||
|
||
struct event *clone_event(const struct event *src_ev)
|
||
{
|
||
struct event *ev;
|
||
if (!src_ev)
|
||
return NULL;
|
||
|
||
size_t size = sizeof(*src_ev) + strlen(src_ev->name) + 1;
|
||
ev = (struct event*) malloc(size);
|
||
if (!ev)
|
||
exit(1);
|
||
memcpy(ev, src_ev, size);
|
||
ev->next = NULL;
|
||
|
||
return ev;
|
||
}
|
||
|
||
/* copies all events in this dive computer */
|
||
void copy_events(const struct divecomputer *s, struct divecomputer *d)
|
||
{
|
||
const struct event *ev;
|
||
struct event **pev;
|
||
if (!s || !d)
|
||
return;
|
||
ev = s->events;
|
||
pev = &d->events;
|
||
while (ev != NULL) {
|
||
struct event *new_ev = clone_event(ev);
|
||
*pev = new_ev;
|
||
pev = &new_ev->next;
|
||
ev = ev->next;
|
||
}
|
||
*pev = NULL;
|
||
}
|
||
|
||
int nr_cylinders(const struct dive *dive)
|
||
{
|
||
int nr;
|
||
|
||
for (nr = MAX_CYLINDERS; nr; --nr) {
|
||
const cylinder_t *cylinder = dive->cylinder + nr - 1;
|
||
if (!cylinder_nodata(cylinder))
|
||
break;
|
||
}
|
||
return nr;
|
||
}
|
||
|
||
int nr_weightsystems(const struct dive *dive)
|
||
{
|
||
int nr;
|
||
|
||
for (nr = MAX_WEIGHTSYSTEMS; nr; --nr) {
|
||
const weightsystem_t *ws = dive->weightsystem + nr - 1;
|
||
if (!weightsystem_none(ws))
|
||
break;
|
||
}
|
||
return nr;
|
||
}
|
||
|
||
/* copy the equipment data part of the cylinders */
|
||
void copy_cylinders(const struct dive *s, struct dive *d, bool used_only)
|
||
{
|
||
int i,j;
|
||
cylinder_t t[MAX_CYLINDERS];
|
||
if (!s || !d)
|
||
return;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
// Store the original start and end pressures
|
||
t[i].start.mbar = d->cylinder[i].start.mbar;
|
||
t[i].end.mbar = d->cylinder[i].end.mbar;
|
||
t[i].sample_start.mbar = d->cylinder[i].sample_start.mbar;
|
||
t[i].sample_end.mbar = d->cylinder[i].sample_end.mbar;
|
||
|
||
free((void *)d->cylinder[i].type.description);
|
||
memset(&d->cylinder[i], 0, sizeof(cylinder_t));
|
||
}
|
||
for (i = j = 0; i < MAX_CYLINDERS; i++) {
|
||
if (!used_only || is_cylinder_used(s, i) || s->cylinder[i].cylinder_use == NOT_USED) {
|
||
d->cylinder[j].type = s->cylinder[i].type;
|
||
d->cylinder[j].type.description = copy_string(s->cylinder[i].type.description);
|
||
d->cylinder[j].gasmix = s->cylinder[i].gasmix;
|
||
d->cylinder[j].depth = s->cylinder[i].depth;
|
||
d->cylinder[j].cylinder_use = s->cylinder[i].cylinder_use;
|
||
d->cylinder[j].manually_added = true;
|
||
|
||
// Restore the start and end pressures from original cylinder
|
||
d->cylinder[i].start.mbar = t[i].start.mbar;
|
||
d->cylinder[i].end.mbar = t[i].end.mbar;
|
||
d->cylinder[i].sample_start.mbar = t[i].sample_start.mbar;
|
||
d->cylinder[i].sample_end.mbar = t[i].sample_end.mbar;
|
||
|
||
j++;
|
||
}
|
||
}
|
||
}
|
||
|
||
int cylinderuse_from_text(const char *text)
|
||
{
|
||
for (enum cylinderuse i = 0; i < NUM_GAS_USE; i++) {
|
||
if (same_string(text, cylinderuse_text[i]) || same_string(text, translate("gettextFromC", cylinderuse_text[i])))
|
||
return i;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
void copy_samples(const struct divecomputer *s, struct divecomputer *d)
|
||
{
|
||
/* instead of carefully copying them one by one and calling add_sample
|
||
* over and over again, let's just copy the whole blob */
|
||
if (!s || !d)
|
||
return;
|
||
int nr = s->samples;
|
||
d->samples = nr;
|
||
d->alloc_samples = nr;
|
||
// We expect to be able to read the memory in the other end of the pointer
|
||
// if its a valid pointer, so don't expect malloc() to return NULL for
|
||
// zero-sized malloc, do it ourselves.
|
||
d->sample = NULL;
|
||
|
||
if(!nr)
|
||
return;
|
||
|
||
d->sample = malloc(nr * sizeof(struct sample));
|
||
if (d->sample)
|
||
memcpy(d->sample, s->sample, nr * sizeof(struct sample));
|
||
}
|
||
|
||
/* make room for num samples; if not enough space is available, the sample
|
||
* array is reallocated and the existing samples are copied. */
|
||
void alloc_samples(struct divecomputer *dc, int num)
|
||
{
|
||
if (num > dc->alloc_samples) {
|
||
dc->alloc_samples = (num * 3) / 2 + 10;
|
||
dc->sample = realloc(dc->sample, dc->alloc_samples * sizeof(struct sample));
|
||
if (!dc->sample)
|
||
dc->samples = dc->alloc_samples = 0;
|
||
}
|
||
}
|
||
|
||
void free_samples(struct divecomputer *dc)
|
||
{
|
||
if (dc) {
|
||
free(dc->sample);
|
||
dc->sample = 0;
|
||
dc->samples = 0;
|
||
dc->alloc_samples = 0;
|
||
}
|
||
}
|
||
|
||
struct sample *prepare_sample(struct divecomputer *dc)
|
||
{
|
||
if (dc) {
|
||
int nr = dc->samples;
|
||
struct sample *sample;
|
||
alloc_samples(dc, nr + 1);
|
||
if (!dc->sample)
|
||
return NULL;
|
||
sample = dc->sample + nr;
|
||
memset(sample, 0, sizeof(*sample));
|
||
|
||
// Copy the sensor numbers - but not the pressure values
|
||
// from the previous sample if any.
|
||
if (nr) {
|
||
for (int idx = 0; idx < MAX_SENSORS; idx++)
|
||
sample->sensor[idx] = sample[-1].sensor[idx];
|
||
}
|
||
// Init some values with -1
|
||
sample->bearing.degrees = -1;
|
||
sample->ndl.seconds = -1;
|
||
|
||
return sample;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
void finish_sample(struct divecomputer *dc)
|
||
{
|
||
dc->samples++;
|
||
}
|
||
|
||
/*
|
||
* So when we re-calculate maxdepth and meandepth, we will
|
||
* not override the old numbers if they are close to the
|
||
* new ones.
|
||
*
|
||
* Why? Because a dive computer may well actually track the
|
||
* max. depth and mean depth at finer granularity than the
|
||
* samples it stores. So it's possible that the max and mean
|
||
* have been reported more correctly originally.
|
||
*
|
||
* Only if the values calculated from the samples are clearly
|
||
* different do we override the normal depth values.
|
||
*
|
||
* This considers 1m to be "clearly different". That's
|
||
* a totally random number.
|
||
*/
|
||
static void update_depth(depth_t *depth, int new)
|
||
{
|
||
if (new) {
|
||
int old = depth->mm;
|
||
|
||
if (abs(old - new) > 1000)
|
||
depth->mm = new;
|
||
}
|
||
}
|
||
|
||
static void update_temperature(temperature_t *temperature, int new)
|
||
{
|
||
if (new) {
|
||
int old = temperature->mkelvin;
|
||
|
||
if (abs(old - new) > 1000)
|
||
temperature->mkelvin = new;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Calculate how long we were actually under water, and the average
|
||
* depth while under water.
|
||
*
|
||
* This ignores any surface time in the middle of the dive.
|
||
*/
|
||
void fixup_dc_duration(struct divecomputer *dc)
|
||
{
|
||
int duration, i;
|
||
int lasttime, lastdepth, depthtime;
|
||
|
||
duration = 0;
|
||
lasttime = 0;
|
||
lastdepth = 0;
|
||
depthtime = 0;
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample + i;
|
||
int time = sample->time.seconds;
|
||
int depth = sample->depth.mm;
|
||
|
||
/* We ignore segments at the surface */
|
||
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
|
||
duration += time - lasttime;
|
||
depthtime += (time - lasttime) * (depth + lastdepth) / 2;
|
||
}
|
||
lastdepth = depth;
|
||
lasttime = time;
|
||
}
|
||
if (duration) {
|
||
dc->duration.seconds = duration;
|
||
dc->meandepth.mm = (depthtime + duration / 2) / duration;
|
||
}
|
||
}
|
||
|
||
/* Which cylinders had gas used? */
|
||
#define SOME_GAS 5000
|
||
static unsigned int get_cylinder_used(const struct dive *dive)
|
||
{
|
||
int i;
|
||
unsigned int mask = 0;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
const cylinder_t *cyl = dive->cylinder + i;
|
||
int start_mbar, end_mbar;
|
||
|
||
if (cylinder_nodata(cyl))
|
||
continue;
|
||
start_mbar = cyl->start.mbar ?: cyl->sample_start.mbar;
|
||
end_mbar = cyl->end.mbar ?: cyl->sample_end.mbar;
|
||
|
||
// More than 5 bar used? This matches statistics.c
|
||
// heuristics
|
||
if (start_mbar > end_mbar + SOME_GAS)
|
||
mask |= 1 << i;
|
||
}
|
||
return mask;
|
||
}
|
||
|
||
/* Which cylinders do we know usage about? */
|
||
static unsigned int get_cylinder_known(const struct dive *dive, const struct divecomputer *dc)
|
||
{
|
||
unsigned int mask = 0;
|
||
const struct event *ev;
|
||
|
||
/* We know about using the O2 cylinder in a CCR dive */
|
||
if (dc->divemode == CCR) {
|
||
int o2_cyl = get_cylinder_idx_by_use(dive, OXYGEN);
|
||
if (o2_cyl >= 0)
|
||
mask |= 1 << o2_cyl;
|
||
}
|
||
|
||
/* We know about the explicit first cylinder (or first) */
|
||
mask |= 1 << explicit_first_cylinder(dive, dc);
|
||
|
||
/* And we have possible switches to other gases */
|
||
ev = get_next_event(dc->events, "gaschange");
|
||
while (ev) {
|
||
int i = get_cylinder_index(dive, ev);
|
||
if (i >= 0)
|
||
mask |= 1 << i;
|
||
ev = get_next_event(ev->next, "gaschange");
|
||
}
|
||
|
||
return mask;
|
||
}
|
||
|
||
void per_cylinder_mean_depth(const struct dive *dive, struct divecomputer *dc, int *mean, int *duration)
|
||
{
|
||
int i;
|
||
int depthtime[MAX_CYLINDERS] = { 0, };
|
||
uint32_t lasttime = 0;
|
||
int lastdepth = 0;
|
||
int idx = 0;
|
||
unsigned int used_mask, known_mask;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++)
|
||
mean[i] = duration[i] = 0;
|
||
if (!dc)
|
||
return;
|
||
|
||
/*
|
||
* There is no point in doing per-cylinder information
|
||
* if we don't actually know about the usage of all the
|
||
* used cylinders.
|
||
*/
|
||
used_mask = get_cylinder_used(dive);
|
||
known_mask = get_cylinder_known(dive, dc);
|
||
if (used_mask & ~known_mask) {
|
||
/*
|
||
* If we had more than one used cylinder, but
|
||
* do not know usage of them, we simply cannot
|
||
* account mean depth to them.
|
||
*
|
||
* The "x & (x-1)" test shows if it's not a pure
|
||
* power of two.
|
||
*/
|
||
if (used_mask & (used_mask-1))
|
||
return;
|
||
|
||
/*
|
||
* For a single cylinder, use the overall mean
|
||
* and duration
|
||
*/
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
if (used_mask & (1 << i)) {
|
||
mean[i] = dc->meandepth.mm;
|
||
duration[i] = dc->duration.seconds;
|
||
}
|
||
}
|
||
|
||
return;
|
||
}
|
||
if (!dc->samples)
|
||
fake_dc(dc);
|
||
const struct event *ev = get_next_event(dc->events, "gaschange");
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample + i;
|
||
uint32_t time = sample->time.seconds;
|
||
int depth = sample->depth.mm;
|
||
|
||
/* Make sure to move the event past 'lasttime' */
|
||
while (ev && lasttime >= ev->time.seconds) {
|
||
idx = get_cylinder_index(dive, ev);
|
||
ev = get_next_event(ev->next, "gaschange");
|
||
}
|
||
|
||
/* Do we need to fake a midway sample at an event? */
|
||
if (ev && time > ev->time.seconds) {
|
||
int newtime = ev->time.seconds;
|
||
int newdepth = interpolate(lastdepth, depth, newtime - lasttime, time - lasttime);
|
||
|
||
time = newtime;
|
||
depth = newdepth;
|
||
i--;
|
||
}
|
||
/* We ignore segments at the surface */
|
||
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
|
||
duration[idx] += time - lasttime;
|
||
depthtime[idx] += (time - lasttime) * (depth + lastdepth) / 2;
|
||
}
|
||
lastdepth = depth;
|
||
lasttime = time;
|
||
}
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
if (duration[i])
|
||
mean[i] = (depthtime[i] + duration[i] / 2) / duration[i];
|
||
}
|
||
}
|
||
|
||
static void update_min_max_temperatures(struct dive *dive, temperature_t temperature)
|
||
{
|
||
if (temperature.mkelvin) {
|
||
if (!dive->maxtemp.mkelvin || temperature.mkelvin > dive->maxtemp.mkelvin)
|
||
dive->maxtemp = temperature;
|
||
if (!dive->mintemp.mkelvin || temperature.mkelvin < dive->mintemp.mkelvin)
|
||
dive->mintemp = temperature;
|
||
}
|
||
}
|
||
|
||
int gas_volume(const cylinder_t *cyl, pressure_t p)
|
||
{
|
||
double bar = p.mbar / 1000.0;
|
||
double z_factor = gas_compressibility_factor(cyl->gasmix, bar);
|
||
return lrint(cyl->type.size.mliter * bar_to_atm(bar) / z_factor);
|
||
}
|
||
|
||
/*
|
||
* If the cylinder tank pressures are within half a bar
|
||
* (about 8 PSI) of the sample pressures, we consider it
|
||
* to be a rounding error, and throw them away as redundant.
|
||
*/
|
||
static int same_rounded_pressure(pressure_t a, pressure_t b)
|
||
{
|
||
return abs(a.mbar - b.mbar) <= 500;
|
||
}
|
||
|
||
/* Some dive computers (Cobalt) don't start the dive with cylinder 0 but explicitly
|
||
* tell us what the first gas is with a gas change event in the first sample.
|
||
* Sneakily we'll use a return value of 0 (or FALSE) when there is no explicit
|
||
* first cylinder - in which case cylinder 0 is indeed the first cylinder */
|
||
int explicit_first_cylinder(const struct dive *dive, const struct divecomputer *dc)
|
||
{
|
||
if (dc) {
|
||
const struct event *ev = get_next_event(dc->events, "gaschange");
|
||
if (ev && ((dc->sample && ev->time.seconds == dc->sample[0].time.seconds) || ev->time.seconds <= 1))
|
||
return get_cylinder_index(dive, ev);
|
||
else if (dc->divemode == CCR)
|
||
return MAX(get_cylinder_idx_by_use(dive, DILUENT), 0);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* this gets called when the dive mode has changed (so OC vs. CC)
|
||
* there are two places we might have setpoints... events or in the samples
|
||
*/
|
||
void update_setpoint_events(const struct dive *dive, struct divecomputer *dc)
|
||
{
|
||
struct event *ev;
|
||
int new_setpoint = 0;
|
||
|
||
if (dc->divemode == CCR)
|
||
new_setpoint = prefs.defaultsetpoint;
|
||
|
||
if (dc->divemode == OC &&
|
||
(same_string(dc->model, "Shearwater Predator") ||
|
||
same_string(dc->model, "Shearwater Petrel") ||
|
||
same_string(dc->model, "Shearwater Nerd"))) {
|
||
// make sure there's no setpoint in the samples
|
||
// this is an irreversible change - so switching a dive to OC
|
||
// by mistake when it's actually CCR is _bad_
|
||
// So we make sure, this comes from a Predator or Petrel and we only remove
|
||
// pO2 values we would have computed anyway.
|
||
const struct event *ev = get_next_event(dc->events, "gaschange");
|
||
struct gasmix gasmix = get_gasmix_from_event(dive, ev);
|
||
const struct event *next = get_next_event(ev, "gaschange");
|
||
|
||
for (int i = 0; i < dc->samples; i++) {
|
||
struct gas_pressures pressures;
|
||
if (next && dc->sample[i].time.seconds >= next->time.seconds) {
|
||
ev = next;
|
||
gasmix = get_gasmix_from_event(dive, ev);
|
||
next = get_next_event(ev, "gaschange");
|
||
}
|
||
fill_pressures(&pressures, calculate_depth_to_mbar(dc->sample[i].depth.mm, dc->surface_pressure, 0), gasmix ,0, dc->divemode);
|
||
if (abs(dc->sample[i].setpoint.mbar - (int)(1000 * pressures.o2)) <= 50)
|
||
dc->sample[i].setpoint.mbar = 0;
|
||
}
|
||
}
|
||
|
||
// an "SP change" event at t=0 is currently our marker for OC vs CCR
|
||
// this will need to change to a saner setup, but for now we can just
|
||
// check if such an event is there and adjust it, or add that event
|
||
ev = get_next_event_mutable(dc->events, "SP change");
|
||
if (ev && ev->time.seconds == 0) {
|
||
ev->value = new_setpoint;
|
||
} else {
|
||
if (!add_event(dc, 0, SAMPLE_EVENT_PO2, 0, new_setpoint, "SP change"))
|
||
fprintf(stderr, "Could not add setpoint change event\n");
|
||
}
|
||
}
|
||
|
||
void sanitize_gasmix(struct gasmix *mix)
|
||
{
|
||
unsigned int o2, he;
|
||
|
||
o2 = mix->o2.permille;
|
||
he = mix->he.permille;
|
||
|
||
/* Regular air: leave empty */
|
||
if (!he) {
|
||
if (!o2)
|
||
return;
|
||
/* 20.8% to 21% O2 is just air */
|
||
if (gasmix_is_air(*mix)) {
|
||
mix->o2.permille = 0;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Sane mix? */
|
||
if (o2 <= 1000 && he <= 1000 && o2 + he <= 1000)
|
||
return;
|
||
fprintf(stderr, "Odd gasmix: %u O2 %u He\n", o2, he);
|
||
memset(mix, 0, sizeof(*mix));
|
||
}
|
||
|
||
/*
|
||
* See if the size/workingpressure looks like some standard cylinder
|
||
* size, eg "AL80".
|
||
*
|
||
* NOTE! We don't take compressibility into account when naming
|
||
* cylinders. That makes a certain amount of sense, since the
|
||
* cylinder name is independent from the gasmix, and different
|
||
* gasmixes have different compressibility.
|
||
*/
|
||
static void match_standard_cylinder(cylinder_type_t *type)
|
||
{
|
||
double cuft, bar;
|
||
int psi, len;
|
||
const char *fmt;
|
||
char buffer[40], *p;
|
||
|
||
/* Do we already have a cylinder description? */
|
||
if (type->description)
|
||
return;
|
||
|
||
bar = type->workingpressure.mbar / 1000.0;
|
||
cuft = ml_to_cuft(type->size.mliter);
|
||
cuft *= bar_to_atm(bar);
|
||
psi = to_PSI(type->workingpressure);
|
||
|
||
switch (psi) {
|
||
case 2300 ... 2500: /* 2400 psi: LP tank */
|
||
fmt = "LP%d";
|
||
break;
|
||
case 2600 ... 2700: /* 2640 psi: LP+10% */
|
||
fmt = "LP%d";
|
||
break;
|
||
case 2900 ... 3100: /* 3000 psi: ALx tank */
|
||
fmt = "AL%d";
|
||
break;
|
||
case 3400 ... 3500: /* 3442 psi: HP tank */
|
||
fmt = "HP%d";
|
||
break;
|
||
case 3700 ... 3850: /* HP+10% */
|
||
fmt = "HP%d+";
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
len = snprintf(buffer, sizeof(buffer), fmt, (int)lrint(cuft));
|
||
p = malloc(len + 1);
|
||
if (!p)
|
||
return;
|
||
memcpy(p, buffer, len + 1);
|
||
type->description = p;
|
||
}
|
||
|
||
/*
|
||
* There are two ways to give cylinder size information:
|
||
* - total amount of gas in cuft (depends on working pressure and physical size)
|
||
* - physical size
|
||
*
|
||
* where "physical size" is the one that actually matters and is sane.
|
||
*
|
||
* We internally use physical size only. But we save the workingpressure
|
||
* so that we can do the conversion if required.
|
||
*/
|
||
static void sanitize_cylinder_type(cylinder_type_t *type)
|
||
{
|
||
/* If we have no working pressure, it had *better* be just a physical size! */
|
||
if (!type->workingpressure.mbar)
|
||
return;
|
||
|
||
/* No size either? Nothing to go on */
|
||
if (!type->size.mliter)
|
||
return;
|
||
|
||
/* Ok, we have both size and pressure: try to match a description */
|
||
match_standard_cylinder(type);
|
||
}
|
||
|
||
static void sanitize_cylinder_info(struct dive *dive)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
sanitize_gasmix(&dive->cylinder[i].gasmix);
|
||
sanitize_cylinder_type(&dive->cylinder[i].type);
|
||
}
|
||
}
|
||
|
||
/* Perform isobaric counterdiffusion calculations for gas changes in trimix dives.
|
||
* Here we use the rule-of-fifths where, during a change involving trimix gas, the increase in nitrogen
|
||
* should not exceed one fifth of the decrease in helium.
|
||
* Parameters: 1) pointers to two gas mixes, the gas being switched from and the gas being switched to.
|
||
* 2) a pointer to an icd_data structure.
|
||
* Output: i) The icd_data stucture is filled with the delta_N2 and delta_He numbers (as permille).
|
||
* ii) Function returns a boolean indicating an exceeding of the rule-of-fifths. False = no icd problem.
|
||
*/
|
||
bool isobaric_counterdiffusion(struct gasmix oldgasmix, struct gasmix newgasmix, struct icd_data *results)
|
||
{
|
||
if (!prefs.show_icd)
|
||
return false;
|
||
results->dN2 = get_he(oldgasmix) + get_o2(oldgasmix) - get_he(newgasmix) - get_o2(newgasmix);
|
||
results->dHe = get_he(newgasmix) - get_he(oldgasmix);
|
||
return get_he(oldgasmix) > 0 && results->dN2 > 0 && results->dHe < 0 && get_he(oldgasmix) && results->dN2 > 0 && 5 * results->dN2 > -results->dHe;
|
||
}
|
||
|
||
/* some events should never be thrown away */
|
||
static bool is_potentially_redundant(const struct event *event)
|
||
{
|
||
if (!strcmp(event->name, "gaschange"))
|
||
return false;
|
||
if (!strcmp(event->name, "bookmark"))
|
||
return false;
|
||
if (!strcmp(event->name, "heading"))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* match just by name - we compare the details in the code that uses this helper */
|
||
static struct event *find_previous_event(struct divecomputer *dc, struct event *event)
|
||
{
|
||
struct event *ev = dc->events;
|
||
struct event *previous = NULL;
|
||
|
||
if (empty_string(event->name))
|
||
return NULL;
|
||
while (ev && ev != event) {
|
||
if (same_string(ev->name, event->name))
|
||
previous = ev;
|
||
ev = ev->next;
|
||
}
|
||
return previous;
|
||
}
|
||
|
||
static void fixup_surface_pressure(struct dive *dive)
|
||
{
|
||
struct divecomputer *dc;
|
||
int sum = 0, nr = 0;
|
||
|
||
for_each_dc (dive, dc) {
|
||
if (dc->surface_pressure.mbar) {
|
||
sum += dc->surface_pressure.mbar;
|
||
nr++;
|
||
}
|
||
}
|
||
if (nr)
|
||
dive->surface_pressure.mbar = (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_water_salinity(struct dive *dive)
|
||
{
|
||
struct divecomputer *dc;
|
||
int sum = 0, nr = 0;
|
||
|
||
for_each_dc (dive, dc) {
|
||
if (dc->salinity) {
|
||
if (dc->salinity < 500)
|
||
dc->salinity += FRESHWATER_SALINITY;
|
||
sum += dc->salinity;
|
||
nr++;
|
||
}
|
||
}
|
||
if (nr)
|
||
dive->salinity = (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_meandepth(struct dive *dive)
|
||
{
|
||
struct divecomputer *dc;
|
||
int sum = 0, nr = 0;
|
||
|
||
for_each_dc (dive, dc) {
|
||
if (dc->meandepth.mm) {
|
||
sum += dc->meandepth.mm;
|
||
nr++;
|
||
}
|
||
}
|
||
if (nr)
|
||
dive->meandepth.mm = (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_duration(struct dive *dive)
|
||
{
|
||
struct divecomputer *dc;
|
||
duration_t duration = { };
|
||
|
||
for_each_dc (dive, dc)
|
||
duration.seconds = MAX(duration.seconds, dc->duration.seconds);
|
||
|
||
dive->duration.seconds = duration.seconds;
|
||
}
|
||
|
||
/*
|
||
* What do the dive computers say the water temperature is?
|
||
* (not in the samples, but as dc property for dcs that support that)
|
||
*/
|
||
unsigned int dc_watertemp(const struct divecomputer *dc)
|
||
{
|
||
int sum = 0, nr = 0;
|
||
|
||
do {
|
||
if (dc->watertemp.mkelvin) {
|
||
sum += dc->watertemp.mkelvin;
|
||
nr++;
|
||
}
|
||
} while ((dc = dc->next) != NULL);
|
||
if (!nr)
|
||
return 0;
|
||
return (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_watertemp(struct dive *dive)
|
||
{
|
||
if (!dive->watertemp.mkelvin)
|
||
dive->watertemp.mkelvin = dc_watertemp(&dive->dc);
|
||
}
|
||
|
||
/*
|
||
* What do the dive computers say the air temperature is?
|
||
*/
|
||
unsigned int dc_airtemp(const struct divecomputer *dc)
|
||
{
|
||
int sum = 0, nr = 0;
|
||
|
||
do {
|
||
if (dc->airtemp.mkelvin) {
|
||
sum += dc->airtemp.mkelvin;
|
||
nr++;
|
||
}
|
||
} while ((dc = dc->next) != NULL);
|
||
if (!nr)
|
||
return 0;
|
||
return (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_airtemp(struct dive *dive)
|
||
{
|
||
if (!dive->airtemp.mkelvin)
|
||
dive->airtemp.mkelvin = dc_airtemp(&dive->dc);
|
||
}
|
||
|
||
/* if the air temperature in the dive data is redundant to the one in its
|
||
* first divecomputer (i.e., it was added by running fixup on the dive)
|
||
* return 0, otherwise return the air temperature given in the dive */
|
||
static temperature_t un_fixup_airtemp(const struct dive *a)
|
||
{
|
||
temperature_t res = a->airtemp;
|
||
if (a->airtemp.mkelvin && a->airtemp.mkelvin == dc_airtemp(&a->dc))
|
||
res.mkelvin = 0;
|
||
return res;
|
||
}
|
||
|
||
/*
|
||
* events are stored as a linked list, so the concept of
|
||
* "consecutive, identical events" is somewhat hard to
|
||
* implement correctly (especially given that on some dive
|
||
* computers events are asynchronous, so they can come in
|
||
* between what would be the non-constant sample rate).
|
||
*
|
||
* So what we do is that we throw away clearly redundant
|
||
* events that are fewer than 61 seconds apart (assuming there
|
||
* is no dive computer with a sample rate of more than 60
|
||
* seconds... that would be pretty pointless to plot the
|
||
* profile with)
|
||
*
|
||
* We first only mark the events for deletion so that we
|
||
* still know when the previous event happened.
|
||
*/
|
||
static void fixup_dc_events(struct divecomputer *dc)
|
||
{
|
||
struct event *event;
|
||
|
||
event = dc->events;
|
||
while (event) {
|
||
struct event *prev;
|
||
if (is_potentially_redundant(event)) {
|
||
prev = find_previous_event(dc, event);
|
||
if (prev && prev->value == event->value &&
|
||
prev->flags == event->flags &&
|
||
event->time.seconds - prev->time.seconds < 61)
|
||
event->deleted = true;
|
||
}
|
||
event = event->next;
|
||
}
|
||
event = dc->events;
|
||
while (event) {
|
||
if (event->next && event->next->deleted) {
|
||
struct event *nextnext = event->next->next;
|
||
free(event->next);
|
||
event->next = nextnext;
|
||
} else {
|
||
event = event->next;
|
||
}
|
||
}
|
||
}
|
||
|
||
static int interpolate_depth(struct divecomputer *dc, int idx, int lastdepth, int lasttime, int now)
|
||
{
|
||
int i;
|
||
int nextdepth = lastdepth;
|
||
int nexttime = now;
|
||
|
||
for (i = idx+1; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample + i;
|
||
if (sample->depth.mm < 0)
|
||
continue;
|
||
nextdepth = sample->depth.mm;
|
||
nexttime = sample->time.seconds;
|
||
break;
|
||
}
|
||
return interpolate(lastdepth, nextdepth, now-lasttime, nexttime-lasttime);
|
||
}
|
||
|
||
static void fixup_dc_depths(struct dive *dive, struct divecomputer *dc)
|
||
{
|
||
int i;
|
||
int maxdepth = dc->maxdepth.mm;
|
||
int lasttime = 0, lastdepth = 0;
|
||
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample + i;
|
||
int time = sample->time.seconds;
|
||
int depth = sample->depth.mm;
|
||
|
||
if (depth < 0) {
|
||
depth = interpolate_depth(dc, i, lastdepth, lasttime, time);
|
||
sample->depth.mm = depth;
|
||
}
|
||
|
||
if (depth > SURFACE_THRESHOLD) {
|
||
if (depth > maxdepth)
|
||
maxdepth = depth;
|
||
}
|
||
|
||
lastdepth = depth;
|
||
lasttime = time;
|
||
if (sample->cns > dive->maxcns)
|
||
dive->maxcns = sample->cns;
|
||
}
|
||
|
||
update_depth(&dc->maxdepth, maxdepth);
|
||
if (maxdepth > dive->maxdepth.mm)
|
||
dive->maxdepth.mm = maxdepth;
|
||
}
|
||
|
||
static void fixup_dc_ndl(struct divecomputer *dc)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample + i;
|
||
if (sample->ndl.seconds != 0)
|
||
break;
|
||
if (sample->ndl.seconds == 0)
|
||
sample->ndl.seconds = -1;
|
||
}
|
||
}
|
||
|
||
static void fixup_dc_temp(struct dive *dive, struct divecomputer *dc)
|
||
{
|
||
int i;
|
||
int mintemp = 0, lasttemp = 0;
|
||
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample + i;
|
||
int temp = sample->temperature.mkelvin;
|
||
|
||
if (temp) {
|
||
/*
|
||
* If we have consecutive identical
|
||
* temperature readings, throw away
|
||
* the redundant ones.
|
||
*/
|
||
if (lasttemp == temp)
|
||
sample->temperature.mkelvin = 0;
|
||
else
|
||
lasttemp = temp;
|
||
|
||
if (!mintemp || temp < mintemp)
|
||
mintemp = temp;
|
||
}
|
||
|
||
update_min_max_temperatures(dive, sample->temperature);
|
||
}
|
||
update_temperature(&dc->watertemp, mintemp);
|
||
update_min_max_temperatures(dive, dc->watertemp);
|
||
}
|
||
|
||
/* Remove redundant pressure information */
|
||
static void simplify_dc_pressures(struct divecomputer *dc)
|
||
{
|
||
int i;
|
||
int lastindex[2] = { -1, -1 };
|
||
int lastpressure[2] = { 0 };
|
||
|
||
for (i = 0; i < dc->samples; i++) {
|
||
int j;
|
||
struct sample *sample = dc->sample + i;
|
||
|
||
for (j = 0; j < MAX_SENSORS; j++) {
|
||
int pressure = sample->pressure[j].mbar;
|
||
int index = sample->sensor[j];
|
||
|
||
if (index == lastindex[j]) {
|
||
/* Remove duplicate redundant pressure information */
|
||
if (pressure == lastpressure[j])
|
||
sample->pressure[j].mbar = 0;
|
||
}
|
||
lastindex[j] = index;
|
||
lastpressure[j] = pressure;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Do we need a sensor -> cylinder mapping? */
|
||
static void fixup_start_pressure(struct dive *dive, int idx, pressure_t p)
|
||
{
|
||
if (idx >= 0 && idx < MAX_CYLINDERS) {
|
||
cylinder_t *cyl = dive->cylinder + idx;
|
||
if (p.mbar && !cyl->sample_start.mbar)
|
||
cyl->sample_start = p;
|
||
}
|
||
}
|
||
|
||
static void fixup_end_pressure(struct dive *dive, int idx, pressure_t p)
|
||
{
|
||
if (idx >= 0 && idx < MAX_CYLINDERS) {
|
||
cylinder_t *cyl = dive->cylinder + idx;
|
||
if (p.mbar && !cyl->sample_end.mbar)
|
||
cyl->sample_end = p;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Check the cylinder pressure sample information and fill in the
|
||
* overall cylinder pressures from those.
|
||
*
|
||
* We ignore surface samples for tank pressure information.
|
||
*
|
||
* At the beginning of the dive, let the cylinder cool down
|
||
* if the diver starts off at the surface. And at the end
|
||
* of the dive, there may be surface pressures where the
|
||
* diver has already turned off the air supply (especially
|
||
* for computers like the Uemis Zurich that end up saving
|
||
* quite a bit of samples after the dive has ended).
|
||
*/
|
||
static void fixup_dive_pressures(struct dive *dive, struct divecomputer *dc)
|
||
{
|
||
int i;
|
||
|
||
/* Walk the samples from the beginning to find starting pressures.. */
|
||
for (i = 0; i < dc->samples; i++) {
|
||
int idx;
|
||
struct sample *sample = dc->sample + i;
|
||
|
||
if (sample->depth.mm < SURFACE_THRESHOLD)
|
||
continue;
|
||
|
||
for (idx = 0; idx < MAX_SENSORS; idx++)
|
||
fixup_start_pressure(dive, sample->sensor[idx], sample->pressure[idx]);
|
||
}
|
||
|
||
/* ..and from the end for ending pressures */
|
||
for (i = dc->samples; --i >= 0; ) {
|
||
int idx;
|
||
struct sample *sample = dc->sample + i;
|
||
|
||
if (sample->depth.mm < SURFACE_THRESHOLD)
|
||
continue;
|
||
|
||
for (idx = 0; idx < MAX_SENSORS; idx++)
|
||
fixup_end_pressure(dive, sample->sensor[idx], sample->pressure[idx]);
|
||
}
|
||
|
||
simplify_dc_pressures(dc);
|
||
}
|
||
|
||
int find_best_gasmix_match(struct gasmix mix, const cylinder_t array[], unsigned int used)
|
||
{
|
||
int i;
|
||
int best = -1, score = INT_MAX;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
const cylinder_t *match;
|
||
int distance;
|
||
|
||
if (used & (1 << i))
|
||
continue;
|
||
match = array + i;
|
||
if (cylinder_nodata(match))
|
||
continue;
|
||
distance = gasmix_distance(mix, match->gasmix);
|
||
if (distance >= score)
|
||
continue;
|
||
best = i;
|
||
score = distance;
|
||
}
|
||
return best;
|
||
}
|
||
|
||
/*
|
||
* Match a gas change event against the cylinders we have
|
||
*/
|
||
static bool validate_gaschange(struct dive *dive, struct event *event)
|
||
{
|
||
int index;
|
||
int o2, he, value;
|
||
|
||
/* We'll get rid of the per-event gasmix, but for now sanitize it */
|
||
if (gasmix_is_air(event->gas.mix))
|
||
event->gas.mix.o2.permille = 0;
|
||
|
||
/* Do we already have a cylinder index for this gasmix? */
|
||
if (event->gas.index >= 0)
|
||
return true;
|
||
|
||
index = find_best_gasmix_match(event->gas.mix, dive->cylinder, 0);
|
||
if (index < 0)
|
||
return false;
|
||
|
||
/* Fix up the event to have the right information */
|
||
event->gas.index = index;
|
||
event->gas.mix = dive->cylinder[index].gasmix;
|
||
|
||
/* Convert to odd libdivecomputer format */
|
||
o2 = get_o2(event->gas.mix);
|
||
he = get_he(event->gas.mix);
|
||
|
||
o2 = (o2 + 5) / 10;
|
||
he = (he + 5) / 10;
|
||
value = o2 + (he << 16);
|
||
|
||
event->value = value;
|
||
if (he)
|
||
event->type = SAMPLE_EVENT_GASCHANGE2;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Clean up event, return true if event is ok, false if it should be dropped as bogus */
|
||
static bool validate_event(struct dive *dive, struct event *event)
|
||
{
|
||
if (event_is_gaschange(event))
|
||
return validate_gaschange(dive, event);
|
||
return true;
|
||
}
|
||
|
||
static void fixup_dc_gasswitch(struct dive *dive, struct divecomputer *dc)
|
||
{
|
||
struct event **evp, *event;
|
||
|
||
evp = &dc->events;
|
||
while ((event = *evp) != NULL) {
|
||
if (validate_event(dive, event)) {
|
||
evp = &event->next;
|
||
continue;
|
||
}
|
||
|
||
/* Delete this event and try the next one */
|
||
*evp = event->next;
|
||
}
|
||
}
|
||
|
||
static void fixup_no_o2sensors(struct divecomputer *dc)
|
||
{
|
||
// Its only relevant to look for sensor values on CCR and PSCR dives without any no_o2sensors recorded.
|
||
if (dc->no_o2sensors != 0 || !(dc->divemode == CCR || dc->divemode == PSCR))
|
||
return;
|
||
|
||
for (int i = 0; i < dc->samples; i++) {
|
||
int nsensor = 0;
|
||
struct sample *s = dc->sample + i;
|
||
|
||
// How many o2 sensors can we find in this sample?
|
||
if (s->o2sensor[0].mbar)
|
||
nsensor++;
|
||
if (s->o2sensor[1].mbar)
|
||
nsensor++;
|
||
if (s->o2sensor[2].mbar)
|
||
nsensor++;
|
||
|
||
// If we fond more than the previous found max, record it.
|
||
if (nsensor > dc->no_o2sensors)
|
||
dc->no_o2sensors = nsensor;
|
||
|
||
// Already found the maximum posible amount.
|
||
if (nsensor == 3)
|
||
return;
|
||
}
|
||
}
|
||
|
||
static void fixup_dive_dc(struct dive *dive, struct divecomputer *dc)
|
||
{
|
||
/* Add device information to table */
|
||
if (dc->deviceid && (dc->serial || dc->fw_version))
|
||
create_device_node(dc->model, dc->deviceid, dc->serial, dc->fw_version, "");
|
||
|
||
/* Fixup duration and mean depth */
|
||
fixup_dc_duration(dc);
|
||
|
||
/* Fix up sample depth data */
|
||
fixup_dc_depths(dive, dc);
|
||
|
||
/* Fix up first sample ndl data */
|
||
fixup_dc_ndl(dc);
|
||
|
||
/* Fix up dive temperatures based on dive computer samples */
|
||
fixup_dc_temp(dive, dc);
|
||
|
||
/* Fix up gas switch events */
|
||
fixup_dc_gasswitch(dive, dc);
|
||
|
||
/* Fix up cylinder pressures based on DC info */
|
||
fixup_dive_pressures(dive, dc);
|
||
|
||
fixup_dc_events(dc);
|
||
|
||
/* Fixup CCR / PSCR dives with o2sensor values, but without no_o2sensors */
|
||
fixup_no_o2sensors(dc);
|
||
}
|
||
|
||
struct dive *fixup_dive(struct dive *dive)
|
||
{
|
||
int i;
|
||
struct divecomputer *dc;
|
||
|
||
sanitize_cylinder_info(dive);
|
||
dive->maxcns = dive->cns;
|
||
|
||
/*
|
||
* Use the dive's temperatures for minimum and maximum in case
|
||
* we do not have temperatures recorded by DC.
|
||
*/
|
||
|
||
update_min_max_temperatures(dive, dive->watertemp);
|
||
|
||
for_each_dc (dive, dc)
|
||
fixup_dive_dc(dive, dc);
|
||
|
||
fixup_water_salinity(dive);
|
||
fixup_surface_pressure(dive);
|
||
fixup_meandepth(dive);
|
||
fixup_duration(dive);
|
||
fixup_watertemp(dive);
|
||
fixup_airtemp(dive);
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
cylinder_t *cyl = dive->cylinder + i;
|
||
add_cylinder_description(&cyl->type);
|
||
if (same_rounded_pressure(cyl->sample_start, cyl->start))
|
||
cyl->start.mbar = 0;
|
||
if (same_rounded_pressure(cyl->sample_end, cyl->end))
|
||
cyl->end.mbar = 0;
|
||
}
|
||
update_cylinder_related_info(dive);
|
||
for (i = 0; i < MAX_WEIGHTSYSTEMS; i++) {
|
||
weightsystem_t *ws = dive->weightsystem + i;
|
||
add_weightsystem_description(ws);
|
||
}
|
||
/* we should always have a uniq ID as that gets assigned during alloc_dive(),
|
||
* but we want to make sure... */
|
||
if (!dive->id)
|
||
dive->id = dive_getUniqID();
|
||
|
||
return dive;
|
||
}
|
||
|
||
/* Don't pick a zero for MERGE_MIN() */
|
||
#define MERGE_MAX(res, a, b, n) res->n = MAX(a->n, b->n)
|
||
#define MERGE_MIN(res, a, b, n) res->n = (a->n) ? (b->n) ? MIN(a->n, b->n) : (a->n) : (b->n)
|
||
#define MERGE_TXT(res, a, b, n, sep) res->n = merge_text(a->n, b->n, sep)
|
||
#define MERGE_NONZERO(res, a, b, n) res->n = a->n ? a->n : b->n
|
||
|
||
struct sample *add_sample(const struct sample *sample, int time, struct divecomputer *dc)
|
||
{
|
||
struct sample *p = prepare_sample(dc);
|
||
|
||
if (p) {
|
||
*p = *sample;
|
||
p->time.seconds = time;
|
||
finish_sample(dc);
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/*
|
||
* This is like add_sample(), but if the distance from the last sample
|
||
* is excessive, we add two surface samples in between.
|
||
*
|
||
* This is so that if you merge two non-overlapping dives, we make sure
|
||
* that the time in between the dives is at the surface, not some "last
|
||
* sample that happened to be at a depth of 1.2m".
|
||
*/
|
||
static void merge_one_sample(const struct sample *sample, int time, struct divecomputer *dc)
|
||
{
|
||
int last = dc->samples - 1;
|
||
if (last >= 0) {
|
||
struct sample *prev = dc->sample + last;
|
||
int last_time = prev->time.seconds;
|
||
int last_depth = prev->depth.mm;
|
||
|
||
/*
|
||
* Only do surface events if the samples are more than
|
||
* a minute apart, and shallower than 5m
|
||
*/
|
||
if (time > last_time + 60 && last_depth < 5000) {
|
||
struct sample surface = { 0 };
|
||
|
||
/* Init a few values from prev sample to avoid useless info in XML */
|
||
surface.bearing.degrees = prev->bearing.degrees;
|
||
surface.ndl.seconds = prev->ndl.seconds;
|
||
|
||
add_sample(&surface, last_time + 20, dc);
|
||
add_sample(&surface, time - 20, dc);
|
||
}
|
||
}
|
||
add_sample(sample, time, dc);
|
||
}
|
||
|
||
static void renumber_last_sample(struct divecomputer *dc, const int mapping[]);
|
||
static void sample_renumber(struct sample *s, int i, const int mapping[]);
|
||
|
||
/*
|
||
* Merge samples. Dive 'a' is "offset" seconds before Dive 'b'
|
||
*/
|
||
static void merge_samples(struct divecomputer *res,
|
||
const struct divecomputer *a, const struct divecomputer *b,
|
||
const int *cylinders_map_a, const int *cylinders_map_b,
|
||
int offset)
|
||
{
|
||
int asamples = a->samples;
|
||
int bsamples = b->samples;
|
||
struct sample *as = a->sample;
|
||
struct sample *bs = b->sample;
|
||
|
||
/*
|
||
* We want a positive sample offset, so that sample
|
||
* times are always positive. So if the samples for
|
||
* 'b' are before the samples for 'a' (so the offset
|
||
* is negative), we switch a and b around, and use
|
||
* the reverse offset.
|
||
*/
|
||
if (offset < 0) {
|
||
const int *cylinders_map_tmp;
|
||
offset = -offset;
|
||
asamples = bsamples;
|
||
bsamples = a->samples;
|
||
as = bs;
|
||
bs = a->sample;
|
||
cylinders_map_tmp = cylinders_map_a;
|
||
cylinders_map_a = cylinders_map_b;
|
||
cylinders_map_b = cylinders_map_tmp;
|
||
}
|
||
|
||
for (;;) {
|
||
int j;
|
||
int at, bt;
|
||
struct sample sample = { .bearing.degrees = -1, .ndl.seconds = -1 };
|
||
|
||
if (!res)
|
||
return;
|
||
|
||
at = asamples ? as->time.seconds : -1;
|
||
bt = bsamples ? bs->time.seconds + offset : -1;
|
||
|
||
/* No samples? All done! */
|
||
if (at < 0 && bt < 0)
|
||
return;
|
||
|
||
/* Only samples from a? */
|
||
if (bt < 0) {
|
||
add_sample_a:
|
||
merge_one_sample(as, at, res);
|
||
renumber_last_sample(res, cylinders_map_a);
|
||
as++;
|
||
asamples--;
|
||
continue;
|
||
}
|
||
|
||
/* Only samples from b? */
|
||
if (at < 0) {
|
||
add_sample_b:
|
||
merge_one_sample(bs, bt, res);
|
||
renumber_last_sample(res, cylinders_map_b);
|
||
bs++;
|
||
bsamples--;
|
||
continue;
|
||
}
|
||
|
||
if (at < bt)
|
||
goto add_sample_a;
|
||
if (at > bt)
|
||
goto add_sample_b;
|
||
|
||
/* same-time sample: add a merged sample. Take the non-zero ones */
|
||
sample = *bs;
|
||
sample_renumber(&sample, 0, cylinders_map_b);
|
||
if (as->depth.mm)
|
||
sample.depth = as->depth;
|
||
if (as->temperature.mkelvin)
|
||
sample.temperature = as->temperature;
|
||
for (j = 0; j < MAX_SENSORS; ++j) {
|
||
int sensor_id;
|
||
|
||
sensor_id = cylinders_map_a[as->sensor[j]];
|
||
if (sensor_id < 0)
|
||
continue;
|
||
|
||
if (as->pressure[j].mbar)
|
||
sample.pressure[j] = as->pressure[j];
|
||
if (as->sensor[j])
|
||
sample.sensor[j] = sensor_id;
|
||
}
|
||
if (as->cns)
|
||
sample.cns = as->cns;
|
||
if (as->setpoint.mbar)
|
||
sample.setpoint = as->setpoint;
|
||
if (as->ndl.seconds)
|
||
sample.ndl = as->ndl;
|
||
if (as->stoptime.seconds)
|
||
sample.stoptime = as->stoptime;
|
||
if (as->stopdepth.mm)
|
||
sample.stopdepth = as->stopdepth;
|
||
if (as->in_deco)
|
||
sample.in_deco = true;
|
||
|
||
merge_one_sample(&sample, at, res);
|
||
|
||
as++;
|
||
bs++;
|
||
asamples--;
|
||
bsamples--;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Does the extradata key/value pair already exist in the
|
||
* supplied dive computer data?
|
||
*
|
||
* This is not hugely efficient (with the whole "do this for
|
||
* every value you merge" it's O(n**2)) but it's not like we
|
||
* have very many extra_data entries per dive computer anyway.
|
||
*/
|
||
static bool extra_data_exists(const struct extra_data *ed, const struct divecomputer *dc)
|
||
{
|
||
const struct extra_data *p;
|
||
|
||
for (p = dc->extra_data; p; p = p->next) {
|
||
if (strcmp(p->key, ed->key))
|
||
continue;
|
||
if (strcmp(p->value, ed->value))
|
||
continue;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/*
|
||
* Merge extra_data.
|
||
*
|
||
* The extra data from 'a' has already been copied into 'res'. So
|
||
* we really should just copy over the data from 'b' too.
|
||
*/
|
||
static void merge_extra_data(struct divecomputer *res,
|
||
const struct divecomputer *a, const struct divecomputer *b)
|
||
{
|
||
struct extra_data **ed, *src;
|
||
|
||
// Find the place to add things in the result
|
||
ed = &res->extra_data;
|
||
while (*ed)
|
||
ed = &(*ed)->next;
|
||
|
||
for (src = b->extra_data; src; src = src->next) {
|
||
if (extra_data_exists(src, a))
|
||
continue;
|
||
*ed = malloc(sizeof(struct extra_data));
|
||
if (!*ed)
|
||
break;
|
||
copy_extra_data(src, *ed);
|
||
ed = &(*ed)->next;
|
||
}
|
||
|
||
// Terminate the result list
|
||
*ed = NULL;
|
||
}
|
||
|
||
static char *merge_text(const char *a, const char *b, const char *sep)
|
||
{
|
||
char *res;
|
||
if (!a && !b)
|
||
return NULL;
|
||
if (!a || !*a)
|
||
return copy_string(b);
|
||
if (!b || !*b)
|
||
return strdup(a);
|
||
if (!strcmp(a, b))
|
||
return copy_string(a);
|
||
res = malloc(strlen(a) + strlen(b) + 32);
|
||
if (!res)
|
||
return (char *)a;
|
||
sprintf(res, "%s%s%s", a, sep, b);
|
||
return res;
|
||
}
|
||
|
||
#define SORT(a, b) \
|
||
if (a != b) \
|
||
return a < b ? -1 : 1
|
||
#define SORT_FIELD(a, b, field) SORT(a->field, b->field)
|
||
|
||
static int sort_event(const struct event *a, const struct event *b, int time_a, int time_b)
|
||
{
|
||
SORT(time_a, time_b);
|
||
SORT_FIELD(a, b, type);
|
||
SORT_FIELD(a, b, flags);
|
||
SORT_FIELD(a, b, value);
|
||
return strcmp(a->name, b->name);
|
||
}
|
||
|
||
static int same_gas(const struct event *a, const struct event *b)
|
||
{
|
||
if (a->type == b->type && a->flags == b->flags && a->value == b->value && !strcmp(a->name, b->name) &&
|
||
same_gasmix(a->gas.mix, b->gas.mix)) {
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static void event_renumber(struct event *ev, const int mapping[]);
|
||
static void add_initial_gaschange(struct dive *dive, struct divecomputer *dc, int offset, int idx);
|
||
|
||
static void merge_events(struct dive *d, struct divecomputer *res,
|
||
const struct divecomputer *src1, const struct divecomputer *src2,
|
||
const int *cylinders_map1, const int *cylinders_map2,
|
||
int offset)
|
||
{
|
||
const struct event *a, *b;
|
||
struct event **p = &res->events;
|
||
const struct event *last_gas = NULL;
|
||
|
||
/* Always use positive offsets */
|
||
if (offset < 0) {
|
||
const struct divecomputer *tmp;
|
||
const int *cylinders_map_tmp;
|
||
|
||
offset = -offset;
|
||
tmp = src1;
|
||
src1 = src2;
|
||
src2 = tmp;
|
||
|
||
cylinders_map_tmp = cylinders_map1;
|
||
cylinders_map1 = cylinders_map2;
|
||
cylinders_map2 = cylinders_map_tmp;
|
||
}
|
||
|
||
a = src1->events;
|
||
b = src2->events;
|
||
|
||
while (a || b) {
|
||
int s;
|
||
const struct event *pick;
|
||
const int *cylinders_map;
|
||
int event_offset;
|
||
|
||
if (!b) {
|
||
*p = clone_event(a);
|
||
event_renumber(*p, cylinders_map1);
|
||
break;
|
||
}
|
||
if (!a) {
|
||
*p = clone_event(b);
|
||
(*p)->time.seconds += offset;
|
||
event_renumber(*p, cylinders_map2);
|
||
break;
|
||
}
|
||
s = sort_event(a, b, a->time.seconds, b->time.seconds + offset);
|
||
|
||
/* Identical events? Just skip one of them (we pick a) */
|
||
if (!s) {
|
||
a = a->next;
|
||
continue;
|
||
}
|
||
|
||
/* Otherwise, pick the one that sorts first */
|
||
if (s < 0) {
|
||
pick = a;
|
||
a = a->next;
|
||
event_offset = 0;
|
||
cylinders_map = cylinders_map1;
|
||
} else {
|
||
pick = b;
|
||
b = b->next;
|
||
event_offset = offset;
|
||
cylinders_map = cylinders_map2;
|
||
}
|
||
|
||
/*
|
||
* If that's a gas-change that matches the previous
|
||
* gas change, we'll just skip it
|
||
*/
|
||
if (event_is_gaschange(pick)) {
|
||
if (last_gas && same_gas(pick, last_gas))
|
||
continue;
|
||
last_gas = pick;
|
||
}
|
||
|
||
/* Add it to the target list */
|
||
*p = clone_event(pick);
|
||
(*p)->time.seconds += event_offset;
|
||
event_renumber(*p, cylinders_map);
|
||
p = &(*p)->next;
|
||
}
|
||
|
||
/* If the initial cylinder of a divecomputer was remapped, add a gas change event to that cylinder */
|
||
if (cylinders_map1[0] > 0)
|
||
add_initial_gaschange(d, res, 0, cylinders_map1[0]);
|
||
if (cylinders_map2[0] > 0)
|
||
add_initial_gaschange(d, res, offset, cylinders_map2[0]);
|
||
}
|
||
|
||
static void merge_weightsystem_info(weightsystem_t *res, const weightsystem_t *a, const weightsystem_t *b)
|
||
{
|
||
if (!a->weight.grams)
|
||
a = b;
|
||
res->weight = a->weight;
|
||
res->description = copy_string(a->description);
|
||
}
|
||
|
||
/* get_cylinder_idx_by_use(): Find the index of the first cylinder with a particular CCR use type.
|
||
* The index returned corresponds to that of the first cylinder with a cylinder_use that
|
||
* equals the appropriate enum value [oxygen, diluent, bailout] given by cylinder_use_type.
|
||
* A negative number returned indicates that a match could not be found.
|
||
* Call parameters: dive = the dive being processed
|
||
* cylinder_use_type = an enum, one of {oxygen, diluent, bailout} */
|
||
extern int get_cylinder_idx_by_use(const struct dive *dive, enum cylinderuse cylinder_use_type)
|
||
{
|
||
int cylinder_index;
|
||
for (cylinder_index = 0; cylinder_index < MAX_CYLINDERS; cylinder_index++) {
|
||
if (dive->cylinder[cylinder_index].cylinder_use == cylinder_use_type)
|
||
return cylinder_index; // return the index of the cylinder with that cylinder use type
|
||
}
|
||
return -1; // negative number means cylinder_use_type not found in list of cylinders
|
||
}
|
||
|
||
int gasmix_distance(struct gasmix a, struct gasmix b)
|
||
{
|
||
int a_o2 = get_o2(a), b_o2 = get_o2(b);
|
||
int a_he = get_he(a), b_he = get_he(b);
|
||
int delta_o2 = a_o2 - b_o2, delta_he = a_he - b_he;
|
||
|
||
delta_he = delta_he * delta_he;
|
||
delta_o2 = delta_o2 * delta_o2;
|
||
return delta_he + delta_o2;
|
||
}
|
||
|
||
/* fill_pressures(): Compute partial gas pressures in bar from gasmix and ambient pressures, possibly for OC or CCR, to be
|
||
* extended to PSCT. This function does the calculations of gas pressures applicable to a single point on the dive profile.
|
||
* The structure "pressures" is used to return calculated gas pressures to the calling software.
|
||
* Call parameters: po2 = po2 value applicable to the record in calling function
|
||
* amb_pressure = ambient pressure applicable to the record in calling function
|
||
* *pressures = structure for communicating o2 sensor values from and gas pressures to the calling function.
|
||
* *mix = structure containing cylinder gas mixture information.
|
||
* divemode = the dive mode pertaining to this point in the dive profile.
|
||
* This function called by: calculate_gas_information_new() in profile.c; add_segment() in deco.c.
|
||
*/
|
||
extern void fill_pressures(struct gas_pressures *pressures, const double amb_pressure, struct gasmix mix, double po2, enum divemode_t divemode)
|
||
{
|
||
if ((divemode != OC) && po2) { // This is a rebreather dive where pressures->o2 is defined
|
||
if (po2 >= amb_pressure) {
|
||
pressures->o2 = amb_pressure;
|
||
pressures->n2 = pressures->he = 0.0;
|
||
} else {
|
||
pressures->o2 = po2;
|
||
if (get_o2(mix) == 1000) {
|
||
pressures->he = pressures->n2 = 0;
|
||
} else {
|
||
pressures->he = (amb_pressure - pressures->o2) * (double)get_he(mix) / (1000 - get_o2(mix));
|
||
pressures->n2 = amb_pressure - pressures->o2 - pressures->he;
|
||
}
|
||
}
|
||
} else {
|
||
if (divemode == PSCR) { /* The steady state approximation should be good enough */
|
||
pressures->o2 = get_o2(mix) / 1000.0 * amb_pressure - (1.0 - get_o2(mix) / 1000.0) * prefs.o2consumption / (prefs.bottomsac * prefs.pscr_ratio / 1000.0);
|
||
if (pressures->o2 < 0) // He's dead, Jim.
|
||
pressures->o2 = 0;
|
||
if (get_o2(mix) != 1000) {
|
||
pressures->he = (amb_pressure - pressures->o2) * get_he(mix) / (1000.0 - get_o2(mix));
|
||
pressures->n2 = (amb_pressure - pressures->o2) * (1000 - get_o2(mix) - get_he(mix)) / (1000.0 - get_o2(mix));
|
||
} else {
|
||
pressures->he = pressures->n2 = 0;
|
||
}
|
||
} else {
|
||
// Open circuit dives: no gas pressure values available, they need to be calculated
|
||
pressures->o2 = get_o2(mix) / 1000.0 * amb_pressure; // These calculations are also used if the CCR calculation above..
|
||
pressures->he = get_he(mix) / 1000.0 * amb_pressure; // ..returned a po2 of zero (i.e. o2 sensor data not resolvable)
|
||
pressures->n2 = (1000 - get_o2(mix) - get_he(mix)) / 1000.0 * amb_pressure;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Force an initial gaschange event to the (old) gas #0 */
|
||
static void add_initial_gaschange(struct dive *dive, struct divecomputer *dc, int offset, int idx)
|
||
{
|
||
/* if there is a gaschange event up to 30 sec after the initial event,
|
||
* refrain from adding the initial event */
|
||
const struct event *ev = dc->events;
|
||
while(ev && (ev = get_next_event(ev, "gaschange")) != NULL) {
|
||
if (ev->time.seconds > offset + 30)
|
||
break;
|
||
else if (ev->time.seconds > offset)
|
||
return;
|
||
ev = ev->next;
|
||
}
|
||
|
||
/* Old starting gas mix */
|
||
add_gas_switch_event(dive, dc, offset, idx);
|
||
}
|
||
|
||
static void sample_renumber(struct sample *s, int i, const int mapping[])
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < MAX_SENSORS; j++) {
|
||
int sensor;
|
||
|
||
sensor = mapping[s->sensor[j]];
|
||
if (sensor == -1) {
|
||
// Remove sensor and gas pressure info
|
||
if (i == 0) {
|
||
s->sensor[j] = 0;
|
||
s->pressure[j].mbar = 0;
|
||
} else {
|
||
s->sensor[j] = s[-1].sensor[j];
|
||
s->pressure[j].mbar = s[-1].pressure[j].mbar;
|
||
}
|
||
} else {
|
||
s->sensor[j] = sensor;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void renumber_last_sample(struct divecomputer *dc, const int mapping[])
|
||
{
|
||
int idx;
|
||
|
||
if (dc->samples <= 0)
|
||
return;
|
||
idx = dc->samples - 1;
|
||
sample_renumber(dc->sample + idx, idx, mapping);
|
||
}
|
||
|
||
static void event_renumber(struct event *ev, const int mapping[])
|
||
{
|
||
if (!event_is_gaschange(ev))
|
||
return;
|
||
if (ev->gas.index < 0)
|
||
return;
|
||
ev->gas.index = mapping[ev->gas.index];
|
||
}
|
||
|
||
static void dc_cylinder_renumber(struct dive *dive, struct divecomputer *dc, const int mapping[])
|
||
{
|
||
int i;
|
||
struct event *ev;
|
||
|
||
/* Remap or delete the sensor indexes */
|
||
for (i = 0; i < dc->samples; i++)
|
||
sample_renumber(dc->sample + i, i, mapping);
|
||
|
||
/* Remap the gas change indexes */
|
||
for (ev = dc->events; ev; ev = ev->next)
|
||
event_renumber(ev, mapping);
|
||
|
||
/* If the initial cylinder of a dive was remapped, add a gas change event to that cylinder */
|
||
if (mapping[0] > 0)
|
||
add_initial_gaschange(dive, dc, 0, mapping[0]);
|
||
}
|
||
|
||
/*
|
||
* If the cylinder indexes change (due to merging dives or deleting
|
||
* cylinders in the middle), we need to change the indexes in the
|
||
* dive computer data for this dive.
|
||
*
|
||
* Also note that we assume that the initial cylinder is cylinder 0,
|
||
* so if that got renamed, we need to create a fake gas change event
|
||
*/
|
||
void cylinder_renumber(struct dive *dive, int mapping[])
|
||
{
|
||
struct divecomputer *dc;
|
||
for_each_dc (dive, dc)
|
||
dc_cylinder_renumber(dive, dc, mapping);
|
||
}
|
||
|
||
static bool gasmix_is_invalid(struct gasmix mix)
|
||
{
|
||
return mix.o2.permille < 0;
|
||
}
|
||
|
||
int same_gasmix(struct gasmix a, struct gasmix b)
|
||
{
|
||
if (gasmix_is_invalid(a) || gasmix_is_invalid(b))
|
||
return 0;
|
||
if (gasmix_is_air(a) && gasmix_is_air(b))
|
||
return 1;
|
||
return a.o2.permille == b.o2.permille && a.he.permille == b.he.permille;
|
||
}
|
||
|
||
int same_gasmix_cylinder(cylinder_t *cyl, int cylid, struct dive *dive, bool check_unused)
|
||
{
|
||
struct gasmix mygas = cyl->gasmix;
|
||
for (int i = 0; i < MAX_CYLINDERS; i++) {
|
||
if (i == cylid || cylinder_none(&dive->cylinder[i]))
|
||
continue;
|
||
struct gasmix gas2 = dive->cylinder[i].gasmix;
|
||
if (gasmix_distance(mygas, gas2) == 0 && (is_cylinder_used(dive, i) || check_unused))
|
||
return i;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
static int pdiff(pressure_t a, pressure_t b)
|
||
{
|
||
return a.mbar && b.mbar && a.mbar != b.mbar;
|
||
}
|
||
|
||
static int different_manual_pressures(const cylinder_t *a, const cylinder_t *b)
|
||
{
|
||
return pdiff(a->start, b->start) || pdiff(a->end, b->end);
|
||
}
|
||
|
||
/*
|
||
* Can we find an exact match for a cylinder in another dive?
|
||
* Take the "already matched" map into account, so that we
|
||
* don't match multiple similar cylinders to one target.
|
||
*
|
||
* To match, the cylinders have to have the same gasmix and the
|
||
* same cylinder use (ie OC/Diluent/Oxygen), and if pressures
|
||
* have been added manually they need to match.
|
||
*/
|
||
static int match_cylinder(const cylinder_t *cyl, const struct dive *dive, unsigned int available)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
const cylinder_t *target;
|
||
|
||
if (!(available & (1u << i)))
|
||
continue;
|
||
target = dive->cylinder + i;
|
||
if (!same_gasmix(cyl->gasmix, target->gasmix))
|
||
continue;
|
||
if (cyl->cylinder_use != target->cylinder_use)
|
||
continue;
|
||
if (different_manual_pressures(cyl, target))
|
||
continue;
|
||
|
||
/* open question: Should we check sizes too? */
|
||
return i;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/*
|
||
* Note: we only allocate from the end, not in holes in the middle.
|
||
* So we don't look for empty bits, we look for "no more bits set".
|
||
* We could use some "find last bit set" math function, but let's
|
||
* not be fancy.
|
||
*/
|
||
static int find_unused_cylinder(unsigned int used_map)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
if (!used_map)
|
||
return i;
|
||
used_map >>= 1;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/*
|
||
* Copy a single cylinder
|
||
*/
|
||
static void copy_cylinder(const cylinder_t *s, cylinder_t *d)
|
||
{
|
||
d->type.size.mliter = s->type.size.mliter;
|
||
d->type.workingpressure.mbar = s->type.workingpressure.mbar;
|
||
d->type.description = copy_string(s->type.description);
|
||
d->gasmix = s->gasmix;
|
||
d->start.mbar = s->start.mbar;
|
||
d->end.mbar = s->end.mbar;
|
||
d->sample_start.mbar = s->sample_start.mbar;
|
||
d->sample_end.mbar = s->sample_end.mbar;
|
||
d->depth = s->depth;
|
||
d->manually_added = s->manually_added;
|
||
d->gas_used.mliter = s->gas_used.mliter;
|
||
d->deco_gas_used.mliter = s->deco_gas_used.mliter;
|
||
d->bestmix_o2 = s->bestmix_o2;
|
||
d->bestmix_he = s->bestmix_he;
|
||
}
|
||
|
||
/*
|
||
* We matched things up so that they have the same gasmix and
|
||
* use, but we might want to fill in any missing cylinder details
|
||
* in 'a' if we had it from 'b'.
|
||
*/
|
||
static void merge_one_cylinder(cylinder_t *res, const cylinder_t *a, const cylinder_t *b)
|
||
{
|
||
res->type.size.mliter = a->type.size.mliter ?
|
||
a->type.size.mliter : b->type.size.mliter;
|
||
res->type.workingpressure.mbar = a->type.workingpressure.mbar ?
|
||
a->type.workingpressure.mbar : b->type.workingpressure.mbar;
|
||
res->type.description = !empty_string(a->type.description) ?
|
||
copy_string(a->type.description) : copy_string(b->type.description);
|
||
res->gasmix = a->gasmix;
|
||
res->start.mbar = a->start.mbar ?
|
||
a->start.mbar : b->start.mbar;
|
||
res->end.mbar = a->end.mbar ?
|
||
a->end.mbar : b->end.mbar;
|
||
|
||
if (a->sample_start.mbar && b->sample_start.mbar)
|
||
res->sample_start.mbar = a->sample_start.mbar > b->sample_start.mbar ? a->sample_start.mbar : b->sample_start.mbar;
|
||
else
|
||
res->sample_start.mbar = 0;
|
||
if (a->sample_end.mbar && b->sample_end.mbar)
|
||
res->sample_end.mbar = a->sample_end.mbar < b->sample_end.mbar ? a->sample_end.mbar : b->sample_end.mbar;
|
||
else
|
||
res->sample_end.mbar = 0;
|
||
|
||
res->depth = a->depth;
|
||
res->manually_added = a->manually_added;
|
||
res->gas_used.mliter = a->gas_used.mliter + b->gas_used.mliter;
|
||
res->deco_gas_used.mliter = a->deco_gas_used.mliter + b->deco_gas_used.mliter;
|
||
res->bestmix_o2 = a->bestmix_o2 && b->bestmix_o2;
|
||
res->bestmix_he = a->bestmix_he && b->bestmix_he;
|
||
}
|
||
|
||
/*
|
||
* Merging cylinder information is non-trivial, because the two dive computers
|
||
* may have different ideas of what the different cylinder indexing is.
|
||
*
|
||
* Logic: take all the cylinder information from the preferred dive ('a'), and
|
||
* then try to match each of the cylinders in the other dive by the gasmix that
|
||
* is the best match and hasn't been used yet.
|
||
*
|
||
* For each dive, a cylinder-renumbering table is returned. Currently, only
|
||
* cylinders of dive 'b' are renumbered.
|
||
*/
|
||
static void merge_cylinders(struct dive *res, const struct dive *a, const struct dive *b,
|
||
int mapping_a[], int mapping_b[])
|
||
{
|
||
int i;
|
||
unsigned int used_in_a = 0, used_in_b = 0, matched = 0;
|
||
|
||
/* First, clear all cylinders in destination */
|
||
memset(res->cylinder, 0, sizeof(res->cylinder));
|
||
|
||
/* Calculate usage map of cylinders */
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
if (!cylinder_none(a->cylinder+i) || is_cylinder_used(a, i))
|
||
used_in_a |= 1u << i;
|
||
if (!cylinder_none(b->cylinder+i) || is_cylinder_used(b, i))
|
||
used_in_b |= 1u << i;
|
||
}
|
||
|
||
/* For each cylinder in 'b', try to match up things */
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
int j;
|
||
|
||
mapping_a[i] = i;
|
||
mapping_b[i] = -1;
|
||
if (!(used_in_b & (1u << i)))
|
||
continue;
|
||
|
||
j = match_cylinder(b->cylinder+i, a, used_in_a & ~matched);
|
||
if (j < 0)
|
||
continue;
|
||
|
||
/*
|
||
* If we had a successful match, we:
|
||
*
|
||
* - try to merge individual cylinder data from both cases
|
||
*
|
||
* - save that in the mapping table
|
||
*
|
||
* - mark it as matched so that another cylinder in 'b'
|
||
* will no longer match
|
||
*
|
||
* - mark 'b' as needing renumbering if the index changed
|
||
*/
|
||
merge_one_cylinder(res->cylinder + j, a->cylinder + j, b->cylinder + i);
|
||
mapping_b[i] = j;
|
||
matched |= 1u << j;
|
||
}
|
||
|
||
/* Now copy all the used cylinders from 'a' which are used, but have not been matched */
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
if (used_in_a & (1u << i) && !(matched & (1u << i)))
|
||
copy_cylinder(a->cylinder + i, res->cylinder + i);
|
||
}
|
||
|
||
/*
|
||
* Consider all the cylinders we matched as used, whether they
|
||
* originally were or not (either in 'a' or 'b').
|
||
*/
|
||
used_in_a |= matched;
|
||
|
||
/*
|
||
* Go back to 'b' and remap any remaining cylinders that didn't
|
||
* match completely.
|
||
*/
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
int j;
|
||
|
||
/* Already remapped, or not interesting? */
|
||
if (mapping_b[i] >= 0)
|
||
continue;
|
||
if (!(used_in_b & (1u << i)))
|
||
continue;
|
||
|
||
j = find_unused_cylinder(used_in_a);
|
||
if (j < 0)
|
||
continue;
|
||
|
||
copy_cylinder(b->cylinder + i, res->cylinder + j);
|
||
mapping_b[i] = j;
|
||
used_in_a |= 1u << j;
|
||
}
|
||
}
|
||
|
||
static void merge_equipment(struct dive *res, const struct dive *a, const struct dive *b)
|
||
{
|
||
int i;
|
||
for (i = 0; i < MAX_WEIGHTSYSTEMS; i++)
|
||
merge_weightsystem_info(res->weightsystem + i, a->weightsystem + i, b->weightsystem + i);
|
||
}
|
||
|
||
static void merge_temperatures(struct dive *res, const struct dive *a, const struct dive *b)
|
||
{
|
||
temperature_t airtemp_a = un_fixup_airtemp(a);
|
||
temperature_t airtemp_b = un_fixup_airtemp(b);
|
||
res->airtemp = airtemp_a.mkelvin ? airtemp_a : airtemp_b;
|
||
MERGE_NONZERO(res, a, b, watertemp.mkelvin);
|
||
}
|
||
|
||
/*
|
||
* Pick a trip for a dive
|
||
*/
|
||
static struct dive_trip *get_preferred_trip(const struct dive *a, const struct dive *b)
|
||
{
|
||
dive_trip_t *atrip, *btrip;
|
||
|
||
/* If only one dive has a trip, choose that */
|
||
atrip = a->divetrip;
|
||
btrip = b->divetrip;
|
||
if (!atrip)
|
||
return btrip;
|
||
if (!btrip)
|
||
return atrip;
|
||
|
||
/* Both dives have a trip - prefer the non-autogenerated one */
|
||
if (atrip->autogen && !btrip->autogen)
|
||
return btrip;
|
||
if (!atrip->autogen && btrip->autogen)
|
||
return atrip;
|
||
|
||
/* Otherwise, look at the trip data and pick the "better" one */
|
||
if (!atrip->location)
|
||
return btrip;
|
||
if (!btrip->location)
|
||
return atrip;
|
||
if (!atrip->notes)
|
||
return btrip;
|
||
if (!btrip->notes)
|
||
return atrip;
|
||
|
||
/*
|
||
* Ok, so both have location and notes.
|
||
* Pick the earlier one.
|
||
*/
|
||
if (a->when < b->when)
|
||
return atrip;
|
||
return btrip;
|
||
}
|
||
|
||
#if CURRENTLY_NOT_USED
|
||
/*
|
||
* Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'.
|
||
*
|
||
* If 's' and 'a' are at the same time, offset is 0, and b is NULL.
|
||
*/
|
||
static int compare_sample(struct sample *s, struct sample *a, struct sample *b, int offset)
|
||
{
|
||
unsigned int depth = a->depth.mm;
|
||
int diff;
|
||
|
||
if (offset) {
|
||
unsigned int interval = b->time.seconds - a->time.seconds;
|
||
unsigned int depth_a = a->depth.mm;
|
||
unsigned int depth_b = b->depth.mm;
|
||
|
||
if (offset > interval)
|
||
return -1;
|
||
|
||
/* pick the average depth, scaled by the offset from 'b' */
|
||
depth = (depth_a * offset) + (depth_b * (interval - offset));
|
||
depth /= interval;
|
||
}
|
||
diff = s->depth.mm - depth;
|
||
if (diff < 0)
|
||
diff = -diff;
|
||
/* cut off at one meter difference */
|
||
if (diff > 1000)
|
||
diff = 1000;
|
||
return diff * diff;
|
||
}
|
||
|
||
/*
|
||
* Calculate a "difference" in samples between the two dives, given
|
||
* the offset in seconds between them. Use this to find the best
|
||
* match of samples between two different dive computers.
|
||
*/
|
||
static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset)
|
||
{
|
||
int asamples = a->samples;
|
||
int bsamples = b->samples;
|
||
struct sample *as = a->sample;
|
||
struct sample *bs = b->sample;
|
||
unsigned long error = 0;
|
||
int start = -1;
|
||
|
||
if (!asamples || !bsamples)
|
||
return 0;
|
||
|
||
/*
|
||
* skip the first sample - this way we know can always look at
|
||
* as/bs[-1] to look at the samples around it in the loop.
|
||
*/
|
||
as++;
|
||
bs++;
|
||
asamples--;
|
||
bsamples--;
|
||
|
||
for (;;) {
|
||
int at, bt, diff;
|
||
|
||
|
||
/* If we run out of samples, punt */
|
||
if (!asamples)
|
||
return INT_MAX;
|
||
if (!bsamples)
|
||
return INT_MAX;
|
||
|
||
at = as->time.seconds;
|
||
bt = bs->time.seconds + offset;
|
||
|
||
/* b hasn't started yet? Ignore it */
|
||
if (bt < 0) {
|
||
bs++;
|
||
bsamples--;
|
||
continue;
|
||
}
|
||
|
||
if (at < bt) {
|
||
diff = compare_sample(as, bs - 1, bs, bt - at);
|
||
as++;
|
||
asamples--;
|
||
} else if (at > bt) {
|
||
diff = compare_sample(bs, as - 1, as, at - bt);
|
||
bs++;
|
||
bsamples--;
|
||
} else {
|
||
diff = compare_sample(as, bs, NULL, 0);
|
||
as++;
|
||
bs++;
|
||
asamples--;
|
||
bsamples--;
|
||
}
|
||
|
||
/* Invalid comparison point? */
|
||
if (diff < 0)
|
||
continue;
|
||
|
||
if (start < 0)
|
||
start = at;
|
||
|
||
error += diff;
|
||
|
||
if (at - start > 120)
|
||
break;
|
||
}
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
* Dive 'a' is 'offset' seconds before dive 'b'
|
||
*
|
||
* This is *not* because the dive computers clocks aren't in sync,
|
||
* it is because the dive computers may "start" the dive at different
|
||
* points in the dive, so the sample at time X in dive 'a' is the
|
||
* same as the sample at time X+offset in dive 'b'.
|
||
*
|
||
* For example, some dive computers take longer to "wake up" when
|
||
* they sense that you are under water (ie Uemis Zurich if it was off
|
||
* when the dive started). And other dive computers have different
|
||
* depths that they activate at, etc etc.
|
||
*
|
||
* If we cannot find a shared offset, don't try to merge.
|
||
*/
|
||
static int find_sample_offset(struct divecomputer *a, struct divecomputer *b)
|
||
{
|
||
int offset, best;
|
||
unsigned long max;
|
||
|
||
/* No samples? Merge at any time (0 offset) */
|
||
if (!a->samples)
|
||
return 0;
|
||
if (!b->samples)
|
||
return 0;
|
||
|
||
/*
|
||
* Common special-case: merging a dive that came from
|
||
* the same dive computer, so the samples are identical.
|
||
* Check this first, without wasting time trying to find
|
||
* some minimal offset case.
|
||
*/
|
||
best = 0;
|
||
max = sample_difference(a, b, 0);
|
||
if (!max)
|
||
return 0;
|
||
|
||
/*
|
||
* Otherwise, look if we can find anything better within
|
||
* a thirty second window..
|
||
*/
|
||
for (offset = -30; offset <= 30; offset++) {
|
||
unsigned long diff;
|
||
|
||
diff = sample_difference(a, b, offset);
|
||
if (diff > max)
|
||
continue;
|
||
best = offset;
|
||
max = diff;
|
||
}
|
||
|
||
return best;
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* Are a and b "similar" values, when given a reasonable lower end expected
|
||
* difference?
|
||
*
|
||
* So for example, we'd expect different dive computers to give different
|
||
* max. depth readings. You might have them on different arms, and they
|
||
* have different pressure sensors and possibly different ideas about
|
||
* water salinity etc.
|
||
*
|
||
* So have an expected minimum difference, but also allow a larger relative
|
||
* error value.
|
||
*/
|
||
static int similar(unsigned long a, unsigned long b, unsigned long expected)
|
||
{
|
||
if (!a && !b)
|
||
return 1;
|
||
|
||
if (a && b) {
|
||
unsigned long min, max, diff;
|
||
|
||
min = a;
|
||
max = b;
|
||
if (a > b) {
|
||
min = b;
|
||
max = a;
|
||
}
|
||
diff = max - min;
|
||
|
||
/* Smaller than expected difference? */
|
||
if (diff < expected)
|
||
return 1;
|
||
/* Error less than 10% or the maximum */
|
||
if (diff * 10 < max)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Match two dive computer entries against each other, and
|
||
* tell if it's the same dive. Return 0 if "don't know",
|
||
* positive for "same dive" and negative for "definitely
|
||
* not the same dive"
|
||
*/
|
||
int match_one_dc(const struct divecomputer *a, const struct divecomputer *b)
|
||
{
|
||
/* Not same model? Don't know if matching.. */
|
||
if (!a->model || !b->model)
|
||
return 0;
|
||
if (strcasecmp(a->model, b->model))
|
||
return 0;
|
||
|
||
/* Different device ID's? Don't know */
|
||
if (a->deviceid != b->deviceid)
|
||
return 0;
|
||
|
||
/* Do we have dive IDs? */
|
||
if (!a->diveid || !b->diveid)
|
||
return 0;
|
||
|
||
/*
|
||
* If they have different dive ID's on the same
|
||
* dive computer, that's a definite "same or not"
|
||
*/
|
||
return a->diveid == b->diveid && a->when == b->when ? 1 : -1;
|
||
}
|
||
|
||
/*
|
||
* Match every dive computer against each other to see if
|
||
* we have a matching dive.
|
||
*
|
||
* Return values:
|
||
* -1 for "is definitely *NOT* the same dive"
|
||
* 0 for "don't know"
|
||
* 1 for "is definitely the same dive"
|
||
*/
|
||
static int match_dc_dive(const struct divecomputer *a, const struct divecomputer *b)
|
||
{
|
||
do {
|
||
const struct divecomputer *tmp = b;
|
||
do {
|
||
int match = match_one_dc(a, tmp);
|
||
if (match)
|
||
return match;
|
||
tmp = tmp->next;
|
||
} while (tmp);
|
||
a = a->next;
|
||
} while (a);
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Do we want to automatically try to merge two dives that
|
||
* look like they are the same dive?
|
||
*
|
||
* This happens quite commonly because you download a dive
|
||
* that you already had, or perhaps because you maintained
|
||
* multiple dive logs and want to load them all together
|
||
* (possibly one of them was imported from another dive log
|
||
* application entirely).
|
||
*
|
||
* NOTE! We mainly look at the dive time, but it can differ
|
||
* between two dives due to a few issues:
|
||
*
|
||
* - rounding the dive date to the nearest minute in other dive
|
||
* applications
|
||
*
|
||
* - dive computers with "relative datestamps" (ie the dive
|
||
* computer doesn't actually record an absolute date at all,
|
||
* but instead at download-time synchronizes its internal
|
||
* time with real-time on the downloading computer)
|
||
*
|
||
* - using multiple dive computers with different real time on
|
||
* the same dive
|
||
*
|
||
* We do not merge dives that look radically different, and if
|
||
* the dates are *too* far off the user will have to join two
|
||
* dives together manually. But this tries to handle the sane
|
||
* cases.
|
||
*/
|
||
static int likely_same_dive(const struct dive *a, const struct dive *b)
|
||
{
|
||
int match, fuzz = 20 * 60;
|
||
|
||
/* don't merge manually added dives with anything */
|
||
if (same_string(a->dc.model, "manually added dive") ||
|
||
same_string(b->dc.model, "manually added dive"))
|
||
return 0;
|
||
|
||
/*
|
||
* Do some basic sanity testing of the values we
|
||
* have filled in during 'fixup_dive()'
|
||
*/
|
||
if (!similar(a->maxdepth.mm, b->maxdepth.mm, 1000) ||
|
||
(a->meandepth.mm && b->meandepth.mm && !similar(a->meandepth.mm, b->meandepth.mm, 1000)) ||
|
||
!a->duration.seconds || !b->duration.seconds ||
|
||
!similar(a->duration.seconds, b->duration.seconds, 5 * 60))
|
||
return 0;
|
||
|
||
/* See if we can get an exact match on the dive computer */
|
||
match = match_dc_dive(&a->dc, &b->dc);
|
||
if (match)
|
||
return match > 0;
|
||
|
||
/*
|
||
* Allow a time difference due to dive computer time
|
||
* setting etc. Check if they overlap.
|
||
*/
|
||
fuzz = MAX(a->duration.seconds, b->duration.seconds) / 2;
|
||
if (fuzz < 60)
|
||
fuzz = 60;
|
||
|
||
return (a->when <= b->when + fuzz) && (a->when >= b->when - fuzz);
|
||
}
|
||
|
||
/*
|
||
* This could do a lot more merging. Right now it really only
|
||
* merges almost exact duplicates - something that happens easily
|
||
* with overlapping dive downloads.
|
||
*
|
||
* If new dives are merged into the dive table, dive a is supposed to
|
||
* be the old dive and dive b is supposed to be the newly imported
|
||
* dive. If the flag "prefer_downloaded" is set, data of the latter
|
||
* will take priority over the former.
|
||
*
|
||
* Attn: The dive_site parameter of the dive will be set, but the caller
|
||
* still has to register the dive in the dive site!
|
||
*/
|
||
struct dive *try_to_merge(struct dive *a, struct dive *b, bool prefer_downloaded)
|
||
{
|
||
struct dive *res;
|
||
struct dive_site *site;
|
||
|
||
if (!likely_same_dive(a, b))
|
||
return NULL;
|
||
|
||
res = merge_dives(a, b, 0, prefer_downloaded, NULL, &site);
|
||
res->dive_site = site; /* Caller has to call add_dive_to_dive_site()! */
|
||
return res;
|
||
}
|
||
|
||
void free_events(struct event *ev)
|
||
{
|
||
while (ev) {
|
||
struct event *next = ev->next;
|
||
free(ev);
|
||
ev = next;
|
||
}
|
||
}
|
||
|
||
static void free_extra_data(struct extra_data *ed)
|
||
{
|
||
free((void *)ed->key);
|
||
free((void *)ed->value);
|
||
}
|
||
|
||
static void free_dc_contents(struct divecomputer *dc)
|
||
{
|
||
free(dc->sample);
|
||
free((void *)dc->model);
|
||
free((void *)dc->serial);
|
||
free((void *)dc->fw_version);
|
||
free_events(dc->events);
|
||
STRUCTURED_LIST_FREE(struct extra_data, dc->extra_data, free_extra_data);
|
||
}
|
||
|
||
static void free_dc(struct divecomputer *dc)
|
||
{
|
||
free_dc_contents(dc);
|
||
free(dc);
|
||
}
|
||
|
||
void free_picture(struct picture *picture)
|
||
{
|
||
if (picture) {
|
||
free(picture->filename);
|
||
free(picture);
|
||
}
|
||
}
|
||
|
||
static int same_sample(struct sample *a, struct sample *b)
|
||
{
|
||
if (a->time.seconds != b->time.seconds)
|
||
return 0;
|
||
if (a->depth.mm != b->depth.mm)
|
||
return 0;
|
||
if (a->temperature.mkelvin != b->temperature.mkelvin)
|
||
return 0;
|
||
if (a->pressure[0].mbar != b->pressure[0].mbar)
|
||
return 0;
|
||
return a->sensor[0] == b->sensor[0];
|
||
}
|
||
|
||
static int same_dc(struct divecomputer *a, struct divecomputer *b)
|
||
{
|
||
int i;
|
||
const struct event *eva, *evb;
|
||
|
||
i = match_one_dc(a, b);
|
||
if (i)
|
||
return i > 0;
|
||
|
||
if (a->when && b->when && a->when != b->when)
|
||
return 0;
|
||
if (a->samples != b->samples)
|
||
return 0;
|
||
for (i = 0; i < a->samples; i++)
|
||
if (!same_sample(a->sample + i, b->sample + i))
|
||
return 0;
|
||
eva = a->events;
|
||
evb = b->events;
|
||
while (eva && evb) {
|
||
if (!same_event(eva, evb))
|
||
return 0;
|
||
eva = eva->next;
|
||
evb = evb->next;
|
||
}
|
||
return eva == evb;
|
||
}
|
||
|
||
static int might_be_same_device(const struct divecomputer *a, const struct divecomputer *b)
|
||
{
|
||
/* No dive computer model? That matches anything */
|
||
if (!a->model || !b->model)
|
||
return 1;
|
||
|
||
/* Otherwise at least the model names have to match */
|
||
if (strcasecmp(a->model, b->model))
|
||
return 0;
|
||
|
||
/* No device ID? Match */
|
||
if (!a->deviceid || !b->deviceid)
|
||
return 1;
|
||
|
||
return a->deviceid == b->deviceid;
|
||
}
|
||
|
||
static void remove_redundant_dc(struct divecomputer *dc, int prefer_downloaded)
|
||
{
|
||
do {
|
||
struct divecomputer **p = &dc->next;
|
||
|
||
/* Check this dc against all the following ones.. */
|
||
while (*p) {
|
||
struct divecomputer *check = *p;
|
||
if (same_dc(dc, check) || (prefer_downloaded && might_be_same_device(dc, check))) {
|
||
*p = check->next;
|
||
check->next = NULL;
|
||
free_dc(check);
|
||
continue;
|
||
}
|
||
p = &check->next;
|
||
}
|
||
|
||
/* .. and then continue down the chain, but we */
|
||
prefer_downloaded = 0;
|
||
dc = dc->next;
|
||
} while (dc);
|
||
}
|
||
|
||
static const struct divecomputer *find_matching_computer(const struct divecomputer *match, const struct divecomputer *list)
|
||
{
|
||
const struct divecomputer *p;
|
||
|
||
while ((p = list) != NULL) {
|
||
list = list->next;
|
||
|
||
if (might_be_same_device(match, p))
|
||
break;
|
||
}
|
||
return p;
|
||
}
|
||
|
||
static void copy_dive_computer(struct divecomputer *res, const struct divecomputer *a)
|
||
{
|
||
*res = *a;
|
||
res->model = copy_string(a->model);
|
||
res->serial = copy_string(a->serial);
|
||
res->fw_version = copy_string(a->fw_version);
|
||
STRUCTURED_LIST_COPY(struct extra_data, a->extra_data, res->extra_data, copy_extra_data);
|
||
res->samples = res->alloc_samples = 0;
|
||
res->sample = NULL;
|
||
res->events = NULL;
|
||
res->next = NULL;
|
||
}
|
||
|
||
/*
|
||
* Join dive computers with a specific time offset between
|
||
* them.
|
||
*
|
||
* Use the dive computer ID's (or names, if ID's are missing)
|
||
* to match them up. If we find a matching dive computer, we
|
||
* merge them. If not, we just take the data from 'a'.
|
||
*/
|
||
static void interleave_dive_computers(struct dive *d, struct divecomputer *res,
|
||
const struct divecomputer *a, const struct divecomputer *b,
|
||
const int cylinders_map_a[], const int cylinders_map_b[],
|
||
int offset)
|
||
{
|
||
do {
|
||
const struct divecomputer *match;
|
||
|
||
copy_dive_computer(res, a);
|
||
|
||
match = find_matching_computer(a, b);
|
||
if (match) {
|
||
merge_events(d, res, a, match, cylinders_map_a, cylinders_map_b, offset);
|
||
merge_samples(res, a, match, cylinders_map_a, cylinders_map_b, offset);
|
||
merge_extra_data(res, a, match);
|
||
/* Use the diveid of the later dive! */
|
||
if (offset > 0)
|
||
res->diveid = match->diveid;
|
||
} else {
|
||
copy_dc_renumber(d, a, res, cylinders_map_a);
|
||
}
|
||
a = a->next;
|
||
if (!a)
|
||
break;
|
||
res->next = calloc(1, sizeof(struct divecomputer));
|
||
res = res->next;
|
||
} while (res);
|
||
}
|
||
|
||
|
||
/*
|
||
* Join dive computer information.
|
||
*
|
||
* If we have old-style dive computer information (no model
|
||
* name etc), we will prefer a new-style one and just throw
|
||
* away the old. We're assuming it's a re-download.
|
||
*
|
||
* Otherwise, we'll just try to keep all the information,
|
||
* unless the user has specified that they prefer the
|
||
* downloaded computer, in which case we'll aggressively
|
||
* try to throw out old information that *might* be from
|
||
* that one.
|
||
*/
|
||
static void join_dive_computers(struct dive *d, struct divecomputer *res,
|
||
const struct divecomputer *a, const struct divecomputer *b,
|
||
const int cylinders_map_a[], const int cylinders_map_b[],
|
||
int prefer_downloaded)
|
||
{
|
||
struct divecomputer *tmp;
|
||
|
||
if (a->model && !b->model) {
|
||
copy_dc_renumber(d, a, res, cylinders_map_a);
|
||
return;
|
||
}
|
||
if (b->model && !a->model) {
|
||
copy_dc_renumber(d, b, res, cylinders_map_b);
|
||
return;
|
||
}
|
||
|
||
copy_dc_renumber(d, a, res, cylinders_map_a);
|
||
tmp = res;
|
||
while (tmp->next)
|
||
tmp = tmp->next;
|
||
|
||
tmp->next = calloc(1, sizeof(*tmp));
|
||
copy_dc_renumber(d, b, tmp->next, cylinders_map_b);
|
||
|
||
remove_redundant_dc(res, prefer_downloaded);
|
||
}
|
||
|
||
static bool tag_seen_before(struct tag_entry *start, struct tag_entry *before)
|
||
{
|
||
while (start && start != before) {
|
||
if (same_string(start->tag->name, before->tag->name))
|
||
return true;
|
||
start = start->next;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* remove duplicates and empty nodes */
|
||
void taglist_cleanup(struct tag_entry **tag_list)
|
||
{
|
||
struct tag_entry **tl = tag_list;
|
||
while (*tl) {
|
||
/* skip tags that are empty or that we have seen before */
|
||
if (empty_string((*tl)->tag->name) || tag_seen_before(*tag_list, *tl)) {
|
||
*tl = (*tl)->next;
|
||
continue;
|
||
}
|
||
tl = &(*tl)->next;
|
||
}
|
||
}
|
||
|
||
char *taglist_get_tagstring(struct tag_entry *tag_list)
|
||
{
|
||
bool first_tag = true;
|
||
struct membuffer b = { 0 };
|
||
struct tag_entry *tmp = tag_list;
|
||
while (tmp != NULL) {
|
||
if (!empty_string(tmp->tag->name)) {
|
||
if (first_tag) {
|
||
put_format(&b, "%s", tmp->tag->name);
|
||
first_tag = false;
|
||
} else {
|
||
put_format(&b, ", %s", tmp->tag->name);
|
||
}
|
||
}
|
||
tmp = tmp->next;
|
||
}
|
||
/* Ensures we do return null terminated empty string for:
|
||
* - empty tag list
|
||
* - tag list with empty tag only
|
||
*/
|
||
mb_cstring(&b);
|
||
return detach_buffer(&b);
|
||
}
|
||
|
||
static inline void taglist_free_divetag(struct divetag *tag)
|
||
{
|
||
if (tag->name != NULL)
|
||
free(tag->name);
|
||
if (tag->source != NULL)
|
||
free(tag->source);
|
||
free(tag);
|
||
}
|
||
|
||
/* Add a tag to the tag_list, keep the list sorted */
|
||
static struct divetag *taglist_add_divetag(struct tag_entry **tag_list, struct divetag *tag)
|
||
{
|
||
struct tag_entry *next, *entry;
|
||
|
||
while ((next = *tag_list) != NULL) {
|
||
int cmp = strcmp(next->tag->name, tag->name);
|
||
|
||
/* Already have it? */
|
||
if (!cmp)
|
||
return next->tag;
|
||
/* Is the entry larger? If so, insert here */
|
||
if (cmp > 0)
|
||
break;
|
||
/* Continue traversing the list */
|
||
tag_list = &next->next;
|
||
}
|
||
|
||
/* Insert in front of it */
|
||
entry = malloc(sizeof(struct tag_entry));
|
||
entry->next = next;
|
||
entry->tag = tag;
|
||
*tag_list = entry;
|
||
return tag;
|
||
}
|
||
|
||
struct divetag *taglist_add_tag(struct tag_entry **tag_list, const char *tag)
|
||
{
|
||
size_t i = 0;
|
||
int is_default_tag = 0;
|
||
struct divetag *ret_tag, *new_tag;
|
||
const char *translation;
|
||
new_tag = malloc(sizeof(struct divetag));
|
||
|
||
for (i = 0; i < sizeof(default_tags) / sizeof(char *); i++) {
|
||
if (strcmp(default_tags[i], tag) == 0) {
|
||
is_default_tag = 1;
|
||
break;
|
||
}
|
||
}
|
||
/* Only translate default tags */
|
||
if (is_default_tag) {
|
||
translation = translate("gettextFromC", tag);
|
||
new_tag->name = malloc(strlen(translation) + 1);
|
||
memcpy(new_tag->name, translation, strlen(translation) + 1);
|
||
new_tag->source = malloc(strlen(tag) + 1);
|
||
memcpy(new_tag->source, tag, strlen(tag) + 1);
|
||
} else {
|
||
new_tag->source = NULL;
|
||
new_tag->name = malloc(strlen(tag) + 1);
|
||
memcpy(new_tag->name, tag, strlen(tag) + 1);
|
||
}
|
||
/* Try to insert new_tag into g_tag_list if we are not operating on it */
|
||
if (tag_list != &g_tag_list) {
|
||
ret_tag = taglist_add_divetag(&g_tag_list, new_tag);
|
||
/* g_tag_list already contains new_tag, free the duplicate */
|
||
if (ret_tag != new_tag)
|
||
taglist_free_divetag(new_tag);
|
||
ret_tag = taglist_add_divetag(tag_list, ret_tag);
|
||
} else {
|
||
ret_tag = taglist_add_divetag(tag_list, new_tag);
|
||
if (ret_tag != new_tag)
|
||
taglist_free_divetag(new_tag);
|
||
}
|
||
return ret_tag;
|
||
}
|
||
|
||
void taglist_free(struct tag_entry *entry)
|
||
{
|
||
STRUCTURED_LIST_FREE(struct tag_entry, entry, free)
|
||
}
|
||
|
||
struct tag_entry *taglist_copy(struct tag_entry *s)
|
||
{
|
||
struct tag_entry *res;
|
||
STRUCTURED_LIST_COPY(struct tag_entry, s, res, copy_tl);
|
||
return res;
|
||
}
|
||
|
||
/* Merge src1 and src2, write to *dst */
|
||
static void taglist_merge(struct tag_entry **dst, struct tag_entry *src1, struct tag_entry *src2)
|
||
{
|
||
struct tag_entry *entry;
|
||
|
||
for (entry = src1; entry; entry = entry->next)
|
||
taglist_add_divetag(dst, entry->tag);
|
||
for (entry = src2; entry; entry = entry->next)
|
||
taglist_add_divetag(dst, entry->tag);
|
||
}
|
||
|
||
void taglist_init_global()
|
||
{
|
||
size_t i;
|
||
|
||
for (i = 0; i < sizeof(default_tags) / sizeof(char *); i++)
|
||
taglist_add_tag(&g_tag_list, default_tags[i]);
|
||
}
|
||
|
||
bool taglist_contains(struct tag_entry *tag_list, const char *tag)
|
||
{
|
||
while (tag_list) {
|
||
if (same_string(tag_list->tag->name, tag))
|
||
return true;
|
||
tag_list = tag_list->next;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
struct tag_entry *taglist_added(struct tag_entry *original_list, struct tag_entry *new_list)
|
||
{
|
||
struct tag_entry *added_list = NULL;
|
||
while (new_list) {
|
||
if (!taglist_contains(original_list, new_list->tag->name))
|
||
taglist_add_tag(&added_list, new_list->tag->name);
|
||
new_list = new_list->next;
|
||
}
|
||
return added_list;
|
||
}
|
||
|
||
void dump_taglist(const char *intro, struct tag_entry *tl)
|
||
{
|
||
char *comma = "";
|
||
fprintf(stderr, "%s", intro);
|
||
while(tl) {
|
||
fprintf(stderr, "%s %s", comma, tl->tag->name);
|
||
comma = ",";
|
||
tl = tl->next;
|
||
}
|
||
fprintf(stderr, "\n");
|
||
}
|
||
|
||
bool is_dc_planner(const struct divecomputer *dc) {
|
||
return same_string(dc->model, "planned dive");
|
||
}
|
||
|
||
// Does this dive have a dive computer for which is_dc_planner has value planned
|
||
bool has_planned(const struct dive *dive, bool planned) {
|
||
const struct divecomputer *dc = &dive->dc;
|
||
|
||
while (dc) {
|
||
if (is_dc_planner(&dive->dc) == planned)
|
||
return true;
|
||
dc = dc->next;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/*
|
||
* Merging two dives can be subtle, because there's two different ways
|
||
* of merging:
|
||
*
|
||
* (a) two distinctly _different_ dives that have the same dive computer
|
||
* are merged into one longer dive, because the user asked for it
|
||
* in the divelist.
|
||
*
|
||
* Because this case is with the same dive computer, we *know* the
|
||
* two must have a different start time, and "offset" is the relative
|
||
* time difference between the two.
|
||
*
|
||
* (b) two different dive computers that we might want to merge into
|
||
* one single dive with multiple dive computers.
|
||
*
|
||
* This is the "try_to_merge()" case, which will have offset == 0,
|
||
* even if the dive times might be different.
|
||
*
|
||
* If new dives are merged into the dive table, dive a is supposed to
|
||
* be the old dive and dive b is supposed to be the newly imported
|
||
* dive. If the flag "prefer_downloaded" is set, data of the latter
|
||
* will take priority over the former.
|
||
*
|
||
* The trip the new dive should be associated with (if any) is returned
|
||
* in the "trip" output parameter.
|
||
*
|
||
* The dive site the new dive should be added to (if any) is returned
|
||
* in the "dive_site" output parameter.
|
||
*/
|
||
struct dive *merge_dives(const struct dive *a, const struct dive *b, int offset, bool prefer_downloaded, struct dive_trip **trip, struct dive_site **site)
|
||
{
|
||
struct dive *res = alloc_dive();
|
||
int cylinders_map_a[MAX_CYLINDERS], cylinders_map_b[MAX_CYLINDERS];
|
||
|
||
if (offset) {
|
||
/*
|
||
* If "likely_same_dive()" returns true, that means that
|
||
* it is *not* the same dive computer, and we do not want
|
||
* to try to turn it into a single longer dive. So we'd
|
||
* join them as two separate dive computers at zero offset.
|
||
*/
|
||
if (likely_same_dive(a, b))
|
||
offset = 0;
|
||
}
|
||
|
||
if (is_dc_planner(&a->dc)) {
|
||
const struct dive *tmp = a;
|
||
a = b;
|
||
b = tmp;
|
||
}
|
||
res->when = prefer_downloaded ? b->when : a->when;
|
||
res->selected = a->selected || b->selected;
|
||
if (trip)
|
||
*trip = get_preferred_trip(a, b);
|
||
MERGE_TXT(res, a, b, notes, "\n--\n");
|
||
MERGE_TXT(res, a, b, buddy, ", ");
|
||
MERGE_TXT(res, a, b, divemaster, ", ");
|
||
MERGE_MAX(res, a, b, rating);
|
||
MERGE_TXT(res, a, b, suit, ", ");
|
||
MERGE_MAX(res, a, b, number);
|
||
MERGE_NONZERO(res, a, b, cns);
|
||
MERGE_NONZERO(res, a, b, visibility);
|
||
STRUCTURED_LIST_COPY(struct picture, a->picture_list ? a->picture_list : b->picture_list, res->picture_list, copy_pl);
|
||
taglist_merge(&res->tag_list, a->tag_list, b->tag_list);
|
||
merge_cylinders(res, a, b, cylinders_map_a, cylinders_map_b);
|
||
merge_equipment(res, a, b);
|
||
merge_temperatures(res, a, b);
|
||
if (prefer_downloaded) {
|
||
/* If we prefer downloaded, do those first, and get rid of "might be same" computers */
|
||
join_dive_computers(res, &res->dc, &b->dc, &a->dc, cylinders_map_b, cylinders_map_a, 1);
|
||
} else if (offset && might_be_same_device(&a->dc, &b->dc))
|
||
interleave_dive_computers(res, &res->dc, &a->dc, &b->dc, cylinders_map_a, cylinders_map_b, offset);
|
||
else
|
||
join_dive_computers(res, &res->dc, &a->dc, &b->dc, cylinders_map_a, cylinders_map_b, 0);
|
||
|
||
/* we take the first dive site, unless it's empty */
|
||
*site = a->dive_site && !dive_site_is_empty(a->dive_site) ? a->dive_site : b->dive_site;
|
||
fixup_dive(res);
|
||
return res;
|
||
}
|
||
|
||
// copy_dive(), but retaining the new ID for the copied dive
|
||
static struct dive *create_new_copy(const struct dive *from)
|
||
{
|
||
struct dive *to = alloc_dive();
|
||
int id;
|
||
|
||
// alloc_dive() gave us a new ID, we just need to
|
||
// make sure it's not overwritten.
|
||
id = to->id;
|
||
copy_dive(from, to);
|
||
to->id = id;
|
||
return to;
|
||
}
|
||
|
||
static void force_fixup_dive(struct dive *d)
|
||
{
|
||
struct divecomputer *dc = &d->dc;
|
||
int old_temp = dc->watertemp.mkelvin;
|
||
int old_mintemp = d->mintemp.mkelvin;
|
||
int old_maxtemp = d->maxtemp.mkelvin;
|
||
duration_t old_duration = d->duration;
|
||
cylinder_t old_cylinders[MAX_CYLINDERS];
|
||
memcpy(old_cylinders, &d->cylinder, MAX_CYLINDERS * sizeof(cylinder_t));
|
||
|
||
d->maxdepth.mm = 0;
|
||
dc->maxdepth.mm = 0;
|
||
d->watertemp.mkelvin = 0;
|
||
dc->watertemp.mkelvin = 0;
|
||
d->duration.seconds = 0;
|
||
d->maxtemp.mkelvin = 0;
|
||
d->mintemp.mkelvin = 0;
|
||
for (int i = 0; i < MAX_CYLINDERS; i++) {
|
||
d->cylinder[i].start.mbar = 0;
|
||
d->cylinder[i].end.mbar = 0;
|
||
}
|
||
|
||
fixup_dive(d);
|
||
|
||
if (!d->watertemp.mkelvin)
|
||
d->watertemp.mkelvin = old_temp;
|
||
|
||
if (!dc->watertemp.mkelvin)
|
||
dc->watertemp.mkelvin = old_temp;
|
||
|
||
if (!d->maxtemp.mkelvin)
|
||
d->maxtemp.mkelvin = old_maxtemp;
|
||
|
||
if (!d->mintemp.mkelvin)
|
||
d->mintemp.mkelvin = old_mintemp;
|
||
|
||
if (!d->duration.seconds)
|
||
d->duration = old_duration;
|
||
for (int i = 0; i < MAX_CYLINDERS; i++) {
|
||
if (!d->cylinder[i].start.mbar)
|
||
d->cylinder[i].start = old_cylinders[i].start;
|
||
if (!d->cylinder[i].end.mbar)
|
||
d->cylinder[i].end = old_cylinders[i].end;
|
||
}
|
||
|
||
}
|
||
|
||
/*
|
||
* Split a dive that has a surface interval from samples 'a' to 'b'
|
||
* into two dives, but don't add them to the log yet.
|
||
* Returns the nr of the old dive or <0 on failure.
|
||
* Moreover, on failure both output dives are set to NULL.
|
||
* On success, the newly allocated dives are returned in out1 and out2.
|
||
*/
|
||
static int split_dive_at(const struct dive *dive, int a, int b, struct dive **out1, struct dive **out2)
|
||
{
|
||
int i, nr;
|
||
uint32_t t;
|
||
struct dive *d1, *d2;
|
||
struct divecomputer *dc1, *dc2;
|
||
struct event *event, **evp;
|
||
|
||
/* if we can't find the dive in the dive list, don't bother */
|
||
if ((nr = get_divenr(dive)) < 0)
|
||
return -1;
|
||
|
||
/* Splitting should leave at least 3 samples per dive */
|
||
if (a < 3 || b > dive->dc.samples - 4)
|
||
return -1;
|
||
|
||
/* We're not trying to be efficient here.. */
|
||
d1 = create_new_copy(dive);
|
||
d2 = create_new_copy(dive);
|
||
d1->divetrip = d2->divetrip = 0;
|
||
|
||
/* now unselect the first first segment so we don't keep all
|
||
* dives selected by mistake. But do keep the second one selected
|
||
* so the algorithm keeps splitting the dive further */
|
||
d1->selected = false;
|
||
|
||
dc1 = &d1->dc;
|
||
dc2 = &d2->dc;
|
||
/*
|
||
* Cut off the samples of d1 at the beginning
|
||
* of the interval.
|
||
*/
|
||
dc1->samples = a;
|
||
|
||
/* And get rid of the 'b' first samples of d2 */
|
||
dc2->samples -= b;
|
||
memmove(dc2->sample, dc2->sample+b, dc2->samples * sizeof(struct sample));
|
||
|
||
/* Now the secondary dive computers */
|
||
t = dc2->sample[0].time.seconds;
|
||
while ((dc1 = dc1->next)) {
|
||
i = 0;
|
||
while (dc1->samples < i && dc1->sample[i].time.seconds <= t)
|
||
++i;
|
||
dc1->samples = i;
|
||
}
|
||
while ((dc2 = dc2->next)) {
|
||
i = 0;
|
||
while (dc2->samples < i && dc2->sample[i].time.seconds < t)
|
||
++i;
|
||
dc2->samples -= i;
|
||
memmove(dc2->sample, dc2->sample + i, dc2->samples * sizeof(struct sample));
|
||
}
|
||
dc1 = &d1->dc;
|
||
dc2 = &d2->dc;
|
||
/*
|
||
* This is where we cut off events from d1,
|
||
* and shift everything in d2
|
||
*/
|
||
d2->when += t;
|
||
while (dc1 && dc2) {
|
||
dc2->when += t;
|
||
for (i = 0; i < dc2->samples; i++)
|
||
dc2->sample[i].time.seconds -= t;
|
||
|
||
/* Remove the events past 't' from d1 */
|
||
evp = &dc1->events;
|
||
while ((event = *evp) != NULL && event->time.seconds < t)
|
||
evp = &event->next;
|
||
*evp = NULL;
|
||
while (event) {
|
||
struct event *next = event->next;
|
||
free(event);
|
||
event = next;
|
||
}
|
||
|
||
/* Remove the events before 't' from d2, and shift the rest */
|
||
evp = &dc2->events;
|
||
while ((event = *evp) != NULL) {
|
||
if (event->time.seconds < t) {
|
||
*evp = event->next;
|
||
free(event);
|
||
} else {
|
||
event->time.seconds -= t;
|
||
}
|
||
}
|
||
dc1 = dc1->next;
|
||
dc2 = dc2->next;
|
||
}
|
||
|
||
force_fixup_dive(d1);
|
||
force_fixup_dive(d2);
|
||
|
||
/*
|
||
* Was the dive numbered? If it was the last dive, then we'll
|
||
* increment the dive number for the tail part that we split off.
|
||
* Otherwise the tail is unnumbered.
|
||
*/
|
||
if (d2->number) {
|
||
if (dive_table.nr == nr + 1)
|
||
d2->number++;
|
||
else
|
||
d2->number = 0;
|
||
}
|
||
|
||
mark_divelist_changed(true);
|
||
|
||
*out1 = d1;
|
||
*out2 = d2;
|
||
return nr;
|
||
}
|
||
|
||
/* in freedive mode we split for as little as 10 seconds on the surface,
|
||
* otherwise we use a minute */
|
||
static bool should_split(const struct divecomputer *dc, int t1, int t2)
|
||
{
|
||
int threshold = dc->divemode == FREEDIVE ? 10 : 60;
|
||
|
||
return t2 - t1 >= threshold;
|
||
}
|
||
|
||
/*
|
||
* Try to split a dive into multiple dives at a surface interval point.
|
||
*
|
||
* NOTE! We will split when there is at least one surface event that has
|
||
* non-surface events on both sides.
|
||
*
|
||
* The surface interval points are determined using the first dive computer.
|
||
*
|
||
* In other words, this is a (simplified) reversal of the dive merging.
|
||
*/
|
||
int split_dive(const struct dive *dive, struct dive **new1, struct dive **new2)
|
||
{
|
||
int i;
|
||
int at_surface, surface_start;
|
||
const struct divecomputer *dc;
|
||
|
||
*new1 = *new2 = NULL;
|
||
if (!dive)
|
||
return -1;
|
||
|
||
dc = &dive->dc;
|
||
surface_start = 0;
|
||
at_surface = 1;
|
||
for (i = 1; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample+i;
|
||
int surface_sample = sample->depth.mm < SURFACE_THRESHOLD;
|
||
|
||
/*
|
||
* We care about the transition from and to depth 0,
|
||
* not about the depth staying similar.
|
||
*/
|
||
if (at_surface == surface_sample)
|
||
continue;
|
||
at_surface = surface_sample;
|
||
|
||
// Did it become surface after having been non-surface? We found the start
|
||
if (at_surface) {
|
||
surface_start = i;
|
||
continue;
|
||
}
|
||
|
||
// Going down again? We want at least a minute from
|
||
// the surface start.
|
||
if (!surface_start)
|
||
continue;
|
||
if (!should_split(dc, dc->sample[surface_start].time.seconds, sample[-1].time.seconds))
|
||
continue;
|
||
|
||
return split_dive_at(dive, surface_start, i-1, new1, new2);
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
int split_dive_at_time(const struct dive *dive, duration_t time, struct dive **new1, struct dive **new2)
|
||
{
|
||
int i = 0;
|
||
struct sample *sample = dive->dc.sample;
|
||
|
||
*new1 = *new2 = NULL;
|
||
if (!dive)
|
||
return -1;
|
||
while(sample->time.seconds < time.seconds) {
|
||
++sample;
|
||
++i;
|
||
if (dive->dc.samples == i)
|
||
return -1;
|
||
}
|
||
return split_dive_at(dive, i, i - 1, new1, new2);
|
||
}
|
||
|
||
/*
|
||
* "dc_maxtime()" is how much total time this dive computer
|
||
* has for this dive. Note that it can differ from "duration"
|
||
* if there are surface events in the middle.
|
||
*
|
||
* Still, we do ignore all but the last surface samples from the
|
||
* end, because some divecomputers just generate lots of them.
|
||
*/
|
||
static inline int dc_totaltime(const struct divecomputer *dc)
|
||
{
|
||
int time = dc->duration.seconds;
|
||
int nr = dc->samples;
|
||
|
||
while (nr--) {
|
||
struct sample *s = dc->sample + nr;
|
||
time = s->time.seconds;
|
||
if (s->depth.mm >= SURFACE_THRESHOLD)
|
||
break;
|
||
}
|
||
return time;
|
||
}
|
||
|
||
/*
|
||
* The end of a dive is actually not trivial, because "duration"
|
||
* is not the duration until the end, but the time we spend under
|
||
* water, which can be very different if there are surface events
|
||
* during the dive.
|
||
*
|
||
* So walk the dive computers, looking for the longest actual
|
||
* time in the samples (and just default to the dive duration if
|
||
* there are no samples).
|
||
*/
|
||
static inline int dive_totaltime(const struct dive *dive)
|
||
{
|
||
int time = dive->duration.seconds;
|
||
const struct divecomputer *dc;
|
||
|
||
for_each_dc(dive, dc) {
|
||
int dc_time = dc_totaltime(dc);
|
||
if (dc_time > time)
|
||
time = dc_time;
|
||
}
|
||
return time;
|
||
}
|
||
|
||
timestamp_t dive_endtime(const struct dive *dive)
|
||
{
|
||
return dive->when + dive_totaltime(dive);
|
||
}
|
||
|
||
struct dive *find_dive_including(timestamp_t when)
|
||
{
|
||
int i;
|
||
struct dive *dive;
|
||
|
||
/* binary search, anyone? Too lazy for now;
|
||
* also we always use the duration from the first divecomputer
|
||
* could this ever be a problem? */
|
||
for_each_dive (i, dive) {
|
||
if (dive->when <= when && when <= dive_endtime(dive))
|
||
return dive;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
bool time_during_dive_with_offset(struct dive *dive, timestamp_t when, timestamp_t offset)
|
||
{
|
||
timestamp_t start = dive->when;
|
||
timestamp_t end = dive_endtime(dive);
|
||
return start - offset <= when && when <= end + offset;
|
||
}
|
||
|
||
bool dive_within_time_range(struct dive *dive, timestamp_t when, timestamp_t offset)
|
||
{
|
||
timestamp_t start = dive->when;
|
||
timestamp_t end = dive_endtime(dive);
|
||
return when - offset <= start && end <= when + offset;
|
||
}
|
||
|
||
/* find the n-th dive that is part of a group of dives within the offset around 'when'.
|
||
* How is that for a vague definition of what this function should do... */
|
||
struct dive *find_dive_n_near(timestamp_t when, int n, timestamp_t offset)
|
||
{
|
||
int i, j = 0;
|
||
struct dive *dive;
|
||
|
||
for_each_dive (i, dive) {
|
||
if (dive_within_time_range(dive, when, offset))
|
||
if (++j == n)
|
||
return dive;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
timestamp_t get_times()
|
||
{
|
||
int i;
|
||
struct dive *dive;
|
||
|
||
for_each_dive (i, dive) {
|
||
if (dive->selected)
|
||
break;
|
||
}
|
||
return dive->when;
|
||
}
|
||
|
||
/* this sets a usually unused copy of the preferences with the units
|
||
* that were active the last time the dive list was saved to git storage
|
||
* (this isn't used in XML files); storing the unit preferences in the
|
||
* data file is usually pointless (that's a setting of the software,
|
||
* not a property of the data), but it's a great hint of what the user
|
||
* might expect to see when creating a backend service that visualizes
|
||
* the dive list without Subsurface running - so this is basically a
|
||
* functionality for the core library that Subsurface itself doesn't
|
||
* use but that another consumer of the library (like an HTML exporter)
|
||
* will need */
|
||
void set_informational_units(const char *units)
|
||
{
|
||
if (strstr(units, "METRIC")) {
|
||
git_prefs.unit_system = METRIC;
|
||
} else if (strstr(units, "IMPERIAL")) {
|
||
git_prefs.unit_system = IMPERIAL;
|
||
} else if (strstr(units, "PERSONALIZE")) {
|
||
git_prefs.unit_system = PERSONALIZE;
|
||
if (strstr(units, "METERS"))
|
||
git_prefs.units.length = METERS;
|
||
if (strstr(units, "FEET"))
|
||
git_prefs.units.length = FEET;
|
||
if (strstr(units, "LITER"))
|
||
git_prefs.units.volume = LITER;
|
||
if (strstr(units, "CUFT"))
|
||
git_prefs.units.volume = CUFT;
|
||
if (strstr(units, "BAR"))
|
||
git_prefs.units.pressure = BAR;
|
||
if (strstr(units, "PSI"))
|
||
git_prefs.units.pressure = PSI;
|
||
if (strstr(units, "PASCAL"))
|
||
git_prefs.units.pressure = PASCAL;
|
||
if (strstr(units, "CELSIUS"))
|
||
git_prefs.units.temperature = CELSIUS;
|
||
if (strstr(units, "FAHRENHEIT"))
|
||
git_prefs.units.temperature = FAHRENHEIT;
|
||
if (strstr(units, "KG"))
|
||
git_prefs.units.weight = KG;
|
||
if (strstr(units, "LBS"))
|
||
git_prefs.units.weight = LBS;
|
||
if (strstr(units, "SECONDS"))
|
||
git_prefs.units.vertical_speed_time = SECONDS;
|
||
if (strstr(units, "MINUTES"))
|
||
git_prefs.units.vertical_speed_time = MINUTES;
|
||
}
|
||
|
||
}
|
||
|
||
void set_git_prefs(const char *prefs)
|
||
{
|
||
if (strstr(prefs, "TANKBAR"))
|
||
git_prefs.tankbar = 1;
|
||
if (strstr(prefs, "DCCEILING"))
|
||
git_prefs.dcceiling = 1;
|
||
if (strstr(prefs, "SHOW_SETPOINT"))
|
||
git_prefs.show_ccr_setpoint = 1;
|
||
if (strstr(prefs, "SHOW_SENSORS"))
|
||
git_prefs.show_ccr_sensors = 1;
|
||
if (strstr(prefs, "PO2_GRAPH"))
|
||
git_prefs.pp_graphs.po2 = 1;
|
||
}
|
||
|
||
void average_max_depth(struct diveplan *dive, int *avg_depth, int *max_depth)
|
||
{
|
||
int integral = 0;
|
||
int last_time = 0;
|
||
int last_depth = 0;
|
||
struct divedatapoint *dp = dive->dp;
|
||
|
||
*max_depth = 0;
|
||
|
||
while (dp) {
|
||
if (dp->time) {
|
||
/* Ignore gas indication samples */
|
||
integral += (dp->depth.mm + last_depth) * (dp->time - last_time) / 2;
|
||
last_time = dp->time;
|
||
last_depth = dp->depth.mm;
|
||
if (dp->depth.mm > *max_depth)
|
||
*max_depth = dp->depth.mm;
|
||
}
|
||
dp = dp->next;
|
||
}
|
||
if (last_time)
|
||
*avg_depth = integral / last_time;
|
||
else
|
||
*avg_depth = *max_depth = 0;
|
||
}
|
||
|
||
struct picture *alloc_picture()
|
||
{
|
||
struct picture *pic = malloc(sizeof(struct picture));
|
||
if (!pic)
|
||
exit(1);
|
||
memset(pic, 0, sizeof(struct picture));
|
||
return pic;
|
||
}
|
||
|
||
static bool new_picture_for_dive(struct dive *d, const char *filename)
|
||
{
|
||
FOR_EACH_PICTURE (d) {
|
||
if (same_string(picture->filename, filename))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Return distance of timestamp to time of dive. Result is always positive, 0 means during dive. */
|
||
static timestamp_t time_from_dive(const struct dive *d, timestamp_t timestamp)
|
||
{
|
||
timestamp_t end_time = dive_endtime(d);
|
||
if (timestamp < d->when)
|
||
return d->when - timestamp;
|
||
else if (timestamp > end_time)
|
||
return timestamp - end_time;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
// only add pictures that have timestamps between 30 minutes before the dive and
|
||
// 30 minutes after the dive ends
|
||
#define D30MIN (30 * 60)
|
||
static bool dive_check_picture_time(const struct dive *d, timestamp_t timestamp)
|
||
{
|
||
return time_from_dive(d, timestamp) < D30MIN;
|
||
}
|
||
|
||
/* Return dive closest selected dive to given timestamp or NULL if no dives are selected. */
|
||
static struct dive *nearest_selected_dive(timestamp_t timestamp)
|
||
{
|
||
struct dive *d, *res = NULL;
|
||
int i;
|
||
timestamp_t offset, min = 0;
|
||
|
||
for_each_dive(i, d) {
|
||
if (!d->selected)
|
||
continue;
|
||
offset = time_from_dive(d, timestamp);
|
||
if (!res || offset < min) {
|
||
res = d;
|
||
min = offset;
|
||
}
|
||
|
||
/* We suppose that dives are sorted chronologically. Thus
|
||
* if the offset starts to increase, we can end. This ignores
|
||
* pathological cases such as overlapping dives. In such a
|
||
* case the user will have to add pictures manually.
|
||
*/
|
||
if (offset == 0 || offset > min)
|
||
break;
|
||
}
|
||
return res;
|
||
}
|
||
|
||
bool picture_check_valid_time(timestamp_t timestamp, int shift_time)
|
||
{
|
||
int i;
|
||
struct dive *dive;
|
||
|
||
for_each_dive (i, dive)
|
||
if (dive->selected && dive_check_picture_time(dive, timestamp + shift_time))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
static void dive_set_geodata_from_picture(struct dive *dive, struct picture *picture, struct dive_site_table *table)
|
||
{
|
||
struct dive_site *ds = dive->dive_site;
|
||
if (!dive_site_has_gps_location(ds) && has_location(&picture->location)) {
|
||
if (ds) {
|
||
ds->location = picture->location;
|
||
} else {
|
||
ds = create_dive_site_with_gps("", &picture->location, table);
|
||
add_dive_to_dive_site(dive, ds);
|
||
invalidate_dive_cache(dive);
|
||
}
|
||
}
|
||
}
|
||
|
||
void create_picture(const char *filename, int shift_time, bool match_all)
|
||
{
|
||
struct metadata metadata;
|
||
struct dive *dive;
|
||
timestamp_t timestamp;
|
||
|
||
get_metadata(filename, &metadata);
|
||
timestamp = metadata.timestamp + shift_time;
|
||
dive = nearest_selected_dive(timestamp);
|
||
|
||
if (!dive)
|
||
return;
|
||
if (!new_picture_for_dive(dive, filename))
|
||
return;
|
||
if (!match_all && !dive_check_picture_time(dive, timestamp))
|
||
return;
|
||
|
||
struct picture *picture = alloc_picture();
|
||
picture->filename = strdup(filename);
|
||
picture->offset.seconds = metadata.timestamp - dive->when + shift_time;
|
||
picture->location = metadata.location;
|
||
|
||
dive_add_picture(dive, picture);
|
||
dive_set_geodata_from_picture(dive, picture, &dive_site_table);
|
||
invalidate_dive_cache(dive);
|
||
}
|
||
|
||
void dive_add_picture(struct dive *dive, struct picture *newpic)
|
||
{
|
||
struct picture **pic_ptr = &dive->picture_list;
|
||
/* let's keep the list sorted by time */
|
||
while (*pic_ptr && (*pic_ptr)->offset.seconds <= newpic->offset.seconds)
|
||
pic_ptr = &(*pic_ptr)->next;
|
||
newpic->next = *pic_ptr;
|
||
*pic_ptr = newpic;
|
||
return;
|
||
}
|
||
|
||
unsigned int dive_get_picture_count(struct dive *dive)
|
||
{
|
||
unsigned int i = 0;
|
||
FOR_EACH_PICTURE (dive)
|
||
i++;
|
||
return i;
|
||
}
|
||
|
||
void picture_free(struct picture *picture)
|
||
{
|
||
if (!picture)
|
||
return;
|
||
free(picture->filename);
|
||
free(picture);
|
||
}
|
||
|
||
// Return true if picture was found and deleted
|
||
bool dive_remove_picture(struct dive *d, const char *filename)
|
||
{
|
||
struct picture **picture = &d->picture_list;
|
||
while (*picture && !same_string((*picture)->filename, filename))
|
||
picture = &(*picture)->next;
|
||
if (*picture) {
|
||
struct picture *temp = (*picture)->next;
|
||
picture_free(*picture);
|
||
*picture = temp;
|
||
invalidate_dive_cache(current_dive);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* this always acts on the current divecomputer of the current dive */
|
||
void make_first_dc()
|
||
{
|
||
struct divecomputer *dc = ¤t_dive->dc;
|
||
struct divecomputer *newdc = malloc(sizeof(*newdc));
|
||
struct divecomputer *cur_dc = current_dc; /* needs to be in a local variable so the macro isn't re-executed */
|
||
|
||
/* skip the current DC in the linked list */
|
||
while (dc && dc->next != cur_dc)
|
||
dc = dc->next;
|
||
if (!dc) {
|
||
free(newdc);
|
||
fprintf(stderr, "data inconsistent: can't find the current DC");
|
||
return;
|
||
}
|
||
dc->next = cur_dc->next;
|
||
*newdc = current_dive->dc;
|
||
current_dive->dc = *cur_dc;
|
||
current_dive->dc.next = newdc;
|
||
free(cur_dc);
|
||
invalidate_dive_cache(current_dive);
|
||
}
|
||
|
||
/* always acts on the current dive */
|
||
unsigned int count_divecomputers(void)
|
||
{
|
||
int ret = 1;
|
||
struct divecomputer *dc = current_dive->dc.next;
|
||
while (dc) {
|
||
ret++;
|
||
dc = dc->next;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
static void delete_divecomputer(struct dive *d, int num)
|
||
{
|
||
int i;
|
||
|
||
/* Refuse to delete the last dive computer */
|
||
if (!d->dc.next)
|
||
return;
|
||
|
||
if (num == 0) {
|
||
/* remove the first one, so copy the second one in place of the first and free the second one
|
||
* be careful about freeing the no longer needed structures - since we copy things around we can't use free_dc()*/
|
||
struct divecomputer *fdc = d->dc.next;
|
||
free_dc_contents(&d->dc);
|
||
memcpy(&d->dc, fdc, sizeof(struct divecomputer));
|
||
free(fdc);
|
||
} else {
|
||
struct divecomputer *pdc = &d->dc;
|
||
for (i = 0; i < num - 1 && pdc; i++)
|
||
pdc = pdc->next;
|
||
if (pdc->next) {
|
||
struct divecomputer *dc = pdc->next;
|
||
pdc->next = dc->next;
|
||
free_dc(dc);
|
||
}
|
||
}
|
||
|
||
/* If this is the currently displayed dive, we might have to adjust
|
||
* the currently displayed dive computer. */
|
||
if (d == current_dive && dc_number >= count_divecomputers())
|
||
dc_number--;
|
||
invalidate_dive_cache(d);
|
||
}
|
||
|
||
/* always acts on the current dive */
|
||
void delete_current_divecomputer(void)
|
||
{
|
||
delete_divecomputer(current_dive, dc_number);
|
||
}
|
||
|
||
/*
|
||
* This splits the dive src by dive computer. The first output dive has all
|
||
* dive computers except num, the second only dive computer num.
|
||
* The dives will not be associated with a trip.
|
||
* On error, both output parameters are set to NULL.
|
||
*/
|
||
void split_divecomputer(const struct dive *src, int num, struct dive **out1, struct dive **out2)
|
||
{
|
||
struct divecomputer *srcdc = get_dive_dc(current_dive, dc_number);
|
||
|
||
if (src && srcdc) {
|
||
// Copy the dive, but only using the selected dive computer
|
||
*out2 = alloc_dive();
|
||
copy_dive_onedc(src, srcdc, *out2);
|
||
|
||
// This will also make fixup_dive() to allocate a new dive id...
|
||
(*out2)->id = 0;
|
||
fixup_dive(*out2);
|
||
|
||
// Copy the dive with all dive computers
|
||
*out1 = create_new_copy(src);
|
||
|
||
// .. and then delete the split-out dive computer
|
||
delete_divecomputer(*out1, num);
|
||
|
||
(*out1)->divetrip = (*out2)->divetrip = NULL;
|
||
} else {
|
||
*out1 = *out2 = NULL;
|
||
}
|
||
}
|
||
|
||
/* helper function to make it easier to work with our structures
|
||
* we don't interpolate here, just use the value from the last sample up to that time */
|
||
int get_depth_at_time(const struct divecomputer *dc, unsigned int time)
|
||
{
|
||
int depth = 0;
|
||
if (dc && dc->sample)
|
||
for (int i = 0; i < dc->samples; i++) {
|
||
if (dc->sample[i].time.seconds > time)
|
||
break;
|
||
depth = dc->sample[i].depth.mm;
|
||
}
|
||
return depth;
|
||
}
|
||
|
||
//Calculate O2 in best mix
|
||
fraction_t best_o2(depth_t depth, const struct dive *dive)
|
||
{
|
||
fraction_t fo2;
|
||
|
||
fo2.permille = (prefs.bottompo2 * 100 / depth_to_mbar(depth.mm, dive)) * 10; //use integer arithmetic to round down to nearest percent
|
||
// Don't permit >100% O2
|
||
if (fo2.permille > 1000)
|
||
fo2.permille = 1000;
|
||
return fo2;
|
||
}
|
||
|
||
//Calculate He in best mix. O2 is considered narcopic
|
||
fraction_t best_he(depth_t depth, const struct dive *dive)
|
||
{
|
||
fraction_t fhe;
|
||
int pnarcotic, ambient;
|
||
pnarcotic = depth_to_mbar(prefs.bestmixend.mm, dive);
|
||
ambient = depth_to_mbar(depth.mm, dive);
|
||
fhe.permille = (100 - 100 * pnarcotic / ambient) * 10; //use integer arithmetic to round up to nearest percent
|
||
if (fhe.permille < 0)
|
||
fhe.permille = 0;
|
||
return fhe;
|
||
}
|
||
|
||
bool gasmix_is_air(struct gasmix gasmix)
|
||
{
|
||
int o2 = gasmix.o2.permille;
|
||
int he = gasmix.he.permille;
|
||
return (he == 0) && (o2 == 0 || ((o2 >= O2_IN_AIR - 1) && (o2 <= O2_IN_AIR + 1)));
|
||
}
|
||
|
||
void invalidate_dive_cache(struct dive *dive)
|
||
{
|
||
memset(dive->git_id, 0, 20);
|
||
}
|
||
|
||
bool dive_cache_is_valid(const struct dive *dive)
|
||
{
|
||
static const unsigned char null_id[20] = { 0, };
|
||
return !!memcmp(dive->git_id, null_id, 20);
|
||
}
|
||
|
||
int get_surface_pressure_in_mbar(const struct dive *dive, bool non_null)
|
||
{
|
||
int mbar = dive->surface_pressure.mbar;
|
||
if (!mbar && non_null)
|
||
mbar = SURFACE_PRESSURE;
|
||
return mbar;
|
||
}
|
||
|
||
/* Pa = N/m^2 - so we determine the weight (in N) of the mass of 10m
|
||
* of water (and use standard salt water at 1.03kg per liter if we don't know salinity)
|
||
* and add that to the surface pressure (or to 1013 if that's unknown) */
|
||
int calculate_depth_to_mbar(int depth, pressure_t surface_pressure, int salinity)
|
||
{
|
||
double specific_weight;
|
||
int mbar = surface_pressure.mbar;
|
||
|
||
if (!mbar)
|
||
mbar = SURFACE_PRESSURE;
|
||
if (!salinity)
|
||
salinity = SEAWATER_SALINITY;
|
||
if (salinity < 500)
|
||
salinity += FRESHWATER_SALINITY;
|
||
specific_weight = salinity / 10000.0 * 0.981;
|
||
mbar += lrint(depth / 10.0 * specific_weight);
|
||
return mbar;
|
||
}
|
||
|
||
int depth_to_mbar(int depth, const struct dive *dive)
|
||
{
|
||
return calculate_depth_to_mbar(depth, dive->surface_pressure, dive->salinity);
|
||
}
|
||
|
||
double depth_to_bar(int depth, const struct dive *dive)
|
||
{
|
||
return depth_to_mbar(depth, dive) / 1000.0;
|
||
}
|
||
|
||
double depth_to_atm(int depth, const struct dive *dive)
|
||
{
|
||
return mbar_to_atm(depth_to_mbar(depth, dive));
|
||
}
|
||
|
||
/* for the inverse calculation we use just the relative pressure
|
||
* (that's the one that some dive computers like the Uemis Zurich
|
||
* provide - for the other models that do this libdivecomputer has to
|
||
* take care of this, but the Uemis we support natively */
|
||
int rel_mbar_to_depth(int mbar, const struct dive *dive)
|
||
{
|
||
int cm;
|
||
double specific_weight = 1.03 * 0.981;
|
||
if (dive->dc.salinity)
|
||
specific_weight = dive->dc.salinity / 10000.0 * 0.981;
|
||
/* whole mbar gives us cm precision */
|
||
cm = (int)lrint(mbar / specific_weight);
|
||
return cm * 10;
|
||
}
|
||
|
||
int mbar_to_depth(int mbar, const struct dive *dive)
|
||
{
|
||
pressure_t surface_pressure;
|
||
if (dive->surface_pressure.mbar)
|
||
surface_pressure = dive->surface_pressure;
|
||
else
|
||
surface_pressure.mbar = SURFACE_PRESSURE;
|
||
return rel_mbar_to_depth(mbar - surface_pressure.mbar, dive);
|
||
}
|
||
|
||
/* MOD rounded to multiples of roundto mm */
|
||
depth_t gas_mod(struct gasmix mix, pressure_t po2_limit, const struct dive *dive, int roundto)
|
||
{
|
||
depth_t rounded_depth;
|
||
|
||
double depth = (double) mbar_to_depth(po2_limit.mbar * 1000 / get_o2(mix), dive);
|
||
rounded_depth.mm = (int)lrint(depth / roundto) * roundto;
|
||
return rounded_depth;
|
||
}
|
||
|
||
/* Maximum narcotic depth rounded to multiples of roundto mm */
|
||
depth_t gas_mnd(struct gasmix mix, depth_t end, const struct dive *dive, int roundto)
|
||
{
|
||
depth_t rounded_depth;
|
||
pressure_t ppo2n2;
|
||
ppo2n2.mbar = depth_to_mbar(end.mm, dive);
|
||
|
||
int maxambient = (int)lrint(ppo2n2.mbar / (1 - get_he(mix) / 1000.0));
|
||
rounded_depth.mm = (int)lrint(((double)mbar_to_depth(maxambient, dive)) / roundto) * roundto;
|
||
return rounded_depth;
|
||
}
|
||
|
||
struct dive *get_dive(int nr)
|
||
{
|
||
if (nr >= dive_table.nr || nr < 0)
|
||
return NULL;
|
||
return dive_table.dives[nr];
|
||
}
|
||
|
||
struct dive *get_dive_from_table(int nr, struct dive_table *dt)
|
||
{
|
||
if (nr >= dt->nr || nr < 0)
|
||
return NULL;
|
||
return dt->dives[nr];
|
||
}
|
||
|
||
struct dive_site *get_dive_site_for_dive(const struct dive *dive)
|
||
{
|
||
return dive->dive_site;
|
||
}
|
||
|
||
const char *get_dive_country(const struct dive *dive)
|
||
{
|
||
struct dive_site *ds = dive->dive_site;
|
||
if (ds) {
|
||
int idx = taxonomy_index_for_category(&ds->taxonomy, TC_COUNTRY);
|
||
if (idx >= 0)
|
||
return ds->taxonomy.category[idx].value;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
const char *get_dive_location(const struct dive *dive)
|
||
{
|
||
const struct dive_site *ds = dive->dive_site;
|
||
if (ds && ds->name)
|
||
return ds->name;
|
||
return NULL;
|
||
}
|
||
|
||
unsigned int number_of_computers(const struct dive *dive)
|
||
{
|
||
unsigned int total_number = 0;
|
||
const struct divecomputer *dc = &dive->dc;
|
||
|
||
if (!dive)
|
||
return 1;
|
||
|
||
do {
|
||
total_number++;
|
||
dc = dc->next;
|
||
} while (dc);
|
||
return total_number;
|
||
}
|
||
|
||
struct divecomputer *get_dive_dc(struct dive *dive, int nr)
|
||
{
|
||
struct divecomputer *dc;
|
||
if (!dive)
|
||
return NULL;
|
||
dc = &dive->dc;
|
||
|
||
while (nr-- > 0) {
|
||
dc = dc->next;
|
||
if (!dc)
|
||
return &dive->dc;
|
||
}
|
||
return dc;
|
||
}
|
||
|
||
struct dive *get_dive_by_uniq_id(int id)
|
||
{
|
||
int i;
|
||
struct dive *dive = NULL;
|
||
|
||
for_each_dive (i, dive) {
|
||
if (dive->id == id)
|
||
break;
|
||
}
|
||
#ifdef DEBUG
|
||
if (dive == NULL) {
|
||
fprintf(stderr, "Invalid id %x passed to get_dive_by_diveid, try to fix the code\n", id);
|
||
exit(1);
|
||
}
|
||
#endif
|
||
return dive;
|
||
}
|
||
|
||
int get_idx_by_uniq_id(int id)
|
||
{
|
||
int i;
|
||
struct dive *dive = NULL;
|
||
|
||
for_each_dive (i, dive) {
|
||
if (dive->id == id)
|
||
break;
|
||
}
|
||
#ifdef DEBUG
|
||
if (dive == NULL) {
|
||
fprintf(stderr, "Invalid id %x passed to get_dive_by_diveid, try to fix the code\n", id);
|
||
exit(1);
|
||
}
|
||
#endif
|
||
return i;
|
||
}
|
||
|
||
bool dive_site_has_gps_location(const struct dive_site *ds)
|
||
{
|
||
return ds && has_location(&ds->location);
|
||
}
|
||
|
||
int dive_has_gps_location(const struct dive *dive)
|
||
{
|
||
if (!dive)
|
||
return false;
|
||
return dive_site_has_gps_location(dive->dive_site);
|
||
}
|
||
|
||
/* Extract GPS location of a dive computer stored in the GPS1
|
||
* or GPS2 extra data fields */
|
||
static location_t dc_get_gps_location(const struct divecomputer *dc)
|
||
{
|
||
location_t res = { };
|
||
|
||
for (struct extra_data *data = dc->extra_data; data; data = data->next) {
|
||
if (!strcmp(data->key, "GPS1")) {
|
||
parse_location(data->value, &res);
|
||
/* If we found a valid GPS1 field exit early since
|
||
* it has priority over GPS2 */
|
||
if (has_location(&res))
|
||
break;
|
||
} else if (!strcmp(data->key, "GPS2")) {
|
||
/* For GPS2 fields continue searching, as we might
|
||
* still find a GPS1 field */
|
||
parse_location(data->value, &res);
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
|
||
/* Get GPS location for a dive. Highest priority is given to the GPS1
|
||
* extra data written by libdivecomputer, as this comes from a real GPS
|
||
* device. If that doesn't exits, use the currently set dive site.
|
||
* This function is potentially slow, therefore only call sparingly
|
||
* and remember the result.
|
||
*/
|
||
location_t dive_get_gps_location(const struct dive *d)
|
||
{
|
||
location_t res = { };
|
||
|
||
for (const struct divecomputer *dc = &d->dc; dc; dc = dc->next) {
|
||
res = dc_get_gps_location(dc);
|
||
if (has_location(&res))
|
||
return res;
|
||
}
|
||
|
||
/* No libdivecomputer generated GPS data found.
|
||
* Let's use the location of the current dive site.
|
||
*/
|
||
if (d->dive_site)
|
||
res = d->dive_site->location;
|
||
|
||
return res;
|
||
}
|
||
|
||
/* When evaluated at the time of a gasswitch, this returns the new gas */
|
||
struct gasmix get_gasmix(const struct dive *dive, const struct divecomputer *dc, int time, const struct event **evp, struct gasmix gasmix)
|
||
{
|
||
const struct event *ev = *evp;
|
||
struct gasmix res;
|
||
|
||
if (!ev) {
|
||
/* on first invocation, get initial gas mix and first event (if any) */
|
||
int cyl = explicit_first_cylinder(dive, dc);
|
||
res = dive->cylinder[cyl].gasmix;
|
||
ev = dc ? get_next_event(dc->events, "gaschange") : NULL;
|
||
} else {
|
||
res = gasmix;
|
||
}
|
||
|
||
while (ev && ev->time.seconds <= time) {
|
||
res = get_gasmix_from_event(dive, ev);
|
||
ev = get_next_event(ev->next, "gaschange");
|
||
}
|
||
*evp = ev;
|
||
return res;
|
||
}
|
||
|
||
/* get the gas at a certain time during the dive */
|
||
/* If there is a gasswitch at that time, it returns the new gasmix */
|
||
struct gasmix get_gasmix_at_time(const struct dive *d, const struct divecomputer *dc, duration_t time)
|
||
{
|
||
const struct event *ev = NULL;
|
||
struct gasmix gasmix = gasmix_air;
|
||
return get_gasmix(d, dc, time.seconds, &ev, gasmix);
|
||
}
|