mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-30 22:20:21 +00:00
21f68387ae
All callers of the SHA1 code are C++. Might just as well use a C++ like interface. Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
315 lines
9.1 KiB
C++
315 lines
9.1 KiB
C++
/*
|
|
* SHA1 routine optimized to do word accesses rather than byte accesses,
|
|
* and to avoid unnecessary copies into the context array.
|
|
*
|
|
* This was initially based on the Mozilla SHA1 implementation, although
|
|
* none of the original Mozilla code remains.
|
|
*/
|
|
|
|
/* this is only to get definitions for memcpy(), ntohl() and htonl() */
|
|
#include <string.h>
|
|
#ifdef WIN32
|
|
#include <winsock2.h>
|
|
#else
|
|
#include <arpa/inet.h>
|
|
#endif
|
|
#include "sha1.h"
|
|
|
|
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
|
|
|
/*
|
|
* Force usage of rol or ror by selecting the one with the smaller constant.
|
|
* It _can_ generate slightly smaller code (a constant of 1 is special), but
|
|
* perhaps more importantly it's possibly faster on any uarch that does a
|
|
* rotate with a loop.
|
|
*/
|
|
|
|
#define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op " %1,%0":"=r" (__res):"i" (n), "0" (x)); __res; })
|
|
#define SHA_ROL(x, n) SHA_ASM("rol", x, n)
|
|
#define SHA_ROR(x, n) SHA_ASM("ror", x, n)
|
|
|
|
#else
|
|
|
|
#define SHA_ROT(X, l, r) (((X) << (l)) | ((X) >> (r)))
|
|
#define SHA_ROL(X, n) SHA_ROT(X, n, 32 - (n))
|
|
#define SHA_ROR(X, n) SHA_ROT(X, 32 - (n), n)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* If you have 32 registers or more, the compiler can (and should)
|
|
* try to change the array[] accesses into registers. However, on
|
|
* machines with less than ~25 registers, that won't really work,
|
|
* and at least gcc will make an unholy mess of it.
|
|
*
|
|
* So to avoid that mess which just slows things down, we force
|
|
* the stores to memory to actually happen (we might be better off
|
|
* with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
|
|
* suggested by Artur Skawina - that will also make gcc unable to
|
|
* try to do the silly "optimize away loads" part because it won't
|
|
* see what the value will be).
|
|
*
|
|
* Ben Herrenschmidt reports that on PPC, the C version comes close
|
|
* to the optimized asm with this (ie on PPC you don't want that
|
|
* 'volatile', since there are lots of registers).
|
|
*
|
|
* On ARM we get the best code generation by forcing a full memory barrier
|
|
* between each SHA_ROUND, otherwise gcc happily get wild with spilling and
|
|
* the stack frame size simply explode and performance goes down the drain.
|
|
*/
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
#define setW(x, val) (*(volatile unsigned int *)&W(x) = (val))
|
|
#elif defined(__GNUC__) && defined(__arm__)
|
|
#define setW(x, val) \
|
|
do { \
|
|
W(x) = (val); \
|
|
__asm__("" :: : "memory"); \
|
|
} while (0)
|
|
#else
|
|
#define setW(x, val) (W(x) = (val))
|
|
#endif
|
|
|
|
/*
|
|
* Performance might be improved if the CPU architecture is OK with
|
|
* unaligned 32-bit loads and a fast ntohl() is available.
|
|
* Otherwise fall back to byte loads and shifts which is portable,
|
|
* and is faster on architectures with memory alignment issues.
|
|
*/
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) || \
|
|
defined(_M_IX86) || defined(_M_X64) || \
|
|
defined(__ppc__) || defined(__ppc64__) || \
|
|
defined(__powerpc__) || defined(__powerpc64__) || \
|
|
defined(__s390__) || defined(__s390x__)
|
|
|
|
#define get_be32(p) ntohl(*(unsigned int *)(p))
|
|
#define put_be32(p, v) \
|
|
do { \
|
|
*(unsigned int *)(p) = htonl(v); \
|
|
} while (0)
|
|
|
|
#else
|
|
|
|
#define get_be32(p) ( \
|
|
(*((unsigned char *)(p) + 0) << 24) | \
|
|
(*((unsigned char *)(p) + 1) << 16) | \
|
|
(*((unsigned char *)(p) + 2) << 8) | \
|
|
(*((unsigned char *)(p) + 3) << 0))
|
|
#define put_be32(p, v) \
|
|
do { \
|
|
unsigned int __v = (v); \
|
|
*((unsigned char *)(p) + 0) = __v >> 24; \
|
|
*((unsigned char *)(p) + 1) = __v >> 16; \
|
|
*((unsigned char *)(p) + 2) = __v >> 8; \
|
|
*((unsigned char *)(p) + 3) = __v >> 0; \
|
|
} while (0)
|
|
|
|
#endif
|
|
|
|
/* This "rolls" over the 512-bit array */
|
|
#define W(x) (array[(x) & 15])
|
|
|
|
/*
|
|
* Where do we get the source from? The first 16 iterations get it from
|
|
* the input data, the next mix it from the 512-bit array.
|
|
*/
|
|
#define SHA_SRC(t) get_be32((unsigned char *)block + (t) * 4)
|
|
#define SHA_MIX(t) SHA_ROL(W((t) + 13) ^ W((t) + 8) ^ W((t) + 2) ^ W(t), 1);
|
|
|
|
#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) \
|
|
do { \
|
|
unsigned int TEMP = input(t); \
|
|
setW(t, TEMP); \
|
|
E += TEMP + SHA_ROL(A, 5) + (fn) + (constant); \
|
|
B = SHA_ROR(B, 2); \
|
|
} while (0)
|
|
|
|
#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C ^ D) & B) ^ D), 0x5a827999, A, B, C, D, E)
|
|
#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C ^ D) & B) ^ D), 0x5a827999, A, B, C, D, E)
|
|
#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B ^ C ^ D), 0x6ed9eba1, A, B, C, D, E)
|
|
#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B &C) + (D &(B ^ C))), 0x8f1bbcdc, A, B, C, D, E)
|
|
#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B ^ C ^ D), 0xca62c1d6, A, B, C, D, E)
|
|
|
|
static void blk_SHA1_Block(unsigned int H[], const void *block)
|
|
{
|
|
unsigned int A, B, C, D, E;
|
|
unsigned int array[16];
|
|
|
|
A = H[0];
|
|
B = H[1];
|
|
C = H[2];
|
|
D = H[3];
|
|
E = H[4];
|
|
|
|
/* Round 1 - iterations 0-16 take their input from 'block' */
|
|
T_0_15(0, A, B, C, D, E);
|
|
T_0_15(1, E, A, B, C, D);
|
|
T_0_15(2, D, E, A, B, C);
|
|
T_0_15(3, C, D, E, A, B);
|
|
T_0_15(4, B, C, D, E, A);
|
|
T_0_15(5, A, B, C, D, E);
|
|
T_0_15(6, E, A, B, C, D);
|
|
T_0_15(7, D, E, A, B, C);
|
|
T_0_15(8, C, D, E, A, B);
|
|
T_0_15(9, B, C, D, E, A);
|
|
T_0_15(10, A, B, C, D, E);
|
|
T_0_15(11, E, A, B, C, D);
|
|
T_0_15(12, D, E, A, B, C);
|
|
T_0_15(13, C, D, E, A, B);
|
|
T_0_15(14, B, C, D, E, A);
|
|
T_0_15(15, A, B, C, D, E);
|
|
|
|
/* Round 1 - tail. Input from 512-bit mixing array */
|
|
T_16_19(16, E, A, B, C, D);
|
|
T_16_19(17, D, E, A, B, C);
|
|
T_16_19(18, C, D, E, A, B);
|
|
T_16_19(19, B, C, D, E, A);
|
|
|
|
/* Round 2 */
|
|
T_20_39(20, A, B, C, D, E);
|
|
T_20_39(21, E, A, B, C, D);
|
|
T_20_39(22, D, E, A, B, C);
|
|
T_20_39(23, C, D, E, A, B);
|
|
T_20_39(24, B, C, D, E, A);
|
|
T_20_39(25, A, B, C, D, E);
|
|
T_20_39(26, E, A, B, C, D);
|
|
T_20_39(27, D, E, A, B, C);
|
|
T_20_39(28, C, D, E, A, B);
|
|
T_20_39(29, B, C, D, E, A);
|
|
T_20_39(30, A, B, C, D, E);
|
|
T_20_39(31, E, A, B, C, D);
|
|
T_20_39(32, D, E, A, B, C);
|
|
T_20_39(33, C, D, E, A, B);
|
|
T_20_39(34, B, C, D, E, A);
|
|
T_20_39(35, A, B, C, D, E);
|
|
T_20_39(36, E, A, B, C, D);
|
|
T_20_39(37, D, E, A, B, C);
|
|
T_20_39(38, C, D, E, A, B);
|
|
T_20_39(39, B, C, D, E, A);
|
|
|
|
/* Round 3 */
|
|
T_40_59(40, A, B, C, D, E);
|
|
T_40_59(41, E, A, B, C, D);
|
|
T_40_59(42, D, E, A, B, C);
|
|
T_40_59(43, C, D, E, A, B);
|
|
T_40_59(44, B, C, D, E, A);
|
|
T_40_59(45, A, B, C, D, E);
|
|
T_40_59(46, E, A, B, C, D);
|
|
T_40_59(47, D, E, A, B, C);
|
|
T_40_59(48, C, D, E, A, B);
|
|
T_40_59(49, B, C, D, E, A);
|
|
T_40_59(50, A, B, C, D, E);
|
|
T_40_59(51, E, A, B, C, D);
|
|
T_40_59(52, D, E, A, B, C);
|
|
T_40_59(53, C, D, E, A, B);
|
|
T_40_59(54, B, C, D, E, A);
|
|
T_40_59(55, A, B, C, D, E);
|
|
T_40_59(56, E, A, B, C, D);
|
|
T_40_59(57, D, E, A, B, C);
|
|
T_40_59(58, C, D, E, A, B);
|
|
T_40_59(59, B, C, D, E, A);
|
|
|
|
/* Round 4 */
|
|
T_60_79(60, A, B, C, D, E);
|
|
T_60_79(61, E, A, B, C, D);
|
|
T_60_79(62, D, E, A, B, C);
|
|
T_60_79(63, C, D, E, A, B);
|
|
T_60_79(64, B, C, D, E, A);
|
|
T_60_79(65, A, B, C, D, E);
|
|
T_60_79(66, E, A, B, C, D);
|
|
T_60_79(67, D, E, A, B, C);
|
|
T_60_79(68, C, D, E, A, B);
|
|
T_60_79(69, B, C, D, E, A);
|
|
T_60_79(70, A, B, C, D, E);
|
|
T_60_79(71, E, A, B, C, D);
|
|
T_60_79(72, D, E, A, B, C);
|
|
T_60_79(73, C, D, E, A, B);
|
|
T_60_79(74, B, C, D, E, A);
|
|
T_60_79(75, A, B, C, D, E);
|
|
T_60_79(76, E, A, B, C, D);
|
|
T_60_79(77, D, E, A, B, C);
|
|
T_60_79(78, C, D, E, A, B);
|
|
T_60_79(79, B, C, D, E, A);
|
|
|
|
H[0] += A;
|
|
H[1] += B;
|
|
H[2] += C;
|
|
H[3] += D;
|
|
H[4] += E;
|
|
}
|
|
|
|
SHA1::SHA1() :
|
|
size(0),
|
|
/* Initialize H with the magic constants (see FIPS180 for constants) */
|
|
H { 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 }
|
|
{
|
|
}
|
|
|
|
void SHA1::update(const void *data, unsigned long len)
|
|
{
|
|
unsigned int lenW = size & 63;
|
|
|
|
size += len;
|
|
|
|
/* Read the data into W and process blocks as they get full */
|
|
if (lenW) {
|
|
unsigned int left = 64 - lenW;
|
|
if (len < left)
|
|
left = len;
|
|
memcpy(lenW + (char *)W, data, left);
|
|
lenW = (lenW + left) & 63;
|
|
len -= left;
|
|
data = ((const char *)data + left);
|
|
if (lenW)
|
|
return;
|
|
blk_SHA1_Block(H, W);
|
|
}
|
|
while (len >= 64) {
|
|
blk_SHA1_Block(H, data);
|
|
data = ((const char *)data + 64);
|
|
len -= 64;
|
|
}
|
|
if (len)
|
|
memcpy(W, data, len);
|
|
}
|
|
|
|
void SHA1::update(const std::string &s)
|
|
{
|
|
update(s.data(), s.size());
|
|
}
|
|
|
|
std::array<unsigned char, 20> SHA1::hash()
|
|
{
|
|
std::array<unsigned char, 20> hashout;
|
|
static const unsigned char pad[64] = { 0x80 };
|
|
unsigned int padlen[2];
|
|
int i;
|
|
|
|
/* Pad with a binary 1 (ie 0x80), then zeroes, then length */
|
|
padlen[0] = htonl((uint32_t)(size >> 29));
|
|
padlen[1] = htonl((uint32_t)(size << 3));
|
|
|
|
i = size & 63;
|
|
update(pad, 1 + (63 & (55 - i)));
|
|
update(padlen, 8);
|
|
|
|
/* Output hash */
|
|
for (i = 0; i < 5; i++)
|
|
put_be32(&hashout[i * 4], H[i]);
|
|
return hashout;
|
|
}
|
|
|
|
uint32_t SHA1::hash_uint32()
|
|
{
|
|
auto hashout = hash();
|
|
return (hashout[0] << 0) | (hashout[1] << 8) |
|
|
(hashout[2] << 16) | (hashout[3] << 24);
|
|
}
|
|
|
|
uint32_t SHA1_uint32(const void *dataIn, unsigned long len)
|
|
{
|
|
SHA1 sha;
|
|
sha.update(dataIn, len);
|
|
return sha.hash_uint32();
|
|
}
|