mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-28 13:10:19 +00:00
ec97a62f34
Ok, this is pretty much it now. Instead of having various random checks for "is the time of the sample past the end of the dive" hacks, we not plot all graphs from the cleaned-up plot_info structure instead of the raw samples. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
757 lines
17 KiB
C
757 lines
17 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include "dive.h"
|
|
#include "display.h"
|
|
#include "divelist.h"
|
|
|
|
int selected_dive = 0;
|
|
|
|
/* Plot info with smoothing and one-, two- and three-minute minimums and maximums */
|
|
struct plot_info {
|
|
int nr;
|
|
int maxtime;
|
|
int meandepth, maxdepth;
|
|
int minpressure, maxpressure;
|
|
int mintemp, maxtemp;
|
|
struct plot_data {
|
|
int sec;
|
|
int pressure, temperature;
|
|
/* Depth info */
|
|
int val;
|
|
int smoothed;
|
|
struct plot_data *min[3];
|
|
struct plot_data *max[3];
|
|
int avg[3];
|
|
} entry[];
|
|
};
|
|
#define plot_info_size(nr) (sizeof(struct plot_info) + (nr)*sizeof(struct plot_data))
|
|
|
|
/* Scale to 0,0 -> maxx,maxy */
|
|
#define SCALEX(gc,x) (((x)-gc->leftx)/(gc->rightx-gc->leftx)*gc->maxx)
|
|
#define SCALEY(gc,y) (((y)-gc->topy)/(gc->bottomy-gc->topy)*gc->maxy)
|
|
#define SCALE(gc,x,y) SCALEX(gc,x),SCALEY(gc,y)
|
|
|
|
static void move_to(struct graphics_context *gc, double x, double y)
|
|
{
|
|
cairo_move_to(gc->cr, SCALE(gc, x, y));
|
|
}
|
|
|
|
static void line_to(struct graphics_context *gc, double x, double y)
|
|
{
|
|
cairo_line_to(gc->cr, SCALE(gc, x, y));
|
|
}
|
|
|
|
static void set_source_rgba(struct graphics_context *gc, double r, double g, double b, double a)
|
|
{
|
|
if (gc->printer) {
|
|
/* Black is white and white is black */
|
|
double sum = r+g+b;
|
|
if (sum > 2)
|
|
r = g = b = 0;
|
|
else if (sum < 1)
|
|
r = g = b = 1;
|
|
}
|
|
cairo_set_source_rgba(gc->cr, r, g, b, a);
|
|
}
|
|
|
|
static void set_source_rgb(struct graphics_context *gc, double r, double g, double b)
|
|
{
|
|
set_source_rgba(gc, r, g, b, 1);
|
|
}
|
|
|
|
#define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y))
|
|
|
|
/*
|
|
* When showing dive profiles, we scale things to the
|
|
* current dive. However, we don't scale past less than
|
|
* 30 minutes or 90 ft, just so that small dives show
|
|
* up as such.
|
|
*/
|
|
static int get_maxtime(struct plot_info *pi)
|
|
{
|
|
int seconds = pi->maxtime;
|
|
return MAX(30*60, ROUND_UP(seconds, 60*10));
|
|
}
|
|
|
|
static int get_maxdepth(struct plot_info *pi)
|
|
{
|
|
unsigned mm = pi->maxdepth;
|
|
/* Minimum 30m */
|
|
return MAX(30000, ROUND_UP(mm+3000, 10000));
|
|
}
|
|
|
|
typedef struct {
|
|
int size;
|
|
double r,g,b;
|
|
enum {CENTER,LEFT} halign;
|
|
enum {MIDDLE,TOP,BOTTOM} valign;
|
|
} text_render_options_t;
|
|
|
|
static void plot_text(struct graphics_context *gc, const text_render_options_t *tro,
|
|
double x, double y, const char *fmt, ...)
|
|
{
|
|
cairo_t *cr = gc->cr;
|
|
cairo_text_extents_t extents;
|
|
double dx, dy;
|
|
char buffer[80];
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vsnprintf(buffer, sizeof(buffer), fmt, args);
|
|
va_end(args);
|
|
|
|
cairo_set_font_size(cr, tro->size);
|
|
cairo_text_extents(cr, buffer, &extents);
|
|
dx = 0;
|
|
switch (tro->halign) {
|
|
case CENTER:
|
|
dx = -(extents.width/2 + extents.x_bearing);
|
|
break;
|
|
case LEFT:
|
|
dx = 0;
|
|
break;
|
|
}
|
|
switch (tro->valign) {
|
|
case TOP:
|
|
dy = extents.height * 1.2;
|
|
break;
|
|
case BOTTOM:
|
|
dy = -extents.height * 0.8;
|
|
break;
|
|
case MIDDLE:
|
|
dy = 0;
|
|
break;
|
|
}
|
|
|
|
move_to(gc, x, y);
|
|
cairo_rel_move_to(cr, dx, dy);
|
|
|
|
cairo_text_path(cr, buffer);
|
|
set_source_rgb(gc, 0, 0, 0);
|
|
cairo_stroke(cr);
|
|
|
|
move_to(gc, x, y);
|
|
cairo_rel_move_to(cr, dx, dy);
|
|
|
|
set_source_rgb(gc, tro->r, tro->g, tro->b);
|
|
cairo_show_text(cr, buffer);
|
|
}
|
|
|
|
static void render_depth_sample(struct graphics_context *gc, struct plot_data *entry, const text_render_options_t *tro)
|
|
{
|
|
int sec = entry->sec;
|
|
depth_t depth = { entry->val };
|
|
const char *fmt;
|
|
double d;
|
|
|
|
switch (output_units.length) {
|
|
case METERS:
|
|
d = depth.mm / 1000.0;
|
|
fmt = "%.1f";
|
|
break;
|
|
case FEET:
|
|
d = to_feet(depth);
|
|
fmt = "%.0f";
|
|
break;
|
|
}
|
|
plot_text(gc, tro, sec, depth.mm, fmt, d);
|
|
}
|
|
|
|
static void plot_text_samples(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
static const text_render_options_t deep = {14, 1.0, 0.2, 0.2, CENTER, TOP};
|
|
static const text_render_options_t shallow = {14, 1.0, 0.2, 0.2, CENTER, BOTTOM};
|
|
int i;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
|
|
if (entry->val < 2000)
|
|
continue;
|
|
|
|
if (entry == entry->max[2])
|
|
render_depth_sample(gc, entry, &deep);
|
|
|
|
if (entry == entry->min[2])
|
|
render_depth_sample(gc, entry, &shallow);
|
|
}
|
|
}
|
|
|
|
static void plot_depth_text(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int maxtime, maxdepth;
|
|
|
|
/* Get plot scaling limits */
|
|
maxtime = get_maxtime(pi);
|
|
maxdepth = get_maxdepth(pi);
|
|
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
gc->topy = 0; gc->bottomy = maxdepth;
|
|
|
|
plot_text_samples(gc, pi);
|
|
}
|
|
|
|
static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
struct plot_data *entry = pi->entry;
|
|
|
|
cairo_set_source_rgba(gc->cr, 1, 0.2, 0.2, 0.20);
|
|
move_to(gc, entry->sec, entry->smoothed);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
line_to(gc, entry->sec, entry->smoothed);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
}
|
|
|
|
static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi,
|
|
int index, double a)
|
|
{
|
|
int i;
|
|
struct plot_data *entry = pi->entry;
|
|
|
|
cairo_set_source_rgba(gc->cr, 1, 0.2, 1, a);
|
|
move_to(gc, entry->sec, entry->min[index]->val);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
line_to(gc, entry->sec, entry->min[index]->val);
|
|
}
|
|
for (i = 1; i < pi->nr; i++) {
|
|
line_to(gc, entry->sec, entry->max[index]->val);
|
|
entry--;
|
|
}
|
|
cairo_close_path(gc->cr);
|
|
cairo_fill(gc->cr);
|
|
}
|
|
|
|
static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
if (gc->printer)
|
|
return;
|
|
plot_minmax_profile_minute(gc, pi, 2, 0.1);
|
|
plot_minmax_profile_minute(gc, pi, 1, 0.1);
|
|
plot_minmax_profile_minute(gc, pi, 0, 0.1);
|
|
}
|
|
|
|
static void plot_depth_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
cairo_t *cr = gc->cr;
|
|
int begins, sec, depth;
|
|
struct plot_data *entry;
|
|
int maxtime, maxdepth, marker;
|
|
|
|
/* Get plot scaling limits */
|
|
maxtime = get_maxtime(pi);
|
|
maxdepth = get_maxdepth(pi);
|
|
|
|
/* Time markers: every 5 min */
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
gc->topy = 0; gc->bottomy = 1.0;
|
|
for (i = 5*60; i < maxtime; i += 5*60) {
|
|
move_to(gc, i, 0);
|
|
line_to(gc, i, 1);
|
|
}
|
|
|
|
/* Depth markers: every 30 ft or 10 m*/
|
|
gc->leftx = 0; gc->rightx = 1.0;
|
|
gc->topy = 0; gc->bottomy = maxdepth;
|
|
switch (output_units.length) {
|
|
case METERS: marker = 10000; break;
|
|
case FEET: marker = 9144; break; /* 30 ft */
|
|
}
|
|
|
|
set_source_rgba(gc, 1, 1, 1, 0.5);
|
|
for (i = marker; i < maxdepth; i += marker) {
|
|
move_to(gc, 0, i);
|
|
line_to(gc, 1, i);
|
|
}
|
|
cairo_stroke(cr);
|
|
|
|
/* Show mean depth */
|
|
set_source_rgba(gc, 1, 0.2, 0.2, 0.40);
|
|
move_to(gc, 0, pi->meandepth);
|
|
line_to(gc, 1, pi->meandepth);
|
|
cairo_stroke(cr);
|
|
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
|
|
plot_smoothed_profile(gc, pi);
|
|
plot_minmax_profile(gc, pi);
|
|
|
|
entry = pi->entry;
|
|
set_source_rgba(gc, 1, 0.2, 0.2, 0.80);
|
|
begins = entry->sec;
|
|
move_to(gc, entry->sec, entry->val);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
sec = entry->sec;
|
|
if (sec <= maxtime) {
|
|
depth = entry->val;
|
|
line_to(gc, sec, depth);
|
|
}
|
|
}
|
|
gc->topy = 0; gc->bottomy = 1.0;
|
|
line_to(gc, MIN(sec,maxtime), 0);
|
|
line_to(gc, begins, 0);
|
|
cairo_close_path(cr);
|
|
set_source_rgba(gc, 1, 0.2, 0.2, 0.20);
|
|
cairo_fill_preserve(cr);
|
|
set_source_rgba(gc, 1, 0.2, 0.2, 0.80);
|
|
cairo_stroke(cr);
|
|
}
|
|
|
|
static int setup_temperature_limits(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int maxtime, mintemp, maxtemp;
|
|
|
|
/* Get plot scaling limits */
|
|
maxtime = get_maxtime(pi);
|
|
mintemp = pi->mintemp;
|
|
maxtemp = pi->maxtemp;
|
|
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
/* Show temperatures in roughly the lower third */
|
|
gc->topy = maxtemp + (maxtemp - mintemp)*2;
|
|
gc->bottomy = mintemp - (maxtemp - mintemp)/2;
|
|
|
|
return maxtemp > mintemp;
|
|
}
|
|
|
|
static void plot_single_temp_text(struct graphics_context *gc, int sec, int mkelvin)
|
|
{
|
|
int deg;
|
|
const char *unit;
|
|
static const text_render_options_t tro = {12, 0.2, 0.2, 1.0, LEFT, TOP};
|
|
temperature_t temperature = { mkelvin };
|
|
|
|
if (output_units.temperature == FAHRENHEIT) {
|
|
deg = to_F(temperature);
|
|
unit = "F";
|
|
} else {
|
|
deg = to_C(temperature);
|
|
unit = "C";
|
|
}
|
|
plot_text(gc, &tro, sec, temperature.mkelvin, "%d %s", deg, unit);
|
|
}
|
|
|
|
static void plot_temperature_text(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
int last = 0;
|
|
int last_temperature = 0, last_printed_temp = 0;
|
|
|
|
if (!setup_temperature_limits(gc, pi))
|
|
return;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
int sec;
|
|
struct plot_data *entry = pi->entry+i;
|
|
int mkelvin = entry->temperature;
|
|
|
|
if (!mkelvin)
|
|
continue;
|
|
last_temperature = mkelvin;
|
|
sec = entry->sec;
|
|
if (sec < last + 300)
|
|
continue;
|
|
last = sec;
|
|
plot_single_temp_text(gc,sec,mkelvin);
|
|
last_printed_temp = mkelvin;
|
|
}
|
|
/* it would be nice to print the end temperature, if it's different */
|
|
if (last_temperature != last_printed_temp)
|
|
plot_single_temp_text(gc, last, last_temperature);
|
|
}
|
|
|
|
static void plot_temperature_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
cairo_t *cr = gc->cr;
|
|
int last = 0;
|
|
|
|
if (!setup_temperature_limits(gc, pi))
|
|
return;
|
|
|
|
set_source_rgba(gc, 0.2, 0.2, 1.0, 0.8);
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
int mkelvin = entry->temperature;
|
|
int sec = entry->sec;
|
|
if (!mkelvin) {
|
|
if (!last)
|
|
continue;
|
|
mkelvin = last;
|
|
}
|
|
if (last)
|
|
line_to(gc, sec, mkelvin);
|
|
else
|
|
move_to(gc, sec, mkelvin);
|
|
last = mkelvin;
|
|
}
|
|
cairo_stroke(cr);
|
|
}
|
|
|
|
/* gets both the actual start and end pressure as well as the scaling factors */
|
|
static int get_cylinder_pressure_range(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
gc->leftx = 0;
|
|
gc->rightx = get_maxtime(pi);
|
|
|
|
gc->topy = 0; gc->bottomy = pi->maxpressure * 1.5;
|
|
return pi->maxpressure != 0;
|
|
}
|
|
|
|
static void plot_cylinder_pressure(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
|
|
if (!get_cylinder_pressure_range(gc, pi))
|
|
return;
|
|
|
|
cairo_set_source_rgba(gc->cr, 0.2, 1.0, 0.2, 0.80);
|
|
|
|
move_to(gc, 0, pi->maxpressure);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
int mbar;
|
|
struct plot_data *entry = pi->entry + i;
|
|
|
|
mbar = entry->pressure;
|
|
if (!mbar)
|
|
continue;
|
|
line_to(gc, entry->sec, mbar);
|
|
}
|
|
line_to(gc, pi->maxtime, pi->minpressure);
|
|
cairo_stroke(gc->cr);
|
|
}
|
|
|
|
/*
|
|
* Return air usage (in liters).
|
|
*/
|
|
static double calculate_airuse(struct dive *dive)
|
|
{
|
|
double airuse = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
|
cylinder_t *cyl = dive->cylinder + i;
|
|
int size = cyl->type.size.mliter;
|
|
double kilo_atm;
|
|
|
|
if (!size)
|
|
continue;
|
|
|
|
kilo_atm = (cyl->start.mbar - cyl->end.mbar) / 1013250.0;
|
|
|
|
/* Liters of air at 1 atm == milliliters at 1k atm*/
|
|
airuse += kilo_atm * size;
|
|
}
|
|
return airuse;
|
|
}
|
|
|
|
static void plot_info(struct dive *dive, struct graphics_context *gc)
|
|
{
|
|
text_render_options_t tro = {10, 0.2, 1.0, 0.2, LEFT, TOP};
|
|
const double liters_per_cuft = 28.317;
|
|
const char *unit, *desc;
|
|
double airuse;
|
|
|
|
airuse = calculate_airuse(dive);
|
|
if (!airuse)
|
|
return;
|
|
|
|
/* I really need to start addign some unit setting thing */
|
|
switch (output_units.volume) {
|
|
case LITER:
|
|
unit = "l";
|
|
break;
|
|
case CUFT:
|
|
unit = "cuft";
|
|
airuse /= liters_per_cuft;
|
|
break;
|
|
}
|
|
plot_text(gc, &tro, 0.8, 0.8, "vol: %4.2f %s", airuse, unit);
|
|
if (dive->duration.seconds) {
|
|
double pressure = 1 + (dive->meandepth.mm / 10000.0);
|
|
double sac = airuse / pressure * 60 / dive->duration.seconds;
|
|
plot_text(gc, &tro, 0.8, 0.85, "SAC: %4.2f %s/min", sac, unit);
|
|
}
|
|
desc = dive->cylinder[0].type.description;
|
|
if (desc || dive->cylinder[0].gasmix.o2.permille) {
|
|
int o2 = dive->cylinder[0].gasmix.o2.permille / 10;
|
|
if (!desc)
|
|
desc = "";
|
|
if (!o2)
|
|
o2 = 21;
|
|
plot_text(gc, &tro, 0.8, 0.9, "%s (%d%%)", desc, o2);
|
|
}
|
|
}
|
|
|
|
static int mbar_to_PSI(int mbar)
|
|
{
|
|
pressure_t p = {mbar};
|
|
return to_PSI(p);
|
|
}
|
|
|
|
static void plot_cylinder_pressure_text(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
if (get_cylinder_pressure_range(gc, pi)) {
|
|
int start, end;
|
|
const char *unit = "bar";
|
|
|
|
switch (output_units.pressure) {
|
|
case PASCAL:
|
|
start = pi->maxpressure * 100;
|
|
end = pi->minpressure * 100;
|
|
unit = "pascal";
|
|
break;
|
|
case BAR:
|
|
start = (pi->maxpressure + 500) / 1000;
|
|
end = (pi->minpressure + 500) / 1000;
|
|
unit = "bar";
|
|
break;
|
|
case PSI:
|
|
start = mbar_to_PSI(pi->maxpressure);
|
|
end = mbar_to_PSI(pi->minpressure);
|
|
unit = "psi";
|
|
break;
|
|
}
|
|
|
|
text_render_options_t tro = {10, 0.2, 1.0, 0.2, LEFT, TOP};
|
|
plot_text(gc, &tro, 0, pi->maxpressure, "%d %s", start, unit);
|
|
plot_text(gc, &tro, pi->maxtime, pi->minpressure,
|
|
"%d %s", end, unit);
|
|
}
|
|
}
|
|
|
|
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
|
|
{
|
|
struct plot_data *p = entry;
|
|
int time = entry->sec;
|
|
int seconds = 90*(index+1);
|
|
struct plot_data *min, *max;
|
|
int avg, nr;
|
|
|
|
/* Go back 'seconds' in time */
|
|
while (p > first) {
|
|
if (p[-1].sec < time - seconds)
|
|
break;
|
|
p--;
|
|
}
|
|
|
|
/* Then go forward until we hit an entry past the time */
|
|
min = max = p;
|
|
avg = p->val;
|
|
nr = 1;
|
|
while (++p < last) {
|
|
int val = p->val;
|
|
if (p->sec > time + seconds)
|
|
break;
|
|
avg += val;
|
|
nr ++;
|
|
if (val < min->val)
|
|
min = p;
|
|
if (val > max->val)
|
|
max = p;
|
|
}
|
|
entry->min[index] = min;
|
|
entry->max[index] = max;
|
|
entry->avg[index] = (avg + nr/2) / nr;
|
|
}
|
|
|
|
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
|
|
{
|
|
analyze_plot_info_minmax_minute(entry, first, last, 0);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 1);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 2);
|
|
}
|
|
|
|
static struct plot_info *analyze_plot_info(struct plot_info *pi)
|
|
{
|
|
int i;
|
|
int nr = pi->nr;
|
|
|
|
/* Do pressure min/max based on the non-surface data */
|
|
for (i = 0; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
int pressure = entry->pressure;
|
|
int temperature = entry->temperature;
|
|
|
|
if (pressure) {
|
|
if (!pi->minpressure || pressure < pi->minpressure)
|
|
pi->minpressure = pressure;
|
|
if (pressure > pi->maxpressure)
|
|
pi->maxpressure = pressure;
|
|
}
|
|
|
|
if (temperature) {
|
|
if (!pi->mintemp || temperature < pi->mintemp)
|
|
pi->mintemp = temperature;
|
|
if (temperature > pi->maxtemp)
|
|
pi->maxtemp = temperature;
|
|
}
|
|
}
|
|
|
|
/* Smoothing function: 5-point triangular smooth */
|
|
for (i = 2; i < nr-2; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
int val;
|
|
|
|
val = entry[-2].val + 2*entry[-1].val + 3*entry[0].val + 2*entry[1].val + entry[2].val;
|
|
entry->smoothed = (val+4) / 9;
|
|
}
|
|
|
|
/* One-, two- and three-minute minmax data */
|
|
for (i = 0; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry +i;
|
|
analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr);
|
|
}
|
|
|
|
return pi;
|
|
}
|
|
|
|
/*
|
|
* Create a plot-info with smoothing and ranged min/max
|
|
*
|
|
* This also makes sure that we have extra empty events on both
|
|
* sides, so that you can do end-points without having to worry
|
|
* about it.
|
|
*/
|
|
static struct plot_info *create_plot_info(struct dive *dive)
|
|
{
|
|
int lastdepth, lastindex;
|
|
int i, nr = dive->samples + 4, sec;
|
|
size_t alloc_size = plot_info_size(nr);
|
|
struct plot_info *pi;
|
|
|
|
pi = malloc(alloc_size);
|
|
if (!pi)
|
|
return pi;
|
|
memset(pi, 0, alloc_size);
|
|
pi->nr = nr;
|
|
sec = 0;
|
|
lastindex = 0;
|
|
lastdepth = -1;
|
|
for (i = 0; i < dive->samples; i++) {
|
|
int depth;
|
|
struct sample *sample = dive->sample+i;
|
|
struct plot_data *entry = pi->entry + i + 2;
|
|
|
|
sec = entry->sec = sample->time.seconds;
|
|
depth = entry->val = sample->depth.mm;
|
|
entry->pressure = sample->cylinderpressure.mbar;
|
|
entry->temperature = sample->temperature.mkelvin;
|
|
|
|
if (depth || lastdepth)
|
|
lastindex = i+2;
|
|
|
|
lastdepth = depth;
|
|
if (depth > pi->maxdepth)
|
|
pi->maxdepth = depth;
|
|
}
|
|
if (lastdepth)
|
|
lastindex = i + 2;
|
|
/* Fill in the last two entries with empty values but valid times */
|
|
i = dive->samples + 2;
|
|
pi->entry[i].sec = sec + 20;
|
|
pi->entry[i+1].sec = sec + 40;
|
|
|
|
pi->nr = lastindex+1;
|
|
pi->maxtime = pi->entry[lastindex].sec;
|
|
|
|
pi->minpressure = dive->cylinder[0].end.mbar;
|
|
pi->maxpressure = dive->cylinder[0].start.mbar;
|
|
|
|
pi->meandepth = dive->meandepth.mm;
|
|
|
|
return analyze_plot_info(pi);
|
|
}
|
|
|
|
void plot(struct graphics_context *gc, int w, int h, struct dive *dive)
|
|
{
|
|
double topx, topy;
|
|
struct plot_info *pi = create_plot_info(dive);
|
|
|
|
topx = w / 20.0;
|
|
topy = h / 20.0;
|
|
cairo_translate(gc->cr, topx, topy);
|
|
cairo_set_line_width(gc->cr, 2);
|
|
cairo_set_line_cap(gc->cr, CAIRO_LINE_CAP_ROUND);
|
|
cairo_set_line_join(gc->cr, CAIRO_LINE_JOIN_ROUND);
|
|
|
|
/*
|
|
* We can use "cairo_translate()" because that doesn't
|
|
* scale line width etc. But the actual scaling we need
|
|
* do set up ourselves..
|
|
*
|
|
* Snif. What a pity.
|
|
*/
|
|
gc->maxx = (w - 2*topx);
|
|
gc->maxy = (h - 2*topy);
|
|
|
|
/* Temperature profile */
|
|
plot_temperature_profile(gc, pi);
|
|
|
|
/* Cylinder pressure plot */
|
|
plot_cylinder_pressure(gc, pi);
|
|
|
|
/* Depth profile */
|
|
plot_depth_profile(gc, pi);
|
|
|
|
/* Text on top of all graphs.. */
|
|
plot_temperature_text(gc, pi);
|
|
plot_depth_text(gc, pi);
|
|
plot_cylinder_pressure_text(gc, pi);
|
|
|
|
/* And info box in the lower right corner.. */
|
|
gc->leftx = 0; gc->rightx = 1.0;
|
|
gc->topy = 0; gc->bottomy = 1.0;
|
|
plot_info(dive, gc);
|
|
|
|
/* Bounding box last */
|
|
set_source_rgb(gc, 1, 1, 1);
|
|
move_to(gc, 0, 0);
|
|
line_to(gc, 0, 1);
|
|
line_to(gc, 1, 1);
|
|
line_to(gc, 1, 0);
|
|
cairo_close_path(gc->cr);
|
|
cairo_stroke(gc->cr);
|
|
|
|
}
|
|
|
|
static gboolean expose_event(GtkWidget *widget, GdkEventExpose *event, gpointer data)
|
|
{
|
|
struct dive *dive = current_dive;
|
|
struct graphics_context gc = { .printer = 0 };
|
|
int w,h;
|
|
|
|
w = widget->allocation.width;
|
|
h = widget->allocation.height;
|
|
|
|
gc.cr = gdk_cairo_create(widget->window);
|
|
set_source_rgb(&gc, 0, 0, 0);
|
|
cairo_paint(gc.cr);
|
|
|
|
if (dive)
|
|
plot(&gc, w, h, dive);
|
|
|
|
cairo_destroy(gc.cr);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
GtkWidget *dive_profile_widget(void)
|
|
{
|
|
GtkWidget *da;
|
|
|
|
da = gtk_drawing_area_new();
|
|
gtk_widget_set_size_request(da, 350, 250);
|
|
g_signal_connect(da, "expose_event", G_CALLBACK(expose_event), NULL);
|
|
|
|
return da;
|
|
}
|