subsurface/deco.c
Dirk Hohndel c8830ffe48 Add the ability to cache our deco state
We kept reduing all the deco calculations, including the previous dives
(if any) for each segment we add to the dive plan. This simply remembers
the last stage and then just adds to that.

Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-06 11:40:21 -08:00

311 lines
12 KiB
C

/* calculate deco values
* based on Bühlmann ZHL-16b
* based on an implemention by heinrichs weikamp for the DR5
* the original file doesn't carry a license and is used here with
* the permission of Matthias Heinrichs
*
* The implementation below is (C) Dirk Hohndel 2012 and released under the GPLv2
*
* clear_deco() - call to initialize for a new deco calculation
* add_segment(pressure, gasmix, seconds) - add <seconds> at the given pressure, breathing gasmix
* deco_allowed_depth(tissues_tolerance, surface_pressure, dive, smooth)
* - ceiling based on lead tissue, surface pressure, 3m increments or smooth
* set_gf(gflow, gfhigh) - set Buehlmann gradient factors
* void cache_deco_state(tissue_tolerance, char **datap) - cache the relevant data allocate memory if needed
* double restore_deco_state(char *data) - restore the state and return the tissue_tolerance
*/
#include <math.h>
#include <string.h>
#include "dive.h"
//! Option structure for Buehlmann decompression.
struct buehlmann_config {
double satmult; //! safety at inert gas accumulation as percentage of effect (more than 100).
double desatmult; //! safety at inert gas depletion as percentage of effect (less than 100).
double safety_dist_deco_stop;//! assumed distance to official decompression where decompression takes places.
int last_deco_stop_in_mtr; //! depth of last_deco_stop.
double gf_high; //! gradient factor high (at surface).
double gf_low; //! gradient factor low (at bottom/start of deco calculation).
double gf_low_position_min; //! gf_low_position below surface_min_shallow.
double gf_low_position_max; //! gf_low_position below surface_max_depth.
double gf_high_emergency; //! emergency gf factors
double gf_low_emergency; //! gradient factor low (at bottom/start of deco calculation).
};
struct buehlmann_config buehlmann_config = { 1.0, 1.01, 0.5, 3, 0.75, 0.35, 1.0, 6.0, 0.95, 0.95 };
struct dive_data {
double pressure; //! pesent ambient pressure
double surface; //! pressure at water surface
struct gasmix *gasmix; //! current selected gas
};
const double buehlmann_N2_a[] = {1.1696, 1.0, 0.8618, 0.7562,
0.62, 0.5043, 0.441, 0.4,
0.375, 0.35, 0.3295, 0.3065,
0.2835, 0.261, 0.248, 0.2327};
const double buehlmann_N2_b[] = {0.5578, 0.6514, 0.7222, 0.7825,
0.8126, 0.8434, 0.8693, 0.8910,
0.9092, 0.9222, 0.9319, 0.9403,
0.9477, 0.9544, 0.9602, 0.9653};
const double buehlmann_N2_t_halflife[] = {5.0, 8.0, 12.5, 18.5,
27.0, 38.3, 54.3, 77.0,
109.0, 146.0, 187.0, 239.0,
305.0, 390.0, 498.0, 635.0};
const double buehlmann_N2_factor_expositon_one_second[] = {
2.30782347297664E-003, 1.44301447809736E-003, 9.23769302935806E-004, 6.24261986779007E-004,
4.27777107246730E-004, 3.01585140931371E-004, 2.12729727268379E-004, 1.50020603047807E-004,
1.05980191127841E-004, 7.91232600646508E-005, 6.17759153688224E-005, 4.83354552742732E-005,
3.78761777920511E-005, 2.96212356654113E-005, 2.31974277413727E-005, 1.81926738960225E-005};
const double buehlmann_He_a[] = { 1.6189, 1.383 , 1.1919, 1.0458,
0.922 , 0.8205, 0.7305, 0.6502,
0.595 , 0.5545, 0.5333, 0.5189,
0.5181, 0.5176, 0.5172, 0.5119};
const double buehlmann_He_b[] = {0.4770, 0.5747, 0.6527, 0.7223,
0.7582, 0.7957, 0.8279, 0.8553,
0.8757, 0.8903, 0.8997, 0.9073,
0.9122, 0.9171, 0.9217, 0.9267};
const double buehlmann_He_t_halflife[] = {1.88, 3.02, 4.72, 6.99,
10.21, 14.48, 20.53, 29.11,
41.20, 55.19, 70.69, 90.34,
115.29, 147.42, 188.24, 240.03};
const double buehlmann_He_factor_expositon_one_second[] = {
6.12608039419837E-003, 3.81800836683133E-003, 2.44456078654209E-003, 1.65134647076792E-003,
1.13084424730725E-003, 7.97503165599123E-004, 5.62552521860549E-004, 3.96776399429366E-004,
2.80360036664540E-004, 2.09299583354805E-004, 1.63410794820518E-004, 1.27869320250551E-004,
1.00198406028040E-004, 7.83611475491108E-005, 6.13689891868496E-005, 4.81280465299827E-005};
#define WV_PRESSURE 0.0627 /* water vapor pressure */
#define N2_IN_AIR 0.7902
#define DIST_FROM_3_MTR 0.28
#define PRESSURE_CHANGE_3M 0.3
#define TOLERANCE 0.02
double tissue_n2_sat[16];
double tissue_he_sat[16];
double tissue_tolerated_ambient_pressure[16];
int ci_pointing_to_guiding_tissue;
double gf_low_position_this_dive;
#define TISSUE_ARRAY_SZ sizeof(tissue_n2_sat)
static double actual_gradient_limit(const struct dive_data *data)
{
double pressure_diff, limit_at_position;
double gf_high = buehlmann_config.gf_high;
double gf_low = buehlmann_config.gf_low;
pressure_diff = data->pressure - data->surface;
if (pressure_diff > TOLERANCE) {
if (pressure_diff < gf_low_position_this_dive)
limit_at_position = gf_high - ((gf_high - gf_low) * pressure_diff / gf_low_position_this_dive);
else
limit_at_position = gf_low;
} else {
limit_at_position = gf_high;
}
return limit_at_position;
}
static double gradient_factor_calculation(const struct dive_data *data)
{
double tissue_inertgas_saturation;
tissue_inertgas_saturation = tissue_n2_sat[ci_pointing_to_guiding_tissue] +
tissue_he_sat[ci_pointing_to_guiding_tissue];
if (tissue_inertgas_saturation < data->pressure)
return 0.0;
else
return (tissue_inertgas_saturation - data->pressure) /
(tissue_inertgas_saturation - tissue_tolerated_ambient_pressure[ci_pointing_to_guiding_tissue]);
}
static double tissue_tolerance_calc(void)
{
int ci = -1;
double tissue_inertgas_saturation, buehlmann_inertgas_a, buehlmann_inertgas_b;
double ret_tolerance_limit_ambient_pressure = 0.0;
for (ci = 0; ci < 16; ci++)
{
tissue_inertgas_saturation = tissue_n2_sat[ci] + tissue_he_sat[ci];
buehlmann_inertgas_a = ((buehlmann_N2_a[ci] * tissue_n2_sat[ci]) + (buehlmann_He_a[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation;
buehlmann_inertgas_b = ((buehlmann_N2_b[ci] * tissue_n2_sat[ci]) + (buehlmann_He_b[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation;
tissue_tolerated_ambient_pressure[ci] = (tissue_inertgas_saturation - buehlmann_inertgas_a) * buehlmann_inertgas_b;
if (tissue_tolerated_ambient_pressure[ci] > ret_tolerance_limit_ambient_pressure)
{
ci_pointing_to_guiding_tissue = ci;
ret_tolerance_limit_ambient_pressure = tissue_tolerated_ambient_pressure[ci];
}
}
return ret_tolerance_limit_ambient_pressure;
}
/* add a second at the given pressure and gas to the deco calculation */
double add_segment(double pressure, struct gasmix *gasmix, int period_in_seconds, double ccpo2)
{
int ci;
int fo2 = gasmix->o2.permille ? gasmix->o2.permille : 209;
double ppn2 = (pressure - WV_PRESSURE) * (1000 - fo2 - gasmix->he.permille) / 1000.0;
double pphe = (pressure - WV_PRESSURE) * gasmix->he.permille / 1000.0;
if (ccpo2 > 0.0) { /* CC */
double rel_o2_amb, f_dilutent;
rel_o2_amb = ccpo2 / pressure;
f_dilutent = (1 - rel_o2_amb) / (1 - fo2 / 1000.0);
if (f_dilutent < 0) { /* setpoint is higher than ambient pressure -> pure O2 */
ppn2 = 0.0;
pphe = 0.0;
} else if (f_dilutent < 1.0) {
ppn2 *= f_dilutent;
pphe *= f_dilutent;
}
}
if (period_in_seconds == 1) { /* one second interval during dive */
for (ci = 0; ci < 16; ci++) {
if (ppn2 - tissue_n2_sat[ci] > 0)
tissue_n2_sat[ci] += buehlmann_config.satmult * (ppn2 - tissue_n2_sat[ci]) *
buehlmann_N2_factor_expositon_one_second[ci];
else
tissue_n2_sat[ci] += buehlmann_config.desatmult * (ppn2 - tissue_n2_sat[ci]) *
buehlmann_N2_factor_expositon_one_second[ci];
if (pphe - tissue_he_sat[ci] > 0)
tissue_he_sat[ci] += buehlmann_config.satmult * (pphe - tissue_he_sat[ci]) *
buehlmann_He_factor_expositon_one_second[ci];
else
tissue_he_sat[ci] += buehlmann_config.desatmult * (pphe - tissue_he_sat[ci]) *
buehlmann_He_factor_expositon_one_second[ci];
}
} else { /* all other durations */
for (ci = 0; ci < 16; ci++)
{
if (ppn2 - tissue_n2_sat[ci] > 0)
tissue_n2_sat[ci] += buehlmann_config.satmult * (ppn2 - tissue_n2_sat[ci]) *
(1 - pow(2.0,(- period_in_seconds / (buehlmann_N2_t_halflife[ci] * 60))));
else
tissue_n2_sat[ci] += buehlmann_config.desatmult * (ppn2 - tissue_n2_sat[ci]) *
(1 - pow(2.0,(- period_in_seconds / (buehlmann_N2_t_halflife[ci] * 60))));
if (pphe - tissue_he_sat[ci] > 0)
tissue_he_sat[ci] += buehlmann_config.satmult * (pphe - tissue_he_sat[ci]) *
(1 - pow(2.0,(- period_in_seconds / (buehlmann_He_t_halflife[ci] * 60))));
else
tissue_he_sat[ci] += buehlmann_config.desatmult * (pphe - tissue_he_sat[ci]) *
(1 - pow(2.0,(- period_in_seconds / (buehlmann_He_t_halflife[ci] * 60))));
}
}
return tissue_tolerance_calc();
}
void dump_tissues()
{
int ci;
printf("N2 tissues:");
for (ci = 0; ci < 16; ci++)
printf(" %6.3e", tissue_n2_sat[ci]);
printf("\nHe tissues:");
for (ci = 0; ci < 16; ci++)
printf(" %6.3e", tissue_he_sat[ci]);
printf("\n");
}
void clear_deco(double surface_pressure)
{
int ci;
for (ci = 0; ci < 16; ci++) {
tissue_n2_sat[ci] = (surface_pressure - WV_PRESSURE) * N2_IN_AIR;
tissue_he_sat[ci] = 0.0;
tissue_tolerated_ambient_pressure[ci] = 0.0;
}
gf_low_position_this_dive = buehlmann_config.gf_low_position_min;
}
void cache_deco_state(double tissue_tolerance, char **cached_datap)
{
char *data = *cached_datap;
if (!data) {
data = malloc(3 * TISSUE_ARRAY_SZ + 2 * sizeof(double) + sizeof(int));
*cached_datap = data;
}
memcpy(data, tissue_n2_sat, TISSUE_ARRAY_SZ);
data += TISSUE_ARRAY_SZ;
memcpy(data, tissue_he_sat, TISSUE_ARRAY_SZ);
data += TISSUE_ARRAY_SZ;
memcpy(data, tissue_tolerated_ambient_pressure, TISSUE_ARRAY_SZ);
data += TISSUE_ARRAY_SZ;
memcpy(data, &gf_low_position_this_dive, sizeof(double));
data += sizeof(double);
memcpy(data, &tissue_tolerance, sizeof(double));
data += sizeof(double);
memcpy(data, &ci_pointing_to_guiding_tissue, sizeof(int));
}
double restore_deco_state(char *data)
{
double tissue_tolerance;
memcpy(tissue_n2_sat, data, TISSUE_ARRAY_SZ);
data += TISSUE_ARRAY_SZ;
memcpy(tissue_he_sat, data, TISSUE_ARRAY_SZ);
data += TISSUE_ARRAY_SZ;
memcpy(tissue_tolerated_ambient_pressure, data, TISSUE_ARRAY_SZ);
data += TISSUE_ARRAY_SZ;
memcpy(&gf_low_position_this_dive, data, sizeof(double));
data += sizeof(double);
memcpy(&tissue_tolerance, data, sizeof(double));
data += sizeof(double);
memcpy(&ci_pointing_to_guiding_tissue, data, sizeof(int));
return tissue_tolerance;
}
unsigned int deco_allowed_depth(double tissues_tolerance, double surface_pressure, struct dive *dive, gboolean smooth)
{
unsigned int depth, multiples_of_3m;
gboolean below_gradient_limit;
double new_gradient_factor;
double pressure_delta = tissues_tolerance - surface_pressure;
struct dive_data mydata;
if (pressure_delta > 0) {
if (!smooth) {
multiples_of_3m = (pressure_delta + DIST_FROM_3_MTR) / 0.3;
depth = 3000 * multiples_of_3m;
} else {
depth = rel_mbar_to_depth(pressure_delta * 1000, dive);
}
} else {
depth = 0;
}
mydata.pressure = depth_to_mbar(depth, dive) / 1000.0;
mydata.surface = surface_pressure;
new_gradient_factor = gradient_factor_calculation(&mydata);
below_gradient_limit = (new_gradient_factor < actual_gradient_limit(&mydata));
while(!below_gradient_limit)
{
if (!smooth)
mydata.pressure += PRESSURE_CHANGE_3M;
else
mydata.pressure += PRESSURE_CHANGE_3M / 30; /* 4in / 10cm instead */
new_gradient_factor = gradient_factor_calculation(&mydata);
below_gradient_limit = (new_gradient_factor < actual_gradient_limit(&mydata));
}
depth = rel_mbar_to_depth((mydata.pressure - surface_pressure) * 1000, dive);
return depth;
}
void set_gf(double gflow, double gfhigh)
{
if (gflow != -1.0)
buehlmann_config.gf_low = gflow;
if (gfhigh != -1.0)
buehlmann_config.gf_high = gfhigh;
}