mirror of
https://github.com/subsurface/subsurface.git
synced 2025-01-20 23:05:27 +00:00
a0f28aa422
While having the background "come down" seemed like a good visualization of the ceiling, some divers appear to prefer something more dramatic. This adds an option to the Tec Settings to have the ceiling shown in red instead of the default background color. Suggested-by: Jan Schubert <Jan.Schubert@GMX.li> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2136 lines
61 KiB
C
2136 lines
61 KiB
C
/* profile.c */
|
|
/* creates all the necessary data for drawing the dive profile
|
|
* uses cairo to draw it
|
|
*/
|
|
#include <glib/gi18n.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <math.h>
|
|
|
|
#include "dive.h"
|
|
#include "display.h"
|
|
#include "display-gtk.h"
|
|
#include "divelist.h"
|
|
#include "color.h"
|
|
#include "libdivecomputer/parser.h"
|
|
#include "libdivecomputer/version.h"
|
|
|
|
int selected_dive = 0;
|
|
char zoomed_plot = 0;
|
|
|
|
static double plot_scale = SCALE_SCREEN;
|
|
|
|
#define cairo_set_line_width_scaled(cr, w) \
|
|
cairo_set_line_width((cr), (w) * plot_scale);
|
|
|
|
typedef enum { STABLE, SLOW, MODERATE, FAST, CRAZY } velocity_t;
|
|
|
|
struct plot_data {
|
|
unsigned int same_cylinder:1;
|
|
unsigned int cylinderindex;
|
|
int sec;
|
|
/* pressure[0] is sensor pressure
|
|
* pressure[1] is interpolated pressure */
|
|
int pressure[2];
|
|
int temperature;
|
|
/* Depth info */
|
|
int depth;
|
|
int ndl;
|
|
int stoptime;
|
|
int stopdepth;
|
|
int smoothed;
|
|
double po2, pn2, phe;
|
|
velocity_t velocity;
|
|
struct plot_data *min[3];
|
|
struct plot_data *max[3];
|
|
int avg[3];
|
|
};
|
|
|
|
#define SENSOR_PR 0
|
|
#define INTERPOLATED_PR 1
|
|
#define SENSOR_PRESSURE(_entry) (_entry)->pressure[SENSOR_PR]
|
|
#define INTERPOLATED_PRESSURE(_entry) (_entry)->pressure[INTERPOLATED_PR]
|
|
#define GET_PRESSURE(_entry) (SENSOR_PRESSURE(_entry) ? : INTERPOLATED_PRESSURE(_entry))
|
|
|
|
#define SAC_COLORS_START_IDX SAC_1
|
|
#define SAC_COLORS 9
|
|
#define VELOCITY_COLORS_START_IDX VELO_STABLE
|
|
#define VELOCITY_COLORS 5
|
|
|
|
typedef enum {
|
|
/* SAC colors. Order is important, the SAC_COLORS_START_IDX define above. */
|
|
SAC_1, SAC_2, SAC_3, SAC_4, SAC_5, SAC_6, SAC_7, SAC_8, SAC_9,
|
|
|
|
/* Velocity colors. Order is still important, ref VELOCITY_COLORS_START_IDX. */
|
|
VELO_STABLE, VELO_SLOW, VELO_MODERATE, VELO_FAST, VELO_CRAZY,
|
|
|
|
/* gas colors */
|
|
PO2, PO2_ALERT, PN2, PN2_ALERT, PHE, PHE_ALERT,
|
|
|
|
/* Other colors */
|
|
TEXT_BACKGROUND, ALERT_BG, ALERT_FG, EVENTS, SAMPLE_DEEP, SAMPLE_SHALLOW,
|
|
SMOOTHED, MINUTE, TIME_GRID, TIME_TEXT, DEPTH_GRID, MEAN_DEPTH, DEPTH_TOP,
|
|
DEPTH_BOTTOM, TEMP_TEXT, TEMP_PLOT, SAC_DEFAULT, BOUNDING_BOX, PRESSURE_TEXT, BACKGROUND,
|
|
CEILING_SHALLOW, CEILING_DEEP
|
|
} color_indice_t;
|
|
|
|
typedef struct {
|
|
/* media[0] is screen, and media[1] is printer */
|
|
struct rgba {
|
|
double r,g,b,a;
|
|
} media[2];
|
|
} color_t;
|
|
|
|
/* [color indice] = {{screen color, printer color}} */
|
|
static const color_t profile_color[] = {
|
|
[SAC_1] = {{FUNGREEN1, BLACK1_LOW_TRANS}},
|
|
[SAC_2] = {{APPLE1, BLACK1_LOW_TRANS}},
|
|
[SAC_3] = {{ATLANTIS1, BLACK1_LOW_TRANS}},
|
|
[SAC_4] = {{ATLANTIS2, BLACK1_LOW_TRANS}},
|
|
[SAC_5] = {{EARLSGREEN1, BLACK1_LOW_TRANS}},
|
|
[SAC_6] = {{HOKEYPOKEY1, BLACK1_LOW_TRANS}},
|
|
[SAC_7] = {{TUSCANY1, BLACK1_LOW_TRANS}},
|
|
[SAC_8] = {{CINNABAR1, BLACK1_LOW_TRANS}},
|
|
[SAC_9] = {{REDORANGE1, BLACK1_LOW_TRANS}},
|
|
|
|
[VELO_STABLE] = {{CAMARONE1, BLACK1_LOW_TRANS}},
|
|
[VELO_SLOW] = {{LIMENADE1, BLACK1_LOW_TRANS}},
|
|
[VELO_MODERATE] = {{RIOGRANDE1, BLACK1_LOW_TRANS}},
|
|
[VELO_FAST] = {{PIRATEGOLD1, BLACK1_LOW_TRANS}},
|
|
[VELO_CRAZY] = {{RED1, BLACK1_LOW_TRANS}},
|
|
|
|
[PO2] = {{APPLE1, APPLE1_MED_TRANS}},
|
|
[PO2_ALERT] = {{RED1, APPLE1_MED_TRANS}},
|
|
[PN2] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}},
|
|
[PN2_ALERT] = {{RED1, BLACK1_LOW_TRANS}},
|
|
[PHE] = {{PEANUT, PEANUT_MED_TRANS}},
|
|
[PHE_ALERT] = {{RED1, PEANUT_MED_TRANS}},
|
|
|
|
[TEXT_BACKGROUND] = {{CONCRETE1_LOWER_TRANS, WHITE1}},
|
|
[ALERT_BG] = {{BROOM1_LOWER_TRANS, BLACK1_LOW_TRANS}},
|
|
[ALERT_FG] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}},
|
|
[EVENTS] = {{REDORANGE1, BLACK1_LOW_TRANS}},
|
|
[SAMPLE_DEEP] = {{PERSIANRED1, BLACK1_LOW_TRANS}},
|
|
[SAMPLE_SHALLOW] = {{PERSIANRED1, BLACK1_LOW_TRANS}},
|
|
[SMOOTHED] = {{REDORANGE1_HIGH_TRANS, BLACK1_LOW_TRANS}},
|
|
[MINUTE] = {{MEDIUMREDVIOLET1_HIGHER_TRANS, BLACK1_LOW_TRANS}},
|
|
[TIME_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}},
|
|
[TIME_TEXT] = {{FORESTGREEN1, BLACK1_LOW_TRANS}},
|
|
[DEPTH_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}},
|
|
[MEAN_DEPTH] = {{REDORANGE1_MED_TRANS, BLACK1_LOW_TRANS}},
|
|
[DEPTH_BOTTOM] = {{GOVERNORBAY1_MED_TRANS, TUNDORA1_MED_TRANS}},
|
|
[DEPTH_TOP] = {{MERCURY1_MED_TRANS, WHITE1_MED_TRANS}},
|
|
[TEMP_TEXT] = {{GOVERNORBAY2, BLACK1_LOW_TRANS}},
|
|
[TEMP_PLOT] = {{ROYALBLUE2_LOW_TRANS, BLACK1_LOW_TRANS}},
|
|
[SAC_DEFAULT] = {{WHITE1, BLACK1_LOW_TRANS}},
|
|
[BOUNDING_BOX] = {{WHITE1, BLACK1_LOW_TRANS}},
|
|
[PRESSURE_TEXT] = {{KILLARNEY1, BLACK1_LOW_TRANS}},
|
|
[BACKGROUND] = {{SPRINGWOOD1, BLACK1_LOW_TRANS}},
|
|
[CEILING_SHALLOW] = {{REDORANGE1_HIGH_TRANS, REDORANGE1_HIGH_TRANS}},
|
|
[CEILING_DEEP] = {{RED1_MED_TRANS, RED1_MED_TRANS}},
|
|
|
|
};
|
|
|
|
/* Scale to 0,0 -> maxx,maxy */
|
|
#define SCALEX(gc,x) (((x)-gc->leftx)/(gc->rightx-gc->leftx)*gc->maxx)
|
|
#define SCALEY(gc,y) (((y)-gc->topy)/(gc->bottomy-gc->topy)*gc->maxy)
|
|
#define SCALE(gc,x,y) SCALEX(gc,x),SCALEY(gc,y)
|
|
|
|
static void move_to(struct graphics_context *gc, double x, double y)
|
|
{
|
|
cairo_move_to(gc->cr, SCALE(gc, x, y));
|
|
}
|
|
|
|
static void line_to(struct graphics_context *gc, double x, double y)
|
|
{
|
|
cairo_line_to(gc->cr, SCALE(gc, x, y));
|
|
}
|
|
|
|
static void set_source_rgba(struct graphics_context *gc, color_indice_t c)
|
|
{
|
|
const color_t *col = &profile_color[c];
|
|
struct rgba rgb = col->media[gc->printer];
|
|
double r = rgb.r;
|
|
double g = rgb.g;
|
|
double b = rgb.b;
|
|
double a = rgb.a;
|
|
|
|
cairo_set_source_rgba(gc->cr, r, g, b, a);
|
|
}
|
|
|
|
void init_profile_background(struct graphics_context *gc)
|
|
{
|
|
set_source_rgba(gc, BACKGROUND);
|
|
}
|
|
|
|
void pattern_add_color_stop_rgba(struct graphics_context *gc, cairo_pattern_t *pat, double o, color_indice_t c)
|
|
{
|
|
const color_t *col = &profile_color[c];
|
|
struct rgba rgb = col->media[gc->printer];
|
|
cairo_pattern_add_color_stop_rgba(pat, o, rgb.r, rgb.g, rgb.b, rgb.a);
|
|
}
|
|
|
|
#define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y))
|
|
|
|
/* debugging tool - not normally used */
|
|
static void dump_pi (struct plot_info *pi)
|
|
{
|
|
int i;
|
|
|
|
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
|
|
" maxpressure:%d mintemp:%d maxtemp:%d\n",
|
|
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
|
|
pi->maxpressure, pi->mintemp, pi->maxtemp);
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = &pi->entry[i];
|
|
printf(" entry[%d]:{same_cylinder:%d cylinderindex:%d sec:%d pressure:{%d,%d}\n"
|
|
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
|
|
i, entry->same_cylinder, entry->cylinderindex, entry->sec,
|
|
entry->pressure[0], entry->pressure[1],
|
|
entry->sec / 60, entry->sec % 60,
|
|
entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
|
|
entry->po2, entry->phe, entry->pn2,
|
|
entry->po2 + entry->phe + entry->pn2);
|
|
}
|
|
printf(" }\n");
|
|
}
|
|
|
|
/*
|
|
* When showing dive profiles, we scale things to the
|
|
* current dive. However, we don't scale past less than
|
|
* 30 minutes or 90 ft, just so that small dives show
|
|
* up as such unless zoom is enabled.
|
|
* We also need to add 180 seconds at the end so the min/max
|
|
* plots correctly
|
|
*/
|
|
static int get_maxtime(struct plot_info *pi)
|
|
{
|
|
int seconds = pi->maxtime;
|
|
if (zoomed_plot) {
|
|
/* Rounded up to one minute, with at least 2.5 minutes to
|
|
* spare.
|
|
* For dive times shorter than 10 minutes, we use seconds/4 to
|
|
* calculate the space dynamically.
|
|
* This is seamless since 600/4 = 150.
|
|
*/
|
|
if ( seconds < 600 )
|
|
return ROUND_UP(seconds+seconds/4, 60);
|
|
else
|
|
return ROUND_UP(seconds+150, 60);
|
|
} else {
|
|
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
|
|
return MAX(30*60, ROUND_UP(seconds+150, 60*5));
|
|
}
|
|
}
|
|
|
|
/* get the maximum depth to which we want to plot
|
|
* take into account the additional verical space needed to plot
|
|
* partial pressure graphs */
|
|
static int get_maxdepth(struct plot_info *pi)
|
|
{
|
|
unsigned mm = pi->maxdepth;
|
|
int md;
|
|
|
|
if (zoomed_plot) {
|
|
/* Rounded up to 10m, with at least 3m to spare */
|
|
md = ROUND_UP(mm+3000, 10000);
|
|
} else {
|
|
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
|
|
md = MAX(30000, ROUND_UP(mm+3000, 10000));
|
|
}
|
|
if (GRAPHS_ENABLED) {
|
|
if (md <= 20000)
|
|
md += 10000;
|
|
else
|
|
md += ROUND_UP(md / 2, 10000);
|
|
}
|
|
return md;
|
|
}
|
|
|
|
typedef struct {
|
|
int size;
|
|
color_indice_t color;
|
|
double hpos, vpos;
|
|
} text_render_options_t;
|
|
|
|
#define RIGHT (-1.0)
|
|
#define CENTER (-0.5)
|
|
#define LEFT (0.0)
|
|
|
|
#define TOP (1)
|
|
#define MIDDLE (0)
|
|
#define BOTTOM (-1)
|
|
|
|
static void plot_text(struct graphics_context *gc, const text_render_options_t *tro,
|
|
double x, double y, const char *fmt, ...)
|
|
{
|
|
cairo_t *cr = gc->cr;
|
|
cairo_font_extents_t fe;
|
|
cairo_text_extents_t extents;
|
|
double dx, dy;
|
|
char buffer[80];
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vsnprintf(buffer, sizeof(buffer), fmt, args);
|
|
va_end(args);
|
|
|
|
cairo_set_font_size(cr, tro->size * plot_scale);
|
|
cairo_font_extents(cr, &fe);
|
|
cairo_text_extents(cr, buffer, &extents);
|
|
dx = tro->hpos * (extents.width + extents.x_bearing);
|
|
dy = tro->vpos * (extents.height + fe.descent);
|
|
move_to(gc, x, y);
|
|
cairo_rel_move_to(cr, dx, dy);
|
|
|
|
cairo_text_path(cr, buffer);
|
|
set_source_rgba(gc, TEXT_BACKGROUND);
|
|
cairo_stroke(cr);
|
|
|
|
move_to(gc, x, y);
|
|
cairo_rel_move_to(cr, dx, dy);
|
|
|
|
set_source_rgba(gc, tro->color);
|
|
cairo_show_text(cr, buffer);
|
|
}
|
|
|
|
/* collect all event names and whether we display them */
|
|
struct ev_select {
|
|
char *ev_name;
|
|
gboolean plot_ev;
|
|
};
|
|
static struct ev_select *ev_namelist;
|
|
static int evn_allocated;
|
|
static int evn_used;
|
|
|
|
void evn_foreach(void (*callback)(const char *, int *, void *), void *data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < evn_used; i++) {
|
|
/* here we display an event name on screen - so translate */
|
|
callback(_(ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
|
|
}
|
|
}
|
|
|
|
void remember_event(const char *eventname)
|
|
{
|
|
int i = 0, len;
|
|
|
|
if (!eventname || (len = strlen(eventname)) == 0)
|
|
return;
|
|
while (i < evn_used) {
|
|
if (!strncmp(eventname, ev_namelist[i].ev_name, len))
|
|
return;
|
|
i++;
|
|
}
|
|
if (evn_used == evn_allocated) {
|
|
evn_allocated += 10;
|
|
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
|
|
if (! ev_namelist)
|
|
/* we are screwed, but let's just bail out */
|
|
return;
|
|
}
|
|
ev_namelist[evn_used].ev_name = strdup(eventname);
|
|
ev_namelist[evn_used].plot_ev = TRUE;
|
|
evn_used++;
|
|
}
|
|
|
|
static void plot_one_event(struct graphics_context *gc, struct plot_info *pi, struct event *event, const text_render_options_t *tro)
|
|
{
|
|
int i, depth = 0;
|
|
int x,y;
|
|
char buffer[80];
|
|
|
|
/* is plotting this event disabled? */
|
|
if (event->name) {
|
|
for (i = 0; i < evn_used; i++) {
|
|
if (! strcmp(event->name, ev_namelist[i].ev_name)) {
|
|
if (ev_namelist[i].plot_ev)
|
|
break;
|
|
else
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *data = pi->entry + i;
|
|
if (event->time.seconds < data->sec)
|
|
break;
|
|
depth = data->depth;
|
|
}
|
|
/* draw a little triangular marker and attach tooltip */
|
|
x = SCALEX(gc, event->time.seconds);
|
|
y = SCALEY(gc, depth);
|
|
set_source_rgba(gc, ALERT_BG);
|
|
cairo_move_to(gc->cr, x-15, y+6);
|
|
cairo_line_to(gc->cr, x-3 , y+6);
|
|
cairo_line_to(gc->cr, x-9, y-6);
|
|
cairo_line_to(gc->cr, x-15, y+6);
|
|
cairo_stroke_preserve(gc->cr);
|
|
cairo_fill(gc->cr);
|
|
set_source_rgba(gc, ALERT_FG);
|
|
cairo_move_to(gc->cr, x-9, y-3);
|
|
cairo_line_to(gc->cr, x-9, y+1);
|
|
cairo_move_to(gc->cr, x-9, y+4);
|
|
cairo_line_to(gc->cr, x-9, y+4);
|
|
cairo_stroke(gc->cr);
|
|
/* we display the event on screen - so translate */
|
|
if (event->value)
|
|
snprintf(buffer, sizeof(buffer), "%s: %d", _(event->name), event->value);
|
|
else
|
|
snprintf(buffer, sizeof(buffer), "%s", _(event->name));
|
|
attach_tooltip(x-15, y-6, 12, 12, buffer);
|
|
}
|
|
|
|
static void plot_events(struct graphics_context *gc, struct plot_info *pi, struct divecomputer *dc)
|
|
{
|
|
static const text_render_options_t tro = {14, EVENTS, CENTER, TOP};
|
|
struct event *event = dc->events;
|
|
|
|
if (gc->printer)
|
|
return;
|
|
|
|
while (event) {
|
|
if (event->flags != SAMPLE_FLAGS_BEGIN && event->flags != SAMPLE_FLAGS_END)
|
|
plot_one_event(gc, pi, event, &tro);
|
|
event = event->next;
|
|
}
|
|
}
|
|
|
|
static void render_depth_sample(struct graphics_context *gc, struct plot_data *entry, const text_render_options_t *tro)
|
|
{
|
|
int sec = entry->sec, decimals;
|
|
double d;
|
|
|
|
d = get_depth_units(entry->depth, &decimals, NULL);
|
|
|
|
plot_text(gc, tro, sec, entry->depth, "%.*f", decimals, d);
|
|
}
|
|
|
|
static void plot_text_samples(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
static const text_render_options_t deep = {14, SAMPLE_DEEP, CENTER, TOP};
|
|
static const text_render_options_t shallow = {14, SAMPLE_SHALLOW, CENTER, BOTTOM};
|
|
int i;
|
|
int last = -1;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
|
|
if (entry->depth < 2000)
|
|
continue;
|
|
|
|
if ((entry == entry->max[2]) && entry->depth != last) {
|
|
render_depth_sample(gc, entry, &deep);
|
|
last = entry->depth;
|
|
}
|
|
|
|
if ((entry == entry->min[2]) && entry->depth != last) {
|
|
render_depth_sample(gc, entry, &shallow);
|
|
last = entry->depth;
|
|
}
|
|
|
|
if (entry->depth != last)
|
|
last = -1;
|
|
}
|
|
}
|
|
|
|
static void plot_depth_text(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int maxtime, maxdepth;
|
|
|
|
/* Get plot scaling limits */
|
|
maxtime = get_maxtime(pi);
|
|
maxdepth = get_maxdepth(pi);
|
|
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
gc->topy = 0; gc->bottomy = maxdepth;
|
|
|
|
plot_text_samples(gc, pi);
|
|
}
|
|
|
|
static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
struct plot_data *entry = pi->entry;
|
|
|
|
set_source_rgba(gc, SMOOTHED);
|
|
move_to(gc, entry->sec, entry->smoothed);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
line_to(gc, entry->sec, entry->smoothed);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
}
|
|
|
|
static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi,
|
|
int index)
|
|
{
|
|
int i;
|
|
struct plot_data *entry = pi->entry;
|
|
|
|
set_source_rgba(gc, MINUTE);
|
|
move_to(gc, entry->sec, entry->min[index]->depth);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
line_to(gc, entry->sec, entry->min[index]->depth);
|
|
}
|
|
for (i = 1; i < pi->nr; i++) {
|
|
line_to(gc, entry->sec, entry->max[index]->depth);
|
|
entry--;
|
|
}
|
|
cairo_close_path(gc->cr);
|
|
cairo_fill(gc->cr);
|
|
}
|
|
|
|
static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
if (gc->printer)
|
|
return;
|
|
plot_minmax_profile_minute(gc, pi, 2);
|
|
plot_minmax_profile_minute(gc, pi, 1);
|
|
plot_minmax_profile_minute(gc, pi, 0);
|
|
}
|
|
|
|
static void plot_depth_scale(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i, maxdepth, marker;
|
|
static const text_render_options_t tro = {10, SAMPLE_DEEP, RIGHT, MIDDLE};
|
|
|
|
/* Depth markers: every 30 ft or 10 m*/
|
|
maxdepth = get_maxdepth(pi);
|
|
gc->topy = 0; gc->bottomy = maxdepth;
|
|
|
|
switch (output_units.length) {
|
|
case METERS: marker = 10000; break;
|
|
case FEET: marker = 9144; break; /* 30 ft */
|
|
}
|
|
set_source_rgba(gc, DEPTH_GRID);
|
|
for (i = marker; i < maxdepth; i += marker) {
|
|
double d = get_depth_units(i, NULL, NULL);
|
|
plot_text(gc, &tro, -0.002, i, "%.0f", d);
|
|
}
|
|
}
|
|
|
|
/* ap points to an array of int with pi->nr + 1 elements that is
|
|
* ininitialized with just one -1 entry
|
|
* this adds entries (if they aren't too close to an existing one)
|
|
* and keeps things sorted
|
|
* we KNOW the array is big enough to hold all possible indices
|
|
* a2p is a secondary array - we insert value at the same relative
|
|
* positio as idx in ap */
|
|
static void add_index(int idx, int margin, int **ap, int **a2p, int value)
|
|
{
|
|
int j, i = 0;
|
|
int *a = *ap;
|
|
int *a2 = *a2p;
|
|
|
|
while (a[i] != -1 && a[i] < idx)
|
|
i++;
|
|
if (a[i] == idx)
|
|
return;
|
|
/* already have a POI to the left with the same vertical positiom and too close */
|
|
if ((i > 0 && a[i - 1] != -1 && a2[i - 1] == value && idx - a[i - 1] < margin))
|
|
return;
|
|
/* already have a POI to the right with the same vertical positiom and too close */
|
|
if (a[i] != -1 && a2[i] == value && a[i] - idx < margin)
|
|
return;
|
|
if (a[i] != -1 && a[i] - idx < margin)
|
|
return;
|
|
j = i;
|
|
while (a[j] != -1)
|
|
j++;
|
|
while (j >= i) {
|
|
a[j+1] = a[j];
|
|
a2[j+1] = a2[j];
|
|
j--;
|
|
}
|
|
a[i] = idx;
|
|
a2[i] = value;
|
|
}
|
|
|
|
#define LI(_i,_j) MAX((_i)-(_j), 0)
|
|
#define RI(_i,_j) MIN((_i)+(_j), nr - 1)
|
|
#define SPIKE(_i,_s) if (fabs(_s) > fabs(spk_data[_i])) spk_data[_i] = (_s)
|
|
/* this is an attempt at a metric that finds spikes in a data series */
|
|
static void calculate_spikyness(int nr, double *data, double *spk_data, int deltax, double deltay)
|
|
{
|
|
int i, j;
|
|
double dminl, dminr, dmaxl, dmaxr;
|
|
|
|
#if DEBUG_PROFILE > 2
|
|
printf("Spike data: \n 0 ");
|
|
#endif
|
|
for (i = 0; i < nr; i++) {
|
|
dminl = dminr = dmaxl = dmaxr = data[i];
|
|
spk_data[i] = 0.0;
|
|
for (j = 1; j < deltax; j++) {
|
|
if (data[LI(i,j)] < dminl)
|
|
dminl = data[LI(i,j)];
|
|
if (data[LI(i,j)] > dmaxl)
|
|
dmaxl = data[LI(i,j)];
|
|
|
|
if (data[RI(i,j)] < dminr)
|
|
dminr = data[RI(i,j)];
|
|
if (data[RI(i,j)] > dmaxr)
|
|
dmaxr = data[RI(i,j)];
|
|
|
|
/* don't do super narrow */
|
|
if (j < deltax / 3)
|
|
continue;
|
|
/* falling edge on left */
|
|
if (dmaxl == data[i] && dmaxr - data[i] < 0.1 * (data[i] - dminl))
|
|
SPIKE(i,(data[i] - dminl) / j);
|
|
/* falling edge on right */
|
|
if (dmaxr == data[i] && dmaxl - data[i] < 0.1 * (data[i] - dminr))
|
|
SPIKE(i,(data[i] - dminr) / j);
|
|
|
|
/* minima get a negative spike value */
|
|
/* rising edge on left */
|
|
if (dminl == data[i] && data[i] - dminr < 0.1 * (dmaxl - data[i]))
|
|
SPIKE(i,(data[i] - dmaxl) / j);
|
|
/* rising edge on right */
|
|
if (dminr == data[i] && data[i] - dminl < 0.1 * (dmaxr - data[i]))
|
|
SPIKE(i,(data[i] - dmaxr) / j);
|
|
}
|
|
#if DEBUG_PROFILE > 2
|
|
fprintf(debugfile, "%.4lf ", spk_data[i]);
|
|
if (i % 12 == 11)
|
|
fprintf(debugfile, "\n%2d ", (i + 1) / 12);
|
|
#endif
|
|
}
|
|
#if DEBUG_PROFILE > 2
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
|
|
/* only show one spike in a deltax wide region - pick the highest (and first if the same) */
|
|
static gboolean higher_spike(double *spk_data, int idx, int nr, int deltax)
|
|
{
|
|
int i;
|
|
double s = spk_data[idx];
|
|
for (i = MAX(0, idx - deltax); i <= MIN(idx + deltax, nr - 1); i++) {
|
|
if (s > 0) {
|
|
if (spk_data[i] > s)
|
|
return TRUE;
|
|
} else {
|
|
if (spk_data[i] < s)
|
|
return TRUE;
|
|
}
|
|
if (spk_data[i] == s && i < idx)
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/* this figures out which time stamps provide "interesting" formations in the graphs;
|
|
* this includes local minima and maxima as well as long plateaus.
|
|
* pass in the function that returns the value at a certain point (as double),
|
|
* the delta in time (expressed as number of data points of "significant time")
|
|
* the delta at which the value is considered to have been "significantly changed" and
|
|
* the number of points to cover
|
|
* returns a list of indices that ends with a -1 of times that are "interesting" */
|
|
static void find_points_of_interest(struct plot_info *pi, double (*value_func)(int, struct plot_info *),
|
|
int deltax, double deltay, int **poip, int **poip_vpos)
|
|
{
|
|
int i, j, nr = pi->nr;
|
|
double *data, *data_max, *data_min, *spk_data;
|
|
double min, max;
|
|
int *pois;
|
|
|
|
/* avoid all the function calls by creating a local array and
|
|
* have some helper arrays to make our lifes easier */
|
|
|
|
data = malloc(nr * sizeof(double));
|
|
data_max = malloc(nr * sizeof(double));
|
|
data_min = malloc(nr * sizeof(double));
|
|
spk_data = malloc(nr * sizeof(double));
|
|
|
|
pois = *poip = malloc((nr + 1) * sizeof(int));
|
|
*poip_vpos = malloc((nr + 1) * sizeof(int));
|
|
pois[0] = -1;
|
|
pois[1] = -1;
|
|
|
|
/* copy the data and get the absolute minimum and maximum while we do it */
|
|
for (i = 0; i < nr; i++) {
|
|
data_max[i] = data_min[i] = data[i] = value_func(i, pi);
|
|
if (i == 0 || data[i] < min)
|
|
min = data[i];
|
|
if (i == 0 || data[i] > max)
|
|
max = data[i];
|
|
}
|
|
/* next find out if there are real spikes in the graph */
|
|
calculate_spikyness(nr, data, spk_data, deltax, deltay);
|
|
|
|
/* now process all data points */
|
|
for (i = 0; i < nr; i++) {
|
|
/* get the local min/max */
|
|
for (j = MAX(0, i - deltax); j < i + deltax && j < nr; j++) {
|
|
if (data[j] < data[i])
|
|
data_min[i] = data[j];
|
|
if (data[j] > data[i])
|
|
data_max[i] = data[j];
|
|
}
|
|
/* is i the overall minimum or maximum */
|
|
if (data[i] == max && (i == 0 || data[i - 1] != max))
|
|
add_index(i, deltax, poip, poip_vpos, BOTTOM);
|
|
if (data[i] == min && (i == 0 || data[i - 1] != min))
|
|
add_index(i, deltax, poip, poip_vpos, TOP);
|
|
/* is i a spike? */
|
|
if (fabs(spk_data[i]) > 0.01 && ! higher_spike(spk_data, i, nr, deltax)) {
|
|
if (spk_data[i] > 0.0)
|
|
add_index(i, deltax, poip, poip_vpos, BOTTOM);
|
|
if (spk_data[i] < 0.0)
|
|
add_index(i, deltax, poip, poip_vpos, TOP);
|
|
}
|
|
/* is i a significant local minimum or maximum? */
|
|
if (data[i] == data_min[i] && data_max[i] - data[i] > deltay)
|
|
add_index(i, deltax, poip, poip_vpos, TOP);
|
|
if (data[i] == data_max[i] && data[i] - data_min[i] > deltay)
|
|
add_index(i, deltax, poip, poip_vpos, BOTTOM);
|
|
}
|
|
/* still need to search for plateaus */
|
|
}
|
|
|
|
static void setup_pp_limits(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int maxdepth;
|
|
|
|
gc->leftx = 0;
|
|
gc->rightx = get_maxtime(pi);
|
|
|
|
/* the maxdepth already includes extra vertical space - and if
|
|
* we use 1.5 times the corresponding pressure as maximum partial
|
|
* pressure the graph seems to look fine*/
|
|
maxdepth = get_maxdepth(pi);
|
|
gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * 1.01325;
|
|
gc->bottomy = -gc->topy / 20;
|
|
}
|
|
|
|
static void plot_single_pp_text(struct graphics_context *gc, int sec, double pp,
|
|
double vpos, color_indice_t color)
|
|
{
|
|
text_render_options_t tro = {12, color, CENTER, vpos};
|
|
plot_text(gc, &tro, sec, pp, "%.1lf", pp);
|
|
}
|
|
|
|
#define MAXPP(_mpp, _pp) { _mpp = 0; \
|
|
for(i = 0; i< pi->nr; i++) \
|
|
if (pi->entry[i]._pp > _mpp) \
|
|
_mpp = pi->entry[i]._pp; \
|
|
}
|
|
|
|
static double po2_value(int idx, struct plot_info *pi)
|
|
{
|
|
return pi->entry[idx].po2;
|
|
}
|
|
|
|
static double pn2_value(int idx, struct plot_info *pi)
|
|
{
|
|
return pi->entry[idx].pn2;
|
|
}
|
|
|
|
static double phe_value(int idx, struct plot_info *pi)
|
|
{
|
|
return pi->entry[idx].phe;
|
|
}
|
|
|
|
static double plot_single_gas_pp_text(struct graphics_context *gc, struct plot_info *pi,
|
|
double (*value_func)(int, struct plot_info *),
|
|
double value_threshold, int color)
|
|
{
|
|
int *pois, *pois_vpos;
|
|
int i, two_minutes = 1;
|
|
double maxpp = 0.0;
|
|
|
|
/* don't bother with local min/max if the dive is under two minutes */
|
|
if (pi->entry[pi->nr - 1].sec > 120) {
|
|
int idx = 0;
|
|
while (pi->entry[idx].sec == 0)
|
|
idx++;
|
|
while (pi->entry[idx + two_minutes].sec < 120)
|
|
two_minutes++;
|
|
} else {
|
|
two_minutes = pi->nr;
|
|
}
|
|
find_points_of_interest(pi, value_func, two_minutes, value_threshold, &pois, &pois_vpos);
|
|
for (i = 0; pois[i] != -1; i++) {
|
|
struct plot_data *entry = pi->entry + pois[i];
|
|
double value = value_func(pois[i], pi);
|
|
|
|
#if DEBUG_PROFILE > 1
|
|
fprintf(debugfile, "POI at %d sec value %lf\n", entry->sec, entry->po2);
|
|
#endif
|
|
plot_single_pp_text(gc, entry->sec, value, pois_vpos[i], color);
|
|
if (value > maxpp)
|
|
maxpp = value;
|
|
}
|
|
free(pois);
|
|
free(pois_vpos);
|
|
|
|
return maxpp;
|
|
}
|
|
|
|
static void plot_pp_text(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
double pp, dpp, m, maxpp = 0.0;
|
|
int hpos;
|
|
static const text_render_options_t tro = {11, PN2, LEFT, MIDDLE};
|
|
|
|
setup_pp_limits(gc, pi);
|
|
|
|
if (partial_pressure_graphs.po2) {
|
|
maxpp = plot_single_gas_pp_text(gc, pi, po2_value, 0.4, PO2);
|
|
}
|
|
if (partial_pressure_graphs.pn2) {
|
|
m = plot_single_gas_pp_text(gc, pi, pn2_value, 0.6, PN2);
|
|
if (m > maxpp)
|
|
maxpp = m;
|
|
}
|
|
if (partial_pressure_graphs.phe) {
|
|
m = plot_single_gas_pp_text(gc, pi, phe_value, 0.4, PHE);
|
|
if (m > maxpp)
|
|
maxpp = m;
|
|
}
|
|
/* while this is somewhat useful, I don't like the way it looks...
|
|
* for now I'll leave the code here, but disable it */
|
|
if (0) {
|
|
pp = floor(maxpp * 10.0) / 10.0 + 0.2;
|
|
dpp = floor(2.0 * pp) / 10.0;
|
|
hpos = pi->entry[pi->nr - 1].sec + 30;
|
|
for (m = 0.0; m <= pp; m += dpp)
|
|
plot_text(gc, &tro, hpos, m, "%.1f", m);
|
|
}
|
|
}
|
|
|
|
static void plot_pp_gas_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
struct plot_data *entry;
|
|
|
|
setup_pp_limits(gc, pi);
|
|
|
|
if (partial_pressure_graphs.po2) {
|
|
set_source_rgba(gc, PO2);
|
|
entry = pi->entry;
|
|
move_to(gc, entry->sec, entry->po2);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
if (entry->po2 < partial_pressure_graphs.po2_threshold)
|
|
line_to(gc, entry->sec, entry->po2);
|
|
else
|
|
move_to(gc, entry->sec, entry->po2);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
|
|
set_source_rgba(gc, PO2_ALERT);
|
|
entry = pi->entry;
|
|
move_to(gc, entry->sec, entry->po2);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
if (entry->po2 >= partial_pressure_graphs.po2_threshold)
|
|
line_to(gc, entry->sec, entry->po2);
|
|
else
|
|
move_to(gc, entry->sec, entry->po2);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
}
|
|
if (partial_pressure_graphs.pn2) {
|
|
set_source_rgba(gc, PN2);
|
|
entry = pi->entry;
|
|
move_to(gc, entry->sec, entry->pn2);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
if (entry->pn2 < partial_pressure_graphs.pn2_threshold)
|
|
line_to(gc, entry->sec, entry->pn2);
|
|
else
|
|
move_to(gc, entry->sec, entry->pn2);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
|
|
set_source_rgba(gc, PN2_ALERT);
|
|
entry = pi->entry;
|
|
move_to(gc, entry->sec, entry->pn2);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
if (entry->pn2 >= partial_pressure_graphs.pn2_threshold)
|
|
line_to(gc, entry->sec, entry->pn2);
|
|
else
|
|
move_to(gc, entry->sec, entry->pn2);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
}
|
|
if (partial_pressure_graphs.phe) {
|
|
set_source_rgba(gc, PHE);
|
|
entry = pi->entry;
|
|
move_to(gc, entry->sec, entry->phe);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
if (entry->phe < partial_pressure_graphs.phe_threshold)
|
|
line_to(gc, entry->sec, entry->phe);
|
|
else
|
|
move_to(gc, entry->sec, entry->phe);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
|
|
set_source_rgba(gc, PHE_ALERT);
|
|
entry = pi->entry;
|
|
move_to(gc, entry->sec, entry->phe);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
if (entry->phe >= partial_pressure_graphs.phe_threshold)
|
|
line_to(gc, entry->sec, entry->phe);
|
|
else
|
|
move_to(gc, entry->sec, entry->phe);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
}
|
|
}
|
|
|
|
static void plot_depth_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i, incr;
|
|
cairo_t *cr = gc->cr;
|
|
int sec, depth;
|
|
struct plot_data *entry;
|
|
int maxtime, maxdepth, marker;
|
|
int increments[8] = { 10, 20, 30, 60, 5*60, 10*60, 15*60, 30*60 };
|
|
|
|
/* Get plot scaling limits */
|
|
maxtime = get_maxtime(pi);
|
|
maxdepth = get_maxdepth(pi);
|
|
|
|
gc->maxtime = maxtime;
|
|
|
|
/* Time markers: at most every 10 seconds, but no more than 12 markers.
|
|
* We start out with 10 seconds and increment up to 30 minutes,
|
|
* depending on the dive time.
|
|
* This allows for 6h dives - enough (I hope) for even the craziest
|
|
* divers - but just in case, for those 8h depth-record-breaking dives,
|
|
* we double the interval if this still doesn't get us to 12 or fewer
|
|
* time markers */
|
|
i = 0;
|
|
while (maxtime / increments[i] > 12 && i < 7)
|
|
i++;
|
|
incr = increments[i];
|
|
while (maxtime / incr > 12)
|
|
incr *= 2;
|
|
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
gc->topy = 0; gc->bottomy = 1.0;
|
|
set_source_rgba(gc, TIME_GRID);
|
|
cairo_set_line_width_scaled(gc->cr, 2);
|
|
|
|
for (i = incr; i < maxtime; i += incr) {
|
|
move_to(gc, i, 0);
|
|
line_to(gc, i, 1);
|
|
}
|
|
cairo_stroke(cr);
|
|
|
|
/* now the text on the time markers */
|
|
text_render_options_t tro = {10, TIME_TEXT, CENTER, TOP};
|
|
if (maxtime < 600) {
|
|
/* Be a bit more verbose with shorter dives */
|
|
for (i = incr; i < maxtime; i += incr)
|
|
plot_text(gc, &tro, i, 1, "%02d:%02d", i/60, i%60);
|
|
} else {
|
|
/* Only render the time on every second marker for normal dives */
|
|
for (i = incr; i < maxtime; i += 2 * incr)
|
|
plot_text(gc, &tro, i, 1, "%d", i/60);
|
|
}
|
|
/* Depth markers: every 30 ft or 10 m*/
|
|
gc->leftx = 0; gc->rightx = 1.0;
|
|
gc->topy = 0; gc->bottomy = maxdepth;
|
|
switch (output_units.length) {
|
|
case METERS: marker = 10000; break;
|
|
case FEET: marker = 9144; break; /* 30 ft */
|
|
}
|
|
|
|
set_source_rgba(gc, DEPTH_GRID);
|
|
for (i = marker; i < maxdepth; i += marker) {
|
|
move_to(gc, 0, i);
|
|
line_to(gc, 1, i);
|
|
}
|
|
cairo_stroke(cr);
|
|
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
|
|
/* Show mean depth */
|
|
if (! gc->printer) {
|
|
set_source_rgba(gc, MEAN_DEPTH);
|
|
move_to(gc, 0, pi->meandepth);
|
|
line_to(gc, pi->entry[pi->nr - 1].sec, pi->meandepth);
|
|
cairo_stroke(cr);
|
|
}
|
|
|
|
/*
|
|
* These are good for debugging text placement etc,
|
|
* but not for actual display..
|
|
*/
|
|
if (0) {
|
|
plot_smoothed_profile(gc, pi);
|
|
plot_minmax_profile(gc, pi);
|
|
}
|
|
|
|
/* Do the depth profile for the neat fill */
|
|
gc->topy = 0; gc->bottomy = maxdepth;
|
|
|
|
cairo_pattern_t *pat;
|
|
pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale);
|
|
pattern_add_color_stop_rgba (gc, pat, 1, DEPTH_BOTTOM);
|
|
pattern_add_color_stop_rgba (gc, pat, 0, DEPTH_TOP);
|
|
|
|
cairo_set_source(gc->cr, pat);
|
|
cairo_pattern_destroy(pat);
|
|
cairo_set_line_width_scaled(gc->cr, 2);
|
|
|
|
entry = pi->entry;
|
|
move_to(gc, 0, 0);
|
|
for (i = 0; i < pi->nr; i++, entry++)
|
|
line_to(gc, entry->sec, entry->depth);
|
|
|
|
/* Show any ceiling we may have encountered */
|
|
for (i = pi->nr - 1; i >= 0; i--, entry--) {
|
|
if (entry->ndl) {
|
|
/* non-zero NDL implies this is a safety stop, no ceiling */
|
|
line_to(gc, entry->sec, 0);
|
|
} else if (entry->stopdepth < entry->depth) {
|
|
line_to(gc, entry->sec, entry->stopdepth);
|
|
} else {
|
|
line_to(gc, entry->sec, entry->depth);
|
|
}
|
|
}
|
|
cairo_close_path(gc->cr);
|
|
cairo_fill(gc->cr);
|
|
|
|
/* if the user wants the deco ceiling more visible, do that here (this
|
|
* basically draws over the background that we had allowed to shine
|
|
* through so far) */
|
|
if (profile_red_ceiling) {
|
|
pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale);
|
|
pattern_add_color_stop_rgba (gc, pat, 0, CEILING_SHALLOW);
|
|
pattern_add_color_stop_rgba (gc, pat, 1, CEILING_DEEP);
|
|
cairo_set_source(gc->cr, pat);
|
|
cairo_pattern_destroy(pat);
|
|
entry = pi->entry;
|
|
move_to(gc, 0, 0);
|
|
for (i = 0; i < pi->nr; i++, entry++) {
|
|
if (entry->ndl == 0 && entry->stopdepth) {
|
|
if (entry->ndl == 0 && entry->stopdepth < entry->depth) {
|
|
line_to(gc, entry->sec, entry->stopdepth);
|
|
} else {
|
|
line_to(gc, entry->sec, entry->depth);
|
|
}
|
|
} else {
|
|
line_to(gc, entry->sec, 0);
|
|
}
|
|
}
|
|
cairo_close_path(gc->cr);
|
|
cairo_fill(gc->cr);
|
|
}
|
|
/* next show where we have been bad and crossed the ceiling */
|
|
pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale);
|
|
pattern_add_color_stop_rgba (gc, pat, 0, CEILING_SHALLOW);
|
|
pattern_add_color_stop_rgba (gc, pat, 1, CEILING_DEEP);
|
|
cairo_set_source(gc->cr, pat);
|
|
cairo_pattern_destroy(pat);
|
|
entry = pi->entry;
|
|
move_to(gc, 0, 0);
|
|
for (i = 0; i < pi->nr; i++, entry++)
|
|
line_to(gc, entry->sec, entry->depth);
|
|
|
|
for (i = pi->nr - 1; i >= 0; i--, entry--) {
|
|
if (entry->ndl == 0 && entry->stopdepth > entry->depth) {
|
|
line_to(gc, entry->sec, entry->stopdepth);
|
|
} else {
|
|
line_to(gc, entry->sec, entry->depth);
|
|
}
|
|
}
|
|
cairo_close_path(gc->cr);
|
|
cairo_fill(gc->cr);
|
|
|
|
/* Now do it again for the velocity colors */
|
|
entry = pi->entry;
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
sec = entry->sec;
|
|
/* we want to draw the segments in different colors
|
|
* representing the vertical velocity, so we need to
|
|
* chop this into short segments */
|
|
depth = entry->depth;
|
|
set_source_rgba(gc, VELOCITY_COLORS_START_IDX + entry->velocity);
|
|
move_to(gc, entry[-1].sec, entry[-1].depth);
|
|
line_to(gc, sec, depth);
|
|
cairo_stroke(cr);
|
|
}
|
|
}
|
|
|
|
static int setup_temperature_limits(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int maxtime, mintemp, maxtemp, delta;
|
|
|
|
/* Get plot scaling limits */
|
|
maxtime = get_maxtime(pi);
|
|
mintemp = pi->mintemp;
|
|
maxtemp = pi->maxtemp;
|
|
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
/* Show temperatures in roughly the lower third, but make sure the scale
|
|
is at least somewhat reasonable */
|
|
delta = maxtemp - mintemp;
|
|
if (delta < 3000) /* less than 3K in fluctuation */
|
|
delta = 3000;
|
|
gc->topy = maxtemp + delta*2;
|
|
|
|
if (GRAPHS_ENABLED)
|
|
gc->bottomy = mintemp - delta * 2;
|
|
else
|
|
gc->bottomy = mintemp - delta / 3;
|
|
|
|
pi->endtempcoord = SCALEY(gc, pi->endtemp);
|
|
return maxtemp > mintemp;
|
|
}
|
|
|
|
static void plot_single_temp_text(struct graphics_context *gc, int sec, int mkelvin)
|
|
{
|
|
double deg;
|
|
const char *unit;
|
|
static const text_render_options_t tro = {12, TEMP_TEXT, LEFT, TOP};
|
|
|
|
deg = get_temp_units(mkelvin, &unit);
|
|
|
|
plot_text(gc, &tro, sec, mkelvin, "%d%s", (int)(deg + 0.5), unit);
|
|
}
|
|
|
|
static void plot_temperature_text(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
int last = -300, sec = 0;
|
|
int last_temperature = 0, last_printed_temp = 0;
|
|
|
|
if (!setup_temperature_limits(gc, pi))
|
|
return;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
int mkelvin = entry->temperature;
|
|
|
|
if (!mkelvin)
|
|
continue;
|
|
last_temperature = mkelvin;
|
|
sec = entry->sec;
|
|
/* don't print a temperature
|
|
* if it's been less than 5min and less than a 2K change OR
|
|
* if it's been less than 2min OR if the change from the
|
|
* last print is less than .4K (and therefore less than 1F */
|
|
if (((sec < last + 300) && (abs(mkelvin - last_printed_temp) < 2000)) ||
|
|
(sec < last + 120) ||
|
|
(abs(mkelvin - last_printed_temp) < 400))
|
|
continue;
|
|
last = sec;
|
|
plot_single_temp_text(gc,sec,mkelvin);
|
|
last_printed_temp = mkelvin;
|
|
}
|
|
/* it would be nice to print the end temperature, if it's
|
|
* different or if the last temperature print has been more
|
|
* than a quarter of the dive back */
|
|
if ((abs(last_temperature - last_printed_temp) > 500) ||
|
|
((double)last / (double)sec < 0.75))
|
|
plot_single_temp_text(gc, sec, last_temperature);
|
|
}
|
|
|
|
static void plot_temperature_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
cairo_t *cr = gc->cr;
|
|
int last = 0;
|
|
|
|
if (!setup_temperature_limits(gc, pi))
|
|
return;
|
|
|
|
cairo_set_line_width_scaled(gc->cr, 2);
|
|
set_source_rgba(gc, TEMP_PLOT);
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
int mkelvin = entry->temperature;
|
|
int sec = entry->sec;
|
|
if (!mkelvin) {
|
|
if (!last)
|
|
continue;
|
|
mkelvin = last;
|
|
}
|
|
if (last)
|
|
line_to(gc, sec, mkelvin);
|
|
else
|
|
move_to(gc, sec, mkelvin);
|
|
last = mkelvin;
|
|
}
|
|
cairo_stroke(cr);
|
|
}
|
|
|
|
/* gets both the actual start and end pressure as well as the scaling factors */
|
|
static int get_cylinder_pressure_range(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
gc->leftx = 0;
|
|
gc->rightx = get_maxtime(pi);
|
|
|
|
if (GRAPHS_ENABLED)
|
|
gc->bottomy = -pi->maxpressure * 0.75;
|
|
else
|
|
gc->bottomy = 0;
|
|
gc->topy = pi->maxpressure * 1.5;
|
|
if (!pi->maxpressure)
|
|
return FALSE;
|
|
|
|
while (pi->endtempcoord <= SCALEY(gc, pi->endpressure - (gc->topy) * 0.1))
|
|
gc->bottomy -= gc->topy * 0.1;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* set the color for the pressure plot according to temporary sac rate
|
|
* as compared to avg_sac; the calculation simply maps the delta between
|
|
* sac and avg_sac to indexes 0 .. (SAC_COLORS - 1) with everything
|
|
* more than 6000 ml/min below avg_sac mapped to 0 */
|
|
|
|
static void set_sac_color(struct graphics_context *gc, int sac, int avg_sac)
|
|
{
|
|
int sac_index = 0;
|
|
int delta = sac - avg_sac + 7000;
|
|
|
|
if (!gc->printer) {
|
|
sac_index = delta / 2000;
|
|
if (sac_index < 0)
|
|
sac_index = 0;
|
|
if (sac_index > SAC_COLORS - 1)
|
|
sac_index = SAC_COLORS - 1;
|
|
set_source_rgba(gc, SAC_COLORS_START_IDX + sac_index);
|
|
} else {
|
|
set_source_rgba(gc, SAC_DEFAULT);
|
|
}
|
|
}
|
|
|
|
/* calculate the current SAC in ml/min and convert to int */
|
|
#define GET_LOCAL_SAC(_entry1, _entry2, _dive) (int) \
|
|
((GET_PRESSURE((_entry1)) - GET_PRESSURE((_entry2))) * \
|
|
(_dive)->cylinder[(_entry1)->cylinderindex].type.size.mliter / \
|
|
(((_entry2)->sec - (_entry1)->sec) / 60.0) / \
|
|
depth_to_mbar(((_entry1)->depth + (_entry2)->depth) / 2.0, (_dive)))
|
|
|
|
#define SAC_WINDOW 45 /* sliding window in seconds for current SAC calculation */
|
|
|
|
static void plot_cylinder_pressure(struct graphics_context *gc, struct plot_info *pi,
|
|
struct dive *dive)
|
|
{
|
|
int i;
|
|
int last = -1;
|
|
int lift_pen = FALSE;
|
|
int first_plot = TRUE;
|
|
int sac = 0;
|
|
struct plot_data *last_entry = NULL;
|
|
|
|
if (!get_cylinder_pressure_range(gc, pi))
|
|
return;
|
|
|
|
cairo_set_line_width_scaled(gc->cr, 2);
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
int mbar;
|
|
struct plot_data *entry = pi->entry + i;
|
|
|
|
mbar = GET_PRESSURE(entry);
|
|
if (!entry->same_cylinder) {
|
|
lift_pen = TRUE;
|
|
last_entry = NULL;
|
|
}
|
|
if (!mbar) {
|
|
lift_pen = TRUE;
|
|
continue;
|
|
}
|
|
if (!last_entry) {
|
|
last = i;
|
|
last_entry = entry;
|
|
sac = GET_LOCAL_SAC(entry, pi->entry + i + 1, dive);
|
|
} else {
|
|
int j;
|
|
sac = 0;
|
|
for (j = last; j < i; j++)
|
|
sac += GET_LOCAL_SAC(pi->entry + j, pi->entry + j + 1, dive);
|
|
sac /= (i - last);
|
|
if (entry->sec - last_entry->sec >= SAC_WINDOW) {
|
|
last++;
|
|
last_entry = pi->entry + last;
|
|
}
|
|
}
|
|
set_sac_color(gc, sac, dive->sac);
|
|
if (lift_pen) {
|
|
if (!first_plot && entry->same_cylinder) {
|
|
/* if we have a previous event from the same tank,
|
|
* draw at least a short line */
|
|
int prev_pr;
|
|
prev_pr = GET_PRESSURE(entry - 1);
|
|
move_to(gc, (entry-1)->sec, prev_pr);
|
|
line_to(gc, entry->sec, mbar);
|
|
} else {
|
|
first_plot = FALSE;
|
|
move_to(gc, entry->sec, mbar);
|
|
}
|
|
lift_pen = FALSE;
|
|
} else {
|
|
line_to(gc, entry->sec, mbar);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
move_to(gc, entry->sec, mbar);
|
|
}
|
|
}
|
|
|
|
static void plot_pressure_value(struct graphics_context *gc, int mbar, int sec,
|
|
int xalign, int yalign)
|
|
{
|
|
int pressure;
|
|
const char *unit;
|
|
|
|
pressure = get_pressure_units(mbar, &unit);
|
|
text_render_options_t tro = {10, PRESSURE_TEXT, xalign, yalign};
|
|
plot_text(gc, &tro, sec, mbar, "%d %s", pressure, unit);
|
|
}
|
|
|
|
static void plot_cylinder_pressure_text(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
int mbar, cyl;
|
|
int seen_cyl[MAX_CYLINDERS] = { FALSE, };
|
|
int last_pressure[MAX_CYLINDERS] = { 0, };
|
|
int last_time[MAX_CYLINDERS] = { 0, };
|
|
struct plot_data *entry;
|
|
|
|
if (!get_cylinder_pressure_range(gc, pi))
|
|
return;
|
|
|
|
/* only loop over the actual events from the dive computer
|
|
* plus the second synthetic event at the start (to make sure
|
|
* we get "time=0" right)
|
|
* sadly with a recent change that first entry may no longer
|
|
* have any pressure reading - in that case just grab the
|
|
* pressure from the second entry */
|
|
if (GET_PRESSURE(pi->entry + 1) == 0 && GET_PRESSURE(pi->entry + 2) !=0)
|
|
INTERPOLATED_PRESSURE(pi->entry + 1) = GET_PRESSURE(pi->entry + 2);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry = pi->entry + i;
|
|
|
|
if (!entry->same_cylinder) {
|
|
cyl = entry->cylinderindex;
|
|
if (!seen_cyl[cyl]) {
|
|
mbar = GET_PRESSURE(entry);
|
|
plot_pressure_value(gc, mbar, entry->sec, LEFT, BOTTOM);
|
|
seen_cyl[cyl] = TRUE;
|
|
}
|
|
if (i > 2) {
|
|
/* remember the last pressure and time of
|
|
* the previous cylinder */
|
|
cyl = (entry - 1)->cylinderindex;
|
|
last_pressure[cyl] = GET_PRESSURE(entry - 1);
|
|
last_time[cyl] = (entry - 1)->sec;
|
|
}
|
|
}
|
|
}
|
|
cyl = entry->cylinderindex;
|
|
if (GET_PRESSURE(entry))
|
|
last_pressure[cyl] = GET_PRESSURE(entry);
|
|
last_time[cyl] = entry->sec;
|
|
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
if (last_time[cyl]) {
|
|
plot_pressure_value(gc, last_pressure[cyl], last_time[cyl], CENTER, TOP);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
|
|
{
|
|
struct plot_data *p = entry;
|
|
int time = entry->sec;
|
|
int seconds = 90*(index+1);
|
|
struct plot_data *min, *max;
|
|
int avg, nr;
|
|
|
|
/* Go back 'seconds' in time */
|
|
while (p > first) {
|
|
if (p[-1].sec < time - seconds)
|
|
break;
|
|
p--;
|
|
}
|
|
|
|
/* Then go forward until we hit an entry past the time */
|
|
min = max = p;
|
|
avg = p->depth;
|
|
nr = 1;
|
|
while (++p < last) {
|
|
int depth = p->depth;
|
|
if (p->sec > time + seconds)
|
|
break;
|
|
avg += depth;
|
|
nr ++;
|
|
if (depth < min->depth)
|
|
min = p;
|
|
if (depth > max->depth)
|
|
max = p;
|
|
}
|
|
entry->min[index] = min;
|
|
entry->max[index] = max;
|
|
entry->avg[index] = (avg + nr/2) / nr;
|
|
}
|
|
|
|
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
|
|
{
|
|
analyze_plot_info_minmax_minute(entry, first, last, 0);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 1);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 2);
|
|
}
|
|
|
|
static velocity_t velocity(int speed)
|
|
{
|
|
velocity_t v;
|
|
|
|
if (speed < -304) /* ascent faster than -60ft/min */
|
|
v = CRAZY;
|
|
else if (speed < -152) /* above -30ft/min */
|
|
v = FAST;
|
|
else if (speed < -76) /* -15ft/min */
|
|
v = MODERATE;
|
|
else if (speed < -25) /* -5ft/min */
|
|
v = SLOW;
|
|
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
|
|
for descent are usually about 2x ascent rate; still, we want
|
|
stable to mean stable */
|
|
v = STABLE;
|
|
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
|
|
v = SLOW;
|
|
else if (speed < 304) /* up to 60ft/min is moderate */
|
|
v = MODERATE;
|
|
else if (speed < 507) /* up to 100ft/min is fast */
|
|
v = FAST;
|
|
else /* more than that is just crazy - you'll blow your ears out */
|
|
v = CRAZY;
|
|
|
|
return v;
|
|
}
|
|
static struct plot_info *analyze_plot_info(struct plot_info *pi)
|
|
{
|
|
int i;
|
|
int nr = pi->nr;
|
|
|
|
/* Do pressure min/max based on the non-surface data */
|
|
for (i = 0; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
int pressure = GET_PRESSURE(entry);
|
|
int temperature = entry->temperature;
|
|
|
|
if (pressure) {
|
|
if (pressure > pi->maxpressure)
|
|
pi->maxpressure = pressure;
|
|
pi->endpressure = pressure;
|
|
}
|
|
|
|
if (temperature) {
|
|
if (!pi->mintemp || temperature < pi->mintemp)
|
|
pi->mintemp = temperature;
|
|
if (temperature > pi->maxtemp)
|
|
pi->maxtemp = temperature;
|
|
pi->endtemp = temperature;
|
|
}
|
|
}
|
|
|
|
/* Smoothing function: 5-point triangular smooth */
|
|
for (i = 2; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
int depth;
|
|
|
|
if (i < nr-2) {
|
|
depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth;
|
|
entry->smoothed = (depth+4) / 9;
|
|
}
|
|
/* vertical velocity in mm/sec */
|
|
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
|
|
if (entry[0].sec - entry[-1].sec) {
|
|
entry->velocity = velocity((entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec));
|
|
/* if our samples are short and we aren't too FAST*/
|
|
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
|
|
int past = -2;
|
|
while (i+past > 0 && entry[0].sec - entry[past].sec < 15)
|
|
past--;
|
|
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
|
|
(entry[0].sec - entry[past].sec));
|
|
}
|
|
} else
|
|
entry->velocity = STABLE;
|
|
}
|
|
|
|
/* One-, two- and three-minute minmax data */
|
|
for (i = 0; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry +i;
|
|
analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr);
|
|
}
|
|
|
|
return pi;
|
|
}
|
|
|
|
/*
|
|
* simple structure to track the beginning and end tank pressure as
|
|
* well as the integral of depth over time spent while we have no
|
|
* pressure reading from the tank */
|
|
typedef struct pr_track_struct pr_track_t;
|
|
struct pr_track_struct {
|
|
int start;
|
|
int end;
|
|
int t_start;
|
|
int t_end;
|
|
double pressure_time;
|
|
pr_track_t *next;
|
|
};
|
|
|
|
static pr_track_t *pr_track_alloc(int start, int t_start) {
|
|
pr_track_t *pt = malloc(sizeof(pr_track_t));
|
|
pt->start = start;
|
|
pt->t_start = t_start;
|
|
pt->end = 0;
|
|
pt->t_end = 0;
|
|
pt->pressure_time = 0.0;
|
|
pt->next = NULL;
|
|
return pt;
|
|
}
|
|
|
|
/* poor man's linked list */
|
|
static pr_track_t *list_last(pr_track_t *list)
|
|
{
|
|
pr_track_t *tail = list;
|
|
if (!tail)
|
|
return NULL;
|
|
while (tail->next) {
|
|
tail = tail->next;
|
|
}
|
|
return tail;
|
|
}
|
|
|
|
static pr_track_t *list_add(pr_track_t *list, pr_track_t *element)
|
|
{
|
|
pr_track_t *tail = list_last(list);
|
|
if (!tail)
|
|
return element;
|
|
tail->next = element;
|
|
return list;
|
|
}
|
|
|
|
static void list_free(pr_track_t *list)
|
|
{
|
|
if (!list)
|
|
return;
|
|
list_free(list->next);
|
|
free(list);
|
|
}
|
|
|
|
static void dump_pr_track(pr_track_t **track_pr)
|
|
{
|
|
int cyl;
|
|
pr_track_t *list;
|
|
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
list = track_pr[cyl];
|
|
while (list) {
|
|
printf("cyl%d: start %d end %d t_start %d t_end %d pt %6.3f\n", cyl,
|
|
list->start, list->end, list->t_start, list->t_end, list->pressure_time);
|
|
list = list->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void fill_missing_tank_pressures(struct plot_info *pi, pr_track_t **track_pr)
|
|
{
|
|
pr_track_t *list = NULL;
|
|
pr_track_t *nlist = NULL;
|
|
double pt, magic;
|
|
int cyl, i;
|
|
struct plot_data *entry;
|
|
int cur_pr[MAX_CYLINDERS];
|
|
|
|
if (0) {
|
|
/* another great debugging tool */
|
|
dump_pr_track(track_pr);
|
|
}
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
cur_pr[cyl] = track_pr[cyl]->start;
|
|
}
|
|
|
|
/* The first two are "fillers", but in case we don't have a sample
|
|
* at time 0 we need to process the second of them here */
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry = pi->entry + i;
|
|
if (SENSOR_PRESSURE(entry)) {
|
|
cur_pr[entry->cylinderindex] = SENSOR_PRESSURE(entry);
|
|
} else {
|
|
if(!list || list->t_end < entry->sec) {
|
|
nlist = track_pr[entry->cylinderindex];
|
|
list = NULL;
|
|
while (nlist && nlist->t_start <= entry->sec) {
|
|
list = nlist;
|
|
nlist = list->next;
|
|
}
|
|
/* there may be multiple segments - so
|
|
* let's assemble the length */
|
|
nlist = list;
|
|
if (list) {
|
|
pt = list->pressure_time;
|
|
while (!nlist->end) {
|
|
nlist = nlist->next;
|
|
if (!nlist) {
|
|
/* oops - we have no end pressure,
|
|
* so this means this is a tank without
|
|
* gas consumption information */
|
|
break;
|
|
}
|
|
pt += nlist->pressure_time;
|
|
}
|
|
}
|
|
if (!nlist) {
|
|
/* just continue without calculating
|
|
* interpolated values */
|
|
INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex];
|
|
list = NULL;
|
|
continue;
|
|
}
|
|
magic = (nlist->end - cur_pr[entry->cylinderindex]) / pt;
|
|
}
|
|
if (pt != 0.0) {
|
|
double cur_pt = (entry->sec - (entry-1)->sec) *
|
|
(1 + (entry->depth + (entry-1)->depth) / 20000.0);
|
|
INTERPOLATED_PRESSURE(entry) =
|
|
cur_pr[entry->cylinderindex] + cur_pt * magic + 0.5;
|
|
cur_pr[entry->cylinderindex] = INTERPOLATED_PRESSURE(entry);
|
|
} else
|
|
INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int get_cylinder_index(struct dive *dive, struct event *ev)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Try to find a cylinder that matches the O2 percentage
|
|
* in the gas change event 'value' field.
|
|
*
|
|
* Crazy suunto gas change events. We really should do
|
|
* this in libdivecomputer or something.
|
|
*/
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
|
cylinder_t *cyl = dive->cylinder+i;
|
|
int o2 = (cyl->gasmix.o2.permille + 5) / 10;
|
|
if (o2 == ev->value)
|
|
return i;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct event *get_next_event(struct event *event, char *name)
|
|
{
|
|
if (!name || !*name)
|
|
return NULL;
|
|
while (event) {
|
|
if (!strcmp(event->name, name))
|
|
return event;
|
|
event = event->next;
|
|
}
|
|
return event;
|
|
}
|
|
|
|
static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
|
|
{
|
|
while (i < pi->nr) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (entry->sec > end)
|
|
break;
|
|
if (entry->cylinderindex != cylinderindex) {
|
|
entry->cylinderindex = cylinderindex;
|
|
entry->pressure[0] = 0;
|
|
}
|
|
i++;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i = 0, cylinderindex = 0;
|
|
struct event *ev = get_next_event(dc->events, "gaschange");
|
|
|
|
if (!ev)
|
|
return;
|
|
|
|
do {
|
|
i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
|
|
cylinderindex = get_cylinder_index(dive, ev);
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
} while (ev);
|
|
set_cylinder_index(pi, i, cylinderindex, ~0u);
|
|
}
|
|
|
|
/* for computers that track gas changes through events */
|
|
static int count_gas_change_events(struct divecomputer *dc)
|
|
{
|
|
int count = 0;
|
|
struct event *ev = get_next_event(dc->events, "gaschange");
|
|
|
|
while (ev) {
|
|
count++;
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Create a plot-info with smoothing and ranged min/max
|
|
*
|
|
* This also makes sure that we have extra empty events on both
|
|
* sides, so that you can do end-points without having to worry
|
|
* about it.
|
|
*/
|
|
static struct plot_info *create_plot_info(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc)
|
|
{
|
|
int cylinderindex = -1;
|
|
int lastdepth, lastindex;
|
|
int i, pi_idx, nr, sec, cyl, stoptime, ndl, stopdepth;
|
|
struct plot_info *pi;
|
|
pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, };
|
|
pr_track_t *pr_track, *current;
|
|
gboolean missing_pr = FALSE;
|
|
struct plot_data *entry = NULL;
|
|
struct event *ev;
|
|
double amb_pressure;
|
|
|
|
/* The plot-info is embedded in the graphics context */
|
|
pi = &gc->pi;
|
|
memset(pi, 0, sizeof(*pi));
|
|
|
|
/* we want to potentially add synthetic plot_info elements for the gas changes */
|
|
nr = dc->samples + 4 + 2 * count_gas_change_events(dc);
|
|
pi->entry = calloc(nr, sizeof(struct plot_data));
|
|
if (!pi->entry)
|
|
return NULL;
|
|
pi->nr = nr;
|
|
pi_idx = 2; /* the two extra events at the start */
|
|
/* check for gas changes before the samples start */
|
|
ev = get_next_event(dc->events, "gaschange");
|
|
while (ev && ev->time.seconds < dc->sample->time.seconds) {
|
|
entry = pi->entry + pi_idx;
|
|
entry->sec = ev->time.seconds;
|
|
entry->depth = 0; /* is that always correct ? */
|
|
pi_idx++;
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
}
|
|
if (ev && ev->time.seconds == dc->sample->time.seconds) {
|
|
/* we already have a sample at the time of the event */
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
}
|
|
sec = 0;
|
|
lastindex = 0;
|
|
lastdepth = -1;
|
|
for (i = 0; i < dc->samples; i++) {
|
|
int depth;
|
|
int delay = 0;
|
|
struct sample *sample = dc->sample+i;
|
|
|
|
if ((dive->start > -1 && sample->time.seconds < dive->start) ||
|
|
(dive->end > -1 && sample->time.seconds > dive->end)) {
|
|
pi_idx--;
|
|
continue;
|
|
}
|
|
entry = pi->entry + i + pi_idx;
|
|
ndl = sample->ndl.seconds;
|
|
pi->has_ndl |= ndl;
|
|
stopdepth = sample->stopdepth.mm;
|
|
stoptime = sample->stoptime.seconds;
|
|
while (ev && ev->time.seconds < sample->time.seconds) {
|
|
/* insert two fake plot info structures for the end of
|
|
* the old tank and the start of the new tank */
|
|
if (ev->time.seconds == sample->time.seconds - 1) {
|
|
entry->sec = ev->time.seconds - 1;
|
|
(entry+1)->sec = ev->time.seconds;
|
|
} else {
|
|
entry->sec = ev->time.seconds;
|
|
(entry+1)->sec = ev->time.seconds + 1;
|
|
}
|
|
/* we need a fake depth - let's interpolate */
|
|
if (i) {
|
|
entry->depth = sample->depth.mm -
|
|
(sample->depth.mm - (sample-1)->depth.mm) / 2;
|
|
} else
|
|
entry->depth = sample->depth.mm;
|
|
(entry + 1)->depth = entry->depth;
|
|
entry->stopdepth = stopdepth;
|
|
entry->stoptime = stoptime;
|
|
entry->ndl = ndl;
|
|
(entry + 1)->stopdepth = stopdepth;
|
|
(entry + 1)->stoptime = stoptime;
|
|
(entry + 1)->ndl = ndl;
|
|
pi_idx += 2;
|
|
entry = pi->entry + i + pi_idx;
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
}
|
|
if (ev && ev->time.seconds == sample->time.seconds) {
|
|
/* we already have a sample at the time of the event
|
|
* just add a new one for the old tank and delay the
|
|
* real even by one second (to keep time monotonous) */
|
|
entry->sec = ev->time.seconds;
|
|
entry->depth = sample->depth.mm;
|
|
entry->stopdepth = stopdepth;
|
|
entry->stoptime = stoptime;
|
|
entry->ndl = ndl;
|
|
pi_idx++;
|
|
entry = pi->entry + i + pi_idx;
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
delay = 1;
|
|
}
|
|
sec = entry->sec = sample->time.seconds + delay;
|
|
depth = entry->depth = sample->depth.mm;
|
|
entry->stopdepth = stopdepth;
|
|
entry->stoptime = stoptime;
|
|
entry->ndl = ndl;
|
|
entry->cylinderindex = sample->cylinderindex;
|
|
SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
|
|
entry->temperature = sample->temperature.mkelvin;
|
|
|
|
if (depth || lastdepth)
|
|
lastindex = i + pi_idx;
|
|
|
|
lastdepth = depth;
|
|
if (depth > pi->maxdepth)
|
|
pi->maxdepth = depth;
|
|
}
|
|
entry = pi->entry + i + pi_idx;
|
|
/* are there still unprocessed gas changes? that would be very strange */
|
|
while (ev) {
|
|
entry->sec = ev->time.seconds;
|
|
entry->depth = 0; /* why are there gas changes after the dive is over? */
|
|
pi_idx++;
|
|
entry = pi->entry + i + pi_idx;
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
}
|
|
nr = dc->samples + pi_idx - 2;
|
|
check_gas_change_events(dive, dc, pi);
|
|
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) /* initialize the start pressures */
|
|
track_pr[cyl] = pr_track_alloc(dive->cylinder[cyl].start.mbar, -1);
|
|
current = track_pr[pi->entry[2].cylinderindex];
|
|
for (i = 0; i < nr + 1; i++) {
|
|
int fo2, fhe;
|
|
|
|
entry = pi->entry + i + 1;
|
|
|
|
entry->same_cylinder = entry->cylinderindex == cylinderindex;
|
|
cylinderindex = entry->cylinderindex;
|
|
|
|
/* track the segments per cylinder and their pressure/time integral */
|
|
if (!entry->same_cylinder) {
|
|
current->end = SENSOR_PRESSURE(entry-1);
|
|
current->t_end = (entry-1)->sec;
|
|
current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec);
|
|
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
|
|
} else { /* same cylinder */
|
|
if ((!SENSOR_PRESSURE(entry) && SENSOR_PRESSURE(entry-1)) ||
|
|
(SENSOR_PRESSURE(entry) && !SENSOR_PRESSURE(entry-1))) {
|
|
/* transmitter changed its working status */
|
|
current->end = SENSOR_PRESSURE(entry-1);
|
|
current->t_end = (entry-1)->sec;
|
|
current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec);
|
|
track_pr[cylinderindex] =
|
|
list_add(track_pr[cylinderindex], current);
|
|
}
|
|
}
|
|
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
|
|
fo2 = dive->cylinder[cylinderindex].gasmix.o2.permille;
|
|
fhe = dive->cylinder[cylinderindex].gasmix.he.permille;
|
|
|
|
if (!fo2)
|
|
fo2 = AIR_PERMILLE;
|
|
entry->po2 = fo2 / 1000.0 * amb_pressure;
|
|
entry->phe = fhe / 1000.0 * amb_pressure;
|
|
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
|
|
|
|
/* finally, do the discrete integration to get the SAC rate equivalent */
|
|
current->pressure_time += (entry->sec - (entry-1)->sec) *
|
|
depth_to_mbar((entry->depth + (entry-1)->depth) / 2, dive) / 1000.0;
|
|
missing_pr |= !SENSOR_PRESSURE(entry);
|
|
}
|
|
|
|
if (entry)
|
|
current->t_end = entry->sec;
|
|
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { /* initialize the end pressures */
|
|
int pr = dive->cylinder[cyl].end.mbar;
|
|
if (pr && track_pr[cyl]) {
|
|
pr_track = list_last(track_pr[cyl]);
|
|
pr_track->end = pr;
|
|
}
|
|
}
|
|
/* Fill in the last two entries with empty values but valid times
|
|
* without creating a false cylinder change event */
|
|
i = nr + 2;
|
|
pi->entry[i].sec = sec + 20;
|
|
pi->entry[i].same_cylinder = 1;
|
|
pi->entry[i].cylinderindex = pi->entry[i-1].cylinderindex;
|
|
INTERPOLATED_PRESSURE(pi->entry + i) = GET_PRESSURE(pi->entry + i - 1);
|
|
amb_pressure = depth_to_mbar(pi->entry[i - 1].depth, dive) / 1000.0;
|
|
pi->entry[i].po2 = pi->entry[i-1].po2 / amb_pressure;
|
|
pi->entry[i].phe = pi->entry[i-1].phe / amb_pressure;
|
|
pi->entry[i].pn2 = 1.01325 - pi->entry[i].po2 - pi->entry[i].phe;
|
|
pi->entry[i+1].sec = sec + 40;
|
|
pi->entry[i+1].same_cylinder = 1;
|
|
pi->entry[i+1].cylinderindex = pi->entry[i-1].cylinderindex;
|
|
INTERPOLATED_PRESSURE(pi->entry + i + 1) = GET_PRESSURE(pi->entry + i - 1);
|
|
pi->entry[i+1].po2 = pi->entry[i].po2;
|
|
pi->entry[i+1].phe = pi->entry[i].phe;
|
|
pi->entry[i+1].pn2 = pi->entry[i].pn2;
|
|
/* make sure the first two pi entries have a sane po2 / phe / pn2 */
|
|
amb_pressure = depth_to_mbar(pi->entry[2].depth, dive) / 1000.0;
|
|
if (pi->entry[1].po2 < 0.01)
|
|
pi->entry[1].po2 = pi->entry[2].po2 / amb_pressure;
|
|
if (pi->entry[1].phe < 0.01)
|
|
pi->entry[1].phe = pi->entry[2].phe / amb_pressure;
|
|
pi->entry[1].pn2 = 1.01325 - pi->entry[1].po2 - pi->entry[1].phe;
|
|
amb_pressure = depth_to_mbar(pi->entry[1].depth, dive) / 1000.0;
|
|
if (pi->entry[0].po2 < 0.01)
|
|
pi->entry[0].po2 = pi->entry[1].po2 / amb_pressure;
|
|
if (pi->entry[0].phe < 0.01)
|
|
pi->entry[0].phe = pi->entry[1].phe / amb_pressure;
|
|
pi->entry[0].pn2 = 1.01325 - pi->entry[0].po2 - pi->entry[0].phe;
|
|
|
|
/* the number of actual entries - some computers have lots of
|
|
* depth 0 samples at the end of a dive, we want to make sure
|
|
* we have exactly one of them at the end */
|
|
pi->nr = lastindex+1;
|
|
while (pi->nr <= i+2 && pi->entry[pi->nr-1].depth > 0)
|
|
pi->nr++;
|
|
pi->maxtime = pi->entry[lastindex].sec;
|
|
|
|
/* Analyze_plot_info() will do the sample max pressures,
|
|
* this handles the manual pressures
|
|
*/
|
|
pi->maxpressure = 0;
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
unsigned int mbar = dive->cylinder[cyl].start.mbar;
|
|
if (mbar > pi->maxpressure)
|
|
pi->maxpressure = mbar;
|
|
}
|
|
|
|
pi->meandepth = dive->meandepth.mm;
|
|
|
|
if (missing_pr) {
|
|
fill_missing_tank_pressures(pi, track_pr);
|
|
}
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++)
|
|
list_free(track_pr[cyl]);
|
|
if (0) /* awesome for debugging - not useful otherwise */
|
|
dump_pi(pi);
|
|
return analyze_plot_info(pi);
|
|
}
|
|
|
|
static void plot_set_scale(scale_mode_t scale)
|
|
{
|
|
switch (scale) {
|
|
default:
|
|
case SC_SCREEN:
|
|
plot_scale = SCALE_SCREEN;
|
|
break;
|
|
case SC_PRINT:
|
|
plot_scale = SCALE_PRINT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void plot(struct graphics_context *gc, struct dive *dive, scale_mode_t scale)
|
|
{
|
|
struct plot_info *pi;
|
|
struct divecomputer *dc = &dive->dc;
|
|
cairo_rectangle_t *drawing_area = &gc->drawing_area;
|
|
|
|
plot_set_scale(scale);
|
|
|
|
if (!dc->samples) {
|
|
static struct sample fake[4];
|
|
static struct divecomputer fakedc = {
|
|
.sample = fake,
|
|
.samples = 4
|
|
};
|
|
|
|
/* The dive has no samples, so create a few fake ones. This assumes an
|
|
ascent/descent rate of 9 m/min, which is just below the limit for FAST. */
|
|
int duration = dive->duration.seconds;
|
|
int maxdepth = dive->maxdepth.mm;
|
|
int asc_desc_time = dive->maxdepth.mm*60/9000;
|
|
if (asc_desc_time * 2 >= duration)
|
|
asc_desc_time = duration / 2;
|
|
fake[1].time.seconds = asc_desc_time;
|
|
fake[1].depth.mm = maxdepth;
|
|
fake[2].time.seconds = duration - asc_desc_time;
|
|
fake[2].depth.mm = maxdepth;
|
|
fake[3].time.seconds = duration * 1.00;
|
|
fakedc.events = dc->events;
|
|
dc = &fakedc;
|
|
}
|
|
|
|
pi = create_plot_info(dive, dc, gc);
|
|
|
|
/* shift the drawing area so we have a nice margin around it */
|
|
cairo_translate(gc->cr, drawing_area->x, drawing_area->y);
|
|
cairo_set_line_width_scaled(gc->cr, 1);
|
|
cairo_set_line_cap(gc->cr, CAIRO_LINE_CAP_ROUND);
|
|
cairo_set_line_join(gc->cr, CAIRO_LINE_JOIN_ROUND);
|
|
|
|
/*
|
|
* We don't use "cairo_translate()" because that doesn't
|
|
* scale line width etc. But the actual scaling we need
|
|
* do set up ourselves..
|
|
*
|
|
* Snif. What a pity.
|
|
*/
|
|
gc->maxx = (drawing_area->width - 2*drawing_area->x);
|
|
gc->maxy = (drawing_area->height - 2*drawing_area->y);
|
|
|
|
/* Depth profile */
|
|
plot_depth_profile(gc, pi);
|
|
plot_events(gc, pi, dc);
|
|
|
|
/* Temperature profile */
|
|
plot_temperature_profile(gc, pi);
|
|
|
|
/* Cylinder pressure plot */
|
|
plot_cylinder_pressure(gc, pi, dive);
|
|
|
|
/* Text on top of all graphs.. */
|
|
plot_temperature_text(gc, pi);
|
|
plot_depth_text(gc, pi);
|
|
plot_cylinder_pressure_text(gc, pi);
|
|
|
|
/* Bounding box last */
|
|
gc->leftx = 0; gc->rightx = 1.0;
|
|
gc->topy = 0; gc->bottomy = 1.0;
|
|
|
|
set_source_rgba(gc, BOUNDING_BOX);
|
|
cairo_set_line_width_scaled(gc->cr, 1);
|
|
move_to(gc, 0, 0);
|
|
line_to(gc, 0, 1);
|
|
line_to(gc, 1, 1);
|
|
line_to(gc, 1, 0);
|
|
cairo_close_path(gc->cr);
|
|
cairo_stroke(gc->cr);
|
|
|
|
/* Put the dive computer name in the lower left corner */
|
|
if (dc->model) {
|
|
static const text_render_options_t computer = {10, TIME_TEXT, LEFT, MIDDLE};
|
|
plot_text(gc, &computer, 0, 1, "%s", dc->model);
|
|
}
|
|
|
|
if (GRAPHS_ENABLED) {
|
|
plot_pp_gas_profile(gc, pi);
|
|
plot_pp_text(gc, pi);
|
|
}
|
|
|
|
/* now shift the translation back by half the margin;
|
|
* this way we can draw the vertical scales on both sides */
|
|
cairo_translate(gc->cr, -drawing_area->x / 2.0, 0);
|
|
gc->maxx += drawing_area->x;
|
|
gc->leftx = -(drawing_area->x / drawing_area->width) / 2.0;
|
|
gc->rightx = 1.0 - gc->leftx;
|
|
|
|
plot_depth_scale(gc, pi);
|
|
|
|
if (gc->printer) {
|
|
free(pi->entry);
|
|
pi->entry = NULL;
|
|
pi->nr = 0;
|
|
}
|
|
}
|
|
|
|
static void plot_string(struct plot_data *entry, char *buf, size_t bufsize,
|
|
int depth, int pressure, int temp, gboolean has_ndl)
|
|
{
|
|
int pressurevalue;
|
|
const char *depth_unit, *pressure_unit, *temp_unit;
|
|
char *buf2 = malloc(bufsize);
|
|
double depthvalue, tempvalue;
|
|
|
|
depthvalue = get_depth_units(depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, "D:%.1f %s", depthvalue, depth_unit);
|
|
if (pressure) {
|
|
pressurevalue = get_pressure_units(pressure, &pressure_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, "%s\nP:%d %s", buf2, pressurevalue, pressure_unit);
|
|
}
|
|
if (temp) {
|
|
tempvalue = get_temp_units(temp, &temp_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, "%s\nT:%.1f %s", buf2, tempvalue, temp_unit);
|
|
}
|
|
if (entry->stopdepth) {
|
|
depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
if (entry->ndl) {
|
|
/* this is a safety stop as we still have ndl */
|
|
if (entry->stoptime)
|
|
snprintf(buf, bufsize, "%s\nSafetystop:%umin @ %.0f %s", buf2, entry->stoptime / 60,
|
|
depthvalue, depth_unit);
|
|
else
|
|
snprintf(buf, bufsize, "%s\nSafetystop:unkn time @ %.0f %s", buf2,
|
|
depthvalue, depth_unit);
|
|
} else {
|
|
/* actual deco stop */
|
|
if (entry->stoptime)
|
|
snprintf(buf, bufsize, "%s\nDeco:%umin @ %.0f %s", buf2, entry->stoptime / 60,
|
|
depthvalue, depth_unit);
|
|
else
|
|
snprintf(buf, bufsize, "%s\nDeco:unkn time @ %.0f %s", buf2,
|
|
depthvalue, depth_unit);
|
|
}
|
|
} else if (has_ndl) {
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, "%s\nNDL:%umin", buf2, entry->ndl / 60);
|
|
}
|
|
if (partial_pressure_graphs.po2) {
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, "%s\npO" UTF8_SUBSCRIPT_2 ":%.1f", buf2, entry->po2);
|
|
}
|
|
if (partial_pressure_graphs.pn2) {
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, "%s\npN" UTF8_SUBSCRIPT_2 ":%.1f", buf2, entry->pn2);
|
|
}
|
|
if (partial_pressure_graphs.phe) {
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, "%s\npHe:%.1f", buf2, entry->phe);
|
|
}
|
|
free(buf2);
|
|
}
|
|
|
|
void get_plot_details(struct graphics_context *gc, int time, char *buf, size_t bufsize)
|
|
{
|
|
struct plot_info *pi = &gc->pi;
|
|
int pressure = 0, temp = 0;
|
|
struct plot_data *entry;
|
|
int i;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
entry = pi->entry + i;
|
|
if (entry->temperature)
|
|
temp = entry->temperature;
|
|
if (GET_PRESSURE(entry))
|
|
pressure = GET_PRESSURE(entry);
|
|
if (entry->sec >= time)
|
|
break;
|
|
}
|
|
plot_string(entry, buf, bufsize, entry->depth, pressure, temp, pi->has_ndl);
|
|
}
|