subsurface/profile.c
Tomaz Canabrava 40cb57b202 Adapt the ToolTip to work on the new profile
With this patch the tooltip is ready to work on the new profile, we just
need to actually use it.

Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2014-02-06 06:29:19 -08:00

1668 lines
49 KiB
C

/* profile.c */
/* creates all the necessary data for drawing the dive profile
*/
#include "gettext.h"
#include <limits.h>
#include <string.h>
#include "dive.h"
#include "display.h"
#include "divelist.h"
#include "profile.h"
#include "deco.h"
#include "libdivecomputer/parser.h"
#include "libdivecomputer/version.h"
int selected_dive = -1; /* careful: 0 is a valid value */
char zoomed_plot = 0;
char dc_number = 0;
static struct plot_data *last_pi_entry = NULL;
#ifdef DEBUG_PI
/* debugging tool - not normally used */
static void dump_pi (struct plot_info *pi)
{
int i;
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
" maxpressure:%d mintemp:%d maxtemp:%d\n",
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
pi->maxpressure, pi->mintemp, pi->maxtemp);
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = &pi->entry[i];
printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
i, entry->cylinderindex, entry->sec,
entry->pressure[0], entry->pressure[1],
entry->sec / 60, entry->sec % 60,
entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
entry->po2, entry->phe, entry->pn2,
entry->po2 + entry->phe + entry->pn2);
}
printf(" }\n");
}
#endif
#define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y))
#define DIV_UP(x,y) (((x)+(y)-1)/(y))
/*
* When showing dive profiles, we scale things to the
* current dive. However, we don't scale past less than
* 30 minutes or 90 ft, just so that small dives show
* up as such unless zoom is enabled.
* We also need to add 180 seconds at the end so the min/max
* plots correctly
*/
int get_maxtime(struct plot_info *pi)
{
int seconds = pi->maxtime;
if (zoomed_plot) {
/* Rounded up to one minute, with at least 2.5 minutes to
* spare.
* For dive times shorter than 10 minutes, we use seconds/4 to
* calculate the space dynamically.
* This is seamless since 600/4 = 150.
*/
if (seconds < 600)
return ROUND_UP(seconds+seconds/4, 60);
else
return ROUND_UP(seconds+150, 60);
} else {
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
return MAX(30*60, ROUND_UP(seconds+150, 60*5));
}
}
/* get the maximum depth to which we want to plot
* take into account the additional vertical space needed to plot
* partial pressure graphs */
int get_maxdepth(struct plot_info *pi)
{
unsigned mm = pi->maxdepth;
int md;
if (zoomed_plot) {
/* Rounded up to 10m, with at least 3m to spare */
md = ROUND_UP(mm+3000, 10000);
} else {
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
md = MAX((unsigned)30000, ROUND_UP(mm+3000, 10000));
}
md += pi->maxpp * 9000;
return md;
}
/* collect all event names and whether we display them */
struct ev_select *ev_namelist;
int evn_allocated;
int evn_used;
#if WE_DONT_USE_THIS /* we need to implement event filters in Qt */
int evn_foreach(void (*callback)(const char *, bool *, void *), void *data)
{
int i;
for (i = 0; i < evn_used; i++) {
/* here we display an event name on screen - so translate */
callback(translate("gettextFromC",ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
}
return i;
}
#endif /* WE_DONT_USE_THIS */
void clear_events(void)
{
evn_used = 0;
}
void remember_event(const char *eventname)
{
int i = 0, len;
if (!eventname || (len = strlen(eventname)) == 0)
return;
while (i < evn_used) {
if (!strncmp(eventname, ev_namelist[i].ev_name, len))
return;
i++;
}
if (evn_used == evn_allocated) {
evn_allocated += 10;
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
if (! ev_namelist)
/* we are screwed, but let's just bail out */
return;
}
ev_namelist[evn_used].ev_name = strdup(eventname);
ev_namelist[evn_used].plot_ev = true;
evn_used++;
}
int setup_temperature_limits(struct graphics_context *gc)
{
int maxtime, mintemp, maxtemp, delta;
struct plot_info *pi = &gc->pi;
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
mintemp = pi->mintemp;
maxtemp = pi->maxtemp;
gc->leftx = 0; gc->rightx = maxtime;
/* Show temperatures in roughly the lower third, but make sure the scale
is at least somewhat reasonable */
delta = maxtemp - mintemp;
if (delta < 3000) /* less than 3K in fluctuation */
delta = 3000;
gc->topy = maxtemp + delta*2;
if (PP_GRAPHS_ENABLED)
gc->bottomy = mintemp - delta * 2;
else
gc->bottomy = mintemp - delta / 3;
pi->endtempcoord = SCALEY(gc, pi->mintemp);
return maxtemp && maxtemp >= mintemp;
}
void setup_pp_limits(struct graphics_context *gc)
{
int maxdepth;
gc->leftx = 0;
gc->rightx = get_maxtime(&gc->pi);
/* the maxdepth already includes extra vertical space - and if
* we use 1.5 times the corresponding pressure as maximum partial
* pressure the graph seems to look fine*/
maxdepth = get_maxdepth(&gc->pi);
gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * SURFACE_PRESSURE / 1000;
gc->bottomy = -gc->topy / 20;
}
int get_cylinder_pressure_range(struct graphics_context *gc)
{
gc->leftx = 0;
gc->rightx = get_maxtime(&gc->pi);
if (PP_GRAPHS_ENABLED)
gc->bottomy = -gc->pi.maxpressure * 0.75;
else
gc->bottomy = 0;
gc->topy = gc->pi.maxpressure * 1.5;
if (!gc->pi.maxpressure)
return false;
while (gc->pi.endtempcoord <= SCALEY(gc, gc->pi.minpressure - (gc->topy) * 0.1))
gc->bottomy -= gc->topy * 0.1 * gc->maxy/abs(gc->maxy);
return true;
}
/* Get local sac-rate (in ml/min) between entry1 and entry2 */
static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive)
{
int index = entry1->cylinderindex;
cylinder_t *cyl;
int duration = entry2->sec - entry1->sec;
int depth, airuse;
pressure_t a, b;
double atm;
if (entry2->cylinderindex != index)
return 0;
if (duration <= 0)
return 0;
a.mbar = GET_PRESSURE(entry1);
b.mbar = GET_PRESSURE(entry2);
if (!a.mbar || !b.mbar)
return 0;
/* Mean pressure in ATM */
depth = (entry1->depth + entry2->depth) / 2;
atm = (double) depth_to_mbar(depth, dive) / SURFACE_PRESSURE;
cyl = dive->cylinder + index;
airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
/* milliliters per minute */
return airuse / atm * 60 / duration;
}
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
{
struct plot_data *p = entry;
int time = entry->sec;
int seconds = 90*(index+1);
struct plot_data *min, *max;
int avg, nr;
/* Go back 'seconds' in time */
while (p > first) {
if (p[-1].sec < time - seconds)
break;
p--;
}
/* Then go forward until we hit an entry past the time */
min = max = p;
avg = p->depth;
nr = 1;
while (++p < last) {
int depth = p->depth;
if (p->sec > time + seconds)
break;
avg += depth;
nr ++;
if (depth < min->depth)
min = p;
if (depth > max->depth)
max = p;
}
entry->min[index] = min;
entry->max[index] = max;
entry->avg[index] = (avg + nr/2) / nr;
}
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
{
analyze_plot_info_minmax_minute(entry, first, last, 0);
analyze_plot_info_minmax_minute(entry, first, last, 1);
analyze_plot_info_minmax_minute(entry, first, last, 2);
}
static velocity_t velocity(int speed)
{
velocity_t v;
if (speed < -304) /* ascent faster than -60ft/min */
v = CRAZY;
else if (speed < -152) /* above -30ft/min */
v = FAST;
else if (speed < -76) /* -15ft/min */
v = MODERATE;
else if (speed < -25) /* -5ft/min */
v = SLOW;
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
for descent are usually about 2x ascent rate; still, we want
stable to mean stable */
v = STABLE;
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
v = SLOW;
else if (speed < 304) /* up to 60ft/min is moderate */
v = MODERATE;
else if (speed < 507) /* up to 100ft/min is fast */
v = FAST;
else /* more than that is just crazy - you'll blow your ears out */
v = CRAZY;
return v;
}
struct plot_info *analyze_plot_info(struct plot_info *pi)
{
int i;
int nr = pi->nr;
/* Smoothing function: 5-point triangular smooth */
for (i = 2; i < nr; i++) {
struct plot_data *entry = pi->entry+i;
int depth;
if (i < nr-2) {
depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth;
entry->smoothed = (depth+4) / 9;
}
/* vertical velocity in mm/sec */
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
if (entry[0].sec - entry[-1].sec) {
entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec);
entry->velocity = velocity(entry->speed);
/* if our samples are short and we aren't too FAST*/
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
int past = -2;
while (i+past > 0 && entry[0].sec - entry[past].sec < 15)
past--;
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
(entry[0].sec - entry[past].sec));
}
} else {
entry->velocity = STABLE;
entry->speed = 0;
}
}
/* One-, two- and three-minute minmax data */
for (i = 0; i < nr; i++) {
struct plot_data *entry = pi->entry +i;
analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr);
}
return pi;
}
/*
* simple structure to track the beginning and end tank pressure as
* well as the integral of depth over time spent while we have no
* pressure reading from the tank */
typedef struct pr_track_struct pr_track_t;
struct pr_track_struct {
int start;
int end;
int t_start;
int t_end;
int pressure_time;
pr_track_t *next;
};
static pr_track_t *pr_track_alloc(int start, int t_start) {
pr_track_t *pt = malloc(sizeof(pr_track_t));
pt->start = start;
pt->end = 0;
pt->t_start = pt->t_end = t_start;
pt->pressure_time = 0;
pt->next = NULL;
return pt;
}
/* poor man's linked list */
static pr_track_t *list_last(pr_track_t *list)
{
pr_track_t *tail = list;
if (!tail)
return NULL;
while (tail->next) {
tail = tail->next;
}
return tail;
}
static pr_track_t *list_add(pr_track_t *list, pr_track_t *element)
{
pr_track_t *tail = list_last(list);
if (!tail)
return element;
tail->next = element;
return list;
}
static void list_free(pr_track_t *list)
{
if (!list)
return;
list_free(list->next);
free(list);
}
#ifdef DEBUG_PR_TRACK
static void dump_pr_track(pr_track_t **track_pr)
{
int cyl;
pr_track_t *list;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
list = track_pr[cyl];
while (list) {
printf("cyl%d: start %d end %d t_start %d t_end %d pt %d\n", cyl,
list->start, list->end, list->t_start, list->t_end, list->pressure_time);
list = list->next;
}
}
}
#endif
typedef struct pr_interpolate_struct pr_interpolate_t;
struct pr_interpolate_struct {
int start;
int end;
int pressure_time;
int acc_pressure_time;
};
#ifdef DEBUG_PR_INTERPOLATE
static void dump_pr_interpolate(int i, pr_interpolate_t interpolate_pr)
{
printf("Interpolate for entry %d: start %d - end %d - pt %d - acc_pt %d\n", i,
interpolate_pr.start, interpolate_pr.end, interpolate_pr.pressure_time, interpolate_pr.acc_pressure_time);
}
#endif
/*
* This looks at the pressures for one cylinder, and
* calculates any missing beginning/end pressures for
* each segment by taking the over-all SAC-rate into
* account for that cylinder.
*
* NOTE! Many segments have full pressure information
* (both beginning and ending pressure). But if we have
* switched away from a cylinder, we will have the
* beginning pressure for the first segment with a
* missing end pressure. We may then have one or more
* segments without beginning or end pressures, until
* we finally have a segment with an end pressure.
*
* We want to spread out the pressure over these missing
* segments according to how big of a time_pressure area
* they have.
*/
static void fill_missing_segment_pressures(pr_track_t *list)
{
while (list) {
int start = list->start, end;
pr_track_t *tmp = list;
int pt_sum = 0, pt = 0;
for (;;) {
pt_sum += tmp->pressure_time;
end = tmp->end;
if (end)
break;
end = start;
if (!tmp->next)
break;
tmp = tmp->next;
}
if (!start)
start = end;
/*
* Now 'start' and 'end' contain the pressure values
* for the set of segments described by 'list'..'tmp'.
* pt_sum is the sum of all the pressure-times of the
* segments.
*
* Now dole out the pressures relative to pressure-time.
*/
list->start = start;
tmp->end = end;
for (;;) {
int pressure;
pt += list->pressure_time;
pressure = start;
if (pt_sum)
pressure -= (start-end)*(double)pt/pt_sum;
list->end = pressure;
if (list == tmp)
break;
list = list->next;
list->start = pressure;
}
/* Ok, we've done that set of segments */
list = list->next;
}
}
/*
* What's the pressure-time between two plot data entries?
* We're calculating the integral of pressure over time by
* adding these up.
*
* The units won't matter as long as everybody agrees about
* them, since they'll cancel out - we use this to calculate
* a constant SAC-rate-equivalent, but we only use it to
* scale pressures, so it ends up being a unitless scaling
* factor.
*/
static inline int pressure_time(struct dive *dive, struct divecomputer *dc, struct plot_data *a, struct plot_data *b)
{
int time = b->sec - a->sec;
int depth = (a->depth + b->depth)/2;
if (depth <= SURFACE_THRESHOLD)
return 0;
return depth_to_mbar(depth, dive) * time;
}
static struct pr_interpolate_struct get_pr_interpolate_data(pr_track_t *segment, struct plot_info *pi, int cur)
{
struct pr_interpolate_struct interpolate;
int i;
struct plot_data *entry;
interpolate.start = segment->start;
interpolate.end = segment->end;
interpolate.acc_pressure_time = 0;
interpolate.pressure_time = 0;
for (i = 0; i < pi->nr; i++) {
entry = pi->entry + i;
if (entry->sec < segment->t_start)
continue;
if (entry->sec >= segment->t_end) {
interpolate.pressure_time += entry->pressure_time;
break;
}
if (entry->sec == segment->t_start) {
interpolate.acc_pressure_time = 0;
interpolate.pressure_time = 0;
if (SENSOR_PRESSURE(entry))
interpolate.start = SENSOR_PRESSURE(entry);
continue;
}
if (i < cur) {
if (SENSOR_PRESSURE(entry)) {
interpolate.start = SENSOR_PRESSURE(entry);
interpolate.acc_pressure_time = 0;
interpolate.pressure_time = 0;
} else {
interpolate.acc_pressure_time += entry->pressure_time;
interpolate.pressure_time += entry->pressure_time;
}
continue;
}
if (i == cur) {
interpolate.acc_pressure_time += entry->pressure_time;
interpolate.pressure_time += entry->pressure_time;
continue;
}
interpolate.pressure_time += entry->pressure_time;
if (SENSOR_PRESSURE(entry)) {
interpolate.end = SENSOR_PRESSURE(entry);
break;
}
}
return interpolate;
}
static void fill_missing_tank_pressures(struct dive *dive, struct plot_info *pi, pr_track_t **track_pr)
{
int cyl, i;
struct plot_data *entry;
int cur_pr[MAX_CYLINDERS];
#ifdef DEBUG_PR_TRACK
/* another great debugging tool */
dump_pr_track(track_pr);
#endif
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
if (!track_pr[cyl])
continue;
fill_missing_segment_pressures(track_pr[cyl]);
cur_pr[cyl] = track_pr[cyl]->start;
}
/* The first two are "fillers", but in case we don't have a sample
* at time 0 we need to process the second of them here */
for (i = 1; i < pi->nr; i++) {
double magic;
pr_track_t *segment;
pr_interpolate_t interpolate;
entry = pi->entry + i;
cyl = entry->cylinderindex;
if (SENSOR_PRESSURE(entry)) {
cur_pr[cyl] = SENSOR_PRESSURE(entry);
continue;
}
/* Find the right pressure segment for this entry.. */
segment = track_pr[cyl];
while (segment && segment->t_end < entry->sec)
segment = segment->next;
/* No (or empty) segment? Just use our current pressure */
if (!segment || !segment->pressure_time) {
SENSOR_PRESSURE(entry) = cur_pr[cyl];
continue;
}
interpolate = get_pr_interpolate_data(segment, pi, i);
#ifdef DEBUG_PR_INTERPOLATE
dump_pr_interpolate(i, interpolate);
#endif
/* if this segment has pressure time, calculate a new interpolated pressure */
if (interpolate.pressure_time) {
/* Overall pressure change over total pressure-time for this segment*/
magic = (interpolate.end - interpolate.start) / (double) interpolate.pressure_time;
/* Use that overall pressure change to update the current pressure */
cur_pr[cyl] = interpolate.start + magic * interpolate.acc_pressure_time + 0.5;
}
INTERPOLATED_PRESSURE(entry) = cur_pr[cyl];
}
}
int get_cylinder_index(struct dive *dive, struct event *ev)
{
int i;
int best = 0, score = INT_MAX;
int target_o2, target_he;
/*
* Crazy gas change events give us odd encoded o2/he in percent.
* Decode into our internal permille format.
*/
target_o2 = (ev->value & 0xFFFF) * 10;
target_he = (ev->value >> 16) * 10;
/*
* Try to find a cylinder that best matches the target gas
* mix.
*/
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder+i;
int delta_o2, delta_he, distance;
if (cylinder_nodata(cyl))
continue;
delta_o2 = get_o2(&cyl->gasmix) - target_o2;
delta_he = get_he(&cyl->gasmix) - target_he;
distance = delta_o2 * delta_o2;
/* Check the event type to figure out if we should care about the he part.
* 11 is SAMPLE_EVENT_GASCHANGE, aka without he
* 25 is SAMPLE_EVENT_GASCHANGE2, aka with he
*/
if (ev->type == 25)
distance += delta_he * delta_he;
if (distance >= score)
continue;
score = distance;
best = i;
}
return best;
}
struct event *get_next_event(struct event *event, char *name)
{
if (!name || !*name)
return NULL;
while (event) {
if (!strcmp(event->name, name))
return event;
event = event->next;
}
return event;
}
static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
{
while (i < pi->nr) {
struct plot_data *entry = pi->entry+i;
if (entry->sec > end)
break;
if (entry->cylinderindex != cylinderindex) {
entry->cylinderindex = cylinderindex;
entry->pressure[0] = 0;
}
i++;
}
return i;
}
static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int i = 0, cylinderindex = 0;
struct event *ev = get_next_event(dc->events, "gaschange");
if (!ev)
return;
do {
i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
cylinderindex = get_cylinder_index(dive, ev);
ev = get_next_event(ev->next, "gaschange");
} while (ev);
set_cylinder_index(pi, i, cylinderindex, ~0u);
}
struct plot_info calculate_max_limits_new(struct dive *dive, struct divecomputer *dc)
{
struct plot_info pi;
int maxdepth = dive->maxdepth.mm;
int maxtime = 0;
int maxpressure = 0, minpressure = INT_MAX;
int mintemp = dive->mintemp.mkelvin;
int maxtemp = dive->maxtemp.mkelvin;
int cyl;
/* Get the per-cylinder maximum pressure if they are manual */
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
unsigned int mbar = dive->cylinder[cyl].start.mbar;
if (mbar > maxpressure)
maxpressure = mbar;
}
/* Then do all the samples from all the dive computers */
do {
int i = dc->samples;
int lastdepth = 0;
struct sample *s = dc->sample;
while (--i >= 0) {
int depth = s->depth.mm;
int pressure = s->cylinderpressure.mbar;
int temperature = s->temperature.mkelvin;
if (!mintemp && temperature < mintemp)
mintemp = temperature;
if (temperature > maxtemp)
maxtemp = temperature;
if (pressure && pressure < minpressure)
minpressure = pressure;
if (pressure > maxpressure)
maxpressure = pressure;
if (depth > maxdepth)
maxdepth = s->depth.mm;
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
s->time.seconds > maxtime)
maxtime = s->time.seconds;
lastdepth = depth;
s++;
}
} while ((dc = dc->next) != NULL);
if (minpressure > maxpressure)
minpressure = 0;
pi.maxdepth = maxdepth;
pi.maxtime = maxtime;
pi.maxpressure = maxpressure;
pi.minpressure = minpressure;
pi.mintemp = mintemp;
pi.maxtemp = maxtemp;
return pi;
}
void calculate_max_limits(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc)
{
struct plot_info *pi;
int maxdepth;
int maxtime = 0;
int maxpressure = 0, minpressure = INT_MAX;
int mintemp, maxtemp;
int cyl;
/* The plot-info is embedded in the graphics context */
pi = &gc->pi;
memset(pi, 0, sizeof(*pi));
maxdepth = dive->maxdepth.mm;
mintemp = dive->mintemp.mkelvin;
maxtemp = dive->maxtemp.mkelvin;
/* Get the per-cylinder maximum pressure if they are manual */
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
unsigned int mbar = dive->cylinder[cyl].start.mbar;
if (mbar > maxpressure)
maxpressure = mbar;
}
/* Then do all the samples from all the dive computers */
do {
int i = dc->samples;
int lastdepth = 0;
struct sample *s = dc->sample;
while (--i >= 0) {
int depth = s->depth.mm;
int pressure = s->cylinderpressure.mbar;
int temperature = s->temperature.mkelvin;
if (!mintemp && temperature < mintemp)
mintemp = temperature;
if (temperature > maxtemp)
maxtemp = temperature;
if (pressure && pressure < minpressure)
minpressure = pressure;
if (pressure > maxpressure)
maxpressure = pressure;
if (depth > maxdepth)
maxdepth = s->depth.mm;
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
s->time.seconds > maxtime)
maxtime = s->time.seconds;
lastdepth = depth;
s++;
}
} while ((dc = dc->next) != NULL);
if (minpressure > maxpressure)
minpressure = 0;
pi->maxdepth = maxdepth;
pi->maxtime = maxtime;
pi->maxpressure = maxpressure;
pi->minpressure = minpressure;
pi->mintemp = mintemp;
pi->maxtemp = maxtemp;
}
struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int idx, maxtime, nr, i;
int lastdepth, lasttime, lasttemp = 0;
struct plot_data *plot_data;
maxtime = pi->maxtime;
/*
* We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
* but samples could be more dense than that (so add in dc->samples), and
* additionally we want two surface events around the whole thing (thus the
* additional 4).
*/
nr = dc->samples + 5 + maxtime / 10;
plot_data = calloc(nr, sizeof(struct plot_data));
pi->entry = plot_data;
if (!plot_data)
return NULL;
pi->nr = nr;
idx = 2; /* the two extra events at the start */
lastdepth = 0;
lasttime = 0;
for (i = 0; i < dc->samples; i++) {
struct plot_data *entry = plot_data + idx;
struct sample *sample = dc->sample+i;
int time = sample->time.seconds;
int depth = sample->depth.mm;
int offset, delta;
/* Add intermediate plot entries if required */
delta = time - lasttime;
if (delta < 0) {
time = lasttime;
delta = 0;
}
for (offset = 10; offset < delta; offset += 10) {
if (lasttime + offset > maxtime)
break;
/* Use the data from the previous plot entry */
*entry = entry[-1];
/* .. but update depth and time, obviously */
entry->sec = lasttime + offset;
entry->depth = interpolate(lastdepth, depth, offset, delta);
/* And clear out the sensor pressure, since we'll interpolate */
SENSOR_PRESSURE(entry) = 0;
idx++; entry++;
}
if (time > maxtime)
break;
entry->sec = time;
entry->depth = depth;
entry->stopdepth = sample->stopdepth.mm;
entry->stoptime = sample->stoptime.seconds;
entry->ndl = sample->ndl.seconds;
pi->has_ndl |= sample->ndl.seconds;
entry->in_deco = sample->in_deco;
entry->cns = sample->cns;
entry->po2 = sample->po2 / 1000.0;
/* FIXME! sensor index -> cylinder index translation! */
entry->cylinderindex = sample->sensor;
SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
if (sample->temperature.mkelvin)
entry->temperature = lasttemp = sample->temperature.mkelvin;
else
entry->temperature = lasttemp;
lasttime = time;
lastdepth = depth;
idx++;
}
/* Add two final surface events */
plot_data[idx++].sec = lasttime+1;
plot_data[idx++].sec = lasttime+2;
pi->nr = idx;
return plot_data;
}
static void populate_cylinder_pressure_data(int idx, int start, int end, struct plot_info *pi)
{
int i;
/* First: check that none of the entries has sensor pressure for this cylinder index */
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry+i;
if (entry->cylinderindex != idx)
continue;
if (SENSOR_PRESSURE(entry))
return;
}
/* Then: populate the first entry with the beginning cylinder pressure */
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry+i;
if (entry->cylinderindex != idx)
continue;
SENSOR_PRESSURE(entry) = start;
break;
}
/* .. and the last entry with the ending cylinder pressure */
for (i = pi->nr; --i >= 0; /* nothing */) {
struct plot_data *entry = pi->entry+i;
if (entry->cylinderindex != idx)
continue;
SENSOR_PRESSURE(entry) = end;
break;
}
}
static void calculate_sac(struct dive *dive, struct plot_info *pi)
{
int i = 0, last = 0;
struct plot_data *last_entry = NULL;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry+i;
if (!last_entry || last_entry->cylinderindex != entry->cylinderindex) {
last = i;
last_entry = entry;
entry->sac = get_local_sac(entry, pi->entry + i + 1, dive);
} else {
int j;
entry->sac = 0;
for (j = last; j < i; j++)
entry->sac += get_local_sac(pi->entry + j, pi->entry + j + 1, dive);
entry->sac /= (i - last);
if (entry->sec - last_entry->sec >= SAC_WINDOW) {
last++;
last_entry = pi->entry + last;
}
}
}
}
static void populate_secondary_sensor_data(struct divecomputer *dc, struct plot_info *pi)
{
/* We should try to see if it has interesting pressure data here */
}
static void setup_gas_sensor_pressure(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int i;
struct divecomputer *secondary;
/* First, populate the pressures with the manual cylinder data.. */
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder+i;
int start = cyl->start.mbar ? : cyl->sample_start.mbar;
int end = cyl->end.mbar ? : cyl->sample_end.mbar;
if (!start || !end)
continue;
populate_cylinder_pressure_data(i, start, end, pi);
}
/*
* Here, we should try to walk through all the dive computers,
* and try to see if they have sensor data different from the
* primary dive computer (dc).
*/
secondary = &dive->dc;
do {
if (secondary == dc)
continue;
populate_secondary_sensor_data(dc, pi);
} while ((secondary = secondary->next) != NULL);
}
static void populate_pressure_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int i, cylinderindex;
pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, };
pr_track_t *current;
bool missing_pr = false;
cylinderindex = -1;
current = NULL;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
unsigned pressure = SENSOR_PRESSURE(entry);
/* discrete integration of pressure over time to get the SAC rate equivalent */
if (current) {
entry->pressure_time = pressure_time(dive, dc, entry-1, entry);
current->pressure_time += entry->pressure_time;
current->t_end = entry->sec;
}
/* track the segments per cylinder and their pressure/time integral */
if (entry->cylinderindex != cylinderindex) {
cylinderindex = entry->cylinderindex;
current = pr_track_alloc(pressure, entry->sec);
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
continue;
}
if (!pressure) {
missing_pr = 1;
continue;
}
current->end = pressure;
/* Was it continuous? */
if (SENSOR_PRESSURE(entry-1))
continue;
/* transmitter changed its working status */
current = pr_track_alloc(pressure, entry->sec);
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
}
if (missing_pr) {
fill_missing_tank_pressures(dive, pi, track_pr);
}
for (i = 0; i < MAX_CYLINDERS; i++)
list_free(track_pr[i]);
}
/* calculate DECO STOP / TTS / NDL */
static void calculate_ndl_tts(double tissue_tolerance, struct plot_data *entry, struct dive *dive, double surface_pressure) {
/* FIXME: This should be configurable */
/* ascent speed up to first deco stop */
const int ascent_s_per_step = 1;
const int ascent_mm_per_step = 200; /* 12 m/min */
/* ascent speed between deco stops */
const int ascent_s_per_deco_step = 1;
const int ascent_mm_per_deco_step = 16; /* 1 m/min */
/* how long time steps in deco calculations? */
const int time_stepsize = 10;
const int deco_stepsize = 3000;
/* at what depth is the current deco-step? */
int next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize);
int ascent_depth = entry->depth;
/* at what time should we give up and say that we got enuff NDL? */
const int max_ndl = 7200;
int cylinderindex = entry->cylinderindex;
/* If we don't have a ceiling yet, calculate ndl. Don't try to calculate
* a ndl for lower values than 3m it would take forever */
if (next_stop == 0) {
if (entry->depth < 3000) {
entry->ndl = max_ndl;
return;
}
/* stop if the ndl is above max_ndl seconds, and call it plenty of time */
while (entry->ndl_calc < max_ndl && deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= 0) {
entry->ndl_calc += time_stepsize;
tissue_tolerance = add_segment(depth_to_mbar(entry->depth, dive) / 1000.0,
&dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->po2 * 1000, dive);
}
/* we don't need to calculate anything else */
return;
}
/* We are in deco */
entry->in_deco_calc = true;
/* Add segments for movement to stopdepth */
for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_step, entry->tts_calc += ascent_s_per_step) {
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
&dive->cylinder[cylinderindex].gasmix, ascent_s_per_step, entry->po2 * 1000, dive);
next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize);
}
ascent_depth = next_stop;
/* And how long is the current deco-step? */
entry->stoptime_calc = 0;
entry->stopdepth_calc = next_stop;
next_stop -= deco_stepsize;
/* And how long is the total TTS */
while(next_stop >= 0) {
/* save the time for the first stop to show in the graph */
if (ascent_depth == entry->stopdepth_calc)
entry->stoptime_calc += time_stepsize;
entry->tts_calc += time_stepsize;
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
&dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->po2 * 1000, dive);
if (deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= next_stop) {
/* move to the next stop and add the travel between stops */
for (; ascent_depth > next_stop ; ascent_depth -= ascent_mm_per_deco_step, entry->tts_calc += ascent_s_per_deco_step)
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
&dive->cylinder[cylinderindex].gasmix, ascent_s_per_deco_step, entry->po2 * 1000, dive);
ascent_depth = next_stop;
next_stop -= deco_stepsize;
}
}
}
/* Let's try to do some deco calculations.
* Needs to be run before calculate_gas_information so we know that if we have a po2, where in ccr-mode.
*/
void calculate_deco_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool print_mode)
{
int i;
double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0;
double tissue_tolerance = 0;
for (i = 1; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
int j, t0 = (entry - 1)->sec, t1 = entry->sec;
for (j = t0+1; j <= t1; j++) {
int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0);
double min_pressure = add_segment(depth_to_mbar(depth, dive) / 1000.0,
&dive->cylinder[entry->cylinderindex].gasmix, 1, entry->po2 * 1000, dive);
tissue_tolerance = min_pressure;
}
if (t0 == t1)
entry->ceiling = (entry - 1)->ceiling;
else
entry->ceiling = deco_allowed_depth(tissue_tolerance, surface_pressure, dive, !prefs.calc_ceiling_3m_incr);
for (j=0; j<16; j++)
entry->ceilings[j] = deco_allowed_depth(tolerated_by_tissue[j], surface_pressure, dive, 1);
/* should we do more calculations?
* We don't for print-mode because this info doesn't show up there */
if (prefs.calc_ndl_tts && !print_mode) {
/* We are going to mess up deco state, so store it for later restore */
char *cache_data = NULL;
cache_deco_state(tissue_tolerance, &cache_data);
calculate_ndl_tts(tissue_tolerance, entry, dive, surface_pressure);
/* Restore "real" deco state for next real time step */
tissue_tolerance = restore_deco_state(cache_data);
free(cache_data);
}
}
#if DECO_CALC_DEBUG & 1
dump_tissues();
#endif
}
static void calculate_gas_information(struct dive *dive, struct plot_info *pi)
{
int i;
double amb_pressure;
for (i = 1; i < pi->nr; i++) {
int fo2, fhe;
struct plot_data *entry = pi->entry + i;
int cylinderindex = entry->cylinderindex;
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix);
fhe = get_he(&dive->cylinder[cylinderindex].gasmix);
double ratio = (double)fhe / (1000.0 - fo2);
if (entry->po2) {
/* we have an O2 partial pressure in the sample - so this
* is likely a CC dive... use that instead of the value
* from the cylinder info */
double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2;
entry->po2 = po2;
entry->phe = (amb_pressure - po2) * ratio;
entry->pn2 = amb_pressure - po2 - entry->phe;
} else {
entry->po2 = fo2 / 1000.0 * amb_pressure;
entry->phe = fhe / 1000.0 * amb_pressure;
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
}
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
* so there is no difference in calculating between OC and CC
* EAD takes O2 + N2 (air) into account
* END just uses N2 */
entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000;
entry->ead = (entry->depth + 10000) *
(entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000;
entry->end = (entry->depth + 10000) *
(amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000;
entry->eadd = (entry->depth + 10000) *
(entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure *
N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) /
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000;
if (entry->mod < 0)
entry->mod = 0;
if (entry->ead < 0)
entry->ead = 0;
if (entry->end < 0)
entry->end = 0;
if (entry->eadd < 0)
entry->eadd = 0;
if (entry->po2 > pi->maxpp && prefs.pp_graphs.po2)
pi->maxpp = entry->po2;
if (entry->phe > pi->maxpp && prefs.pp_graphs.phe)
pi->maxpp = entry->phe;
if (entry->pn2 > pi->maxpp && prefs.pp_graphs.pn2)
pi->maxpp = entry->pn2;
}
}
static void calculate_gas_information_new(struct dive *dive, struct plot_info *pi)
{
int i;
double amb_pressure;
for (i = 1; i < pi->nr; i++) {
int fo2, fhe;
struct plot_data *entry = pi->entry + i;
int cylinderindex = entry->cylinderindex;
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix);
fhe = get_he(&dive->cylinder[cylinderindex].gasmix);
double ratio = (double)fhe / (1000.0 - fo2);
if (entry->po2) {
/* we have an O2 partial pressure in the sample - so this
* is likely a CC dive... use that instead of the value
* from the cylinder info */
double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2;
entry->po2 = po2;
entry->phe = (amb_pressure - po2) * ratio;
entry->pn2 = amb_pressure - po2 - entry->phe;
} else {
entry->po2 = fo2 / 1000.0 * amb_pressure;
entry->phe = fhe / 1000.0 * amb_pressure;
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
}
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
* so there is no difference in calculating between OC and CC
* EAD takes O2 + N2 (air) into account
* END just uses N2 */
entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000;
entry->ead = (entry->depth + 10000) *
(entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000;
entry->end = (entry->depth + 10000) *
(amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000;
entry->eadd = (entry->depth + 10000) *
(entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure *
N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) /
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000;
if (entry->mod < 0)
entry->mod = 0;
if (entry->ead < 0)
entry->ead = 0;
if (entry->end < 0)
entry->end = 0;
if (entry->eadd < 0)
entry->eadd = 0;
}
}
/*
* Create a plot-info with smoothing and ranged min/max
*
* This also makes sure that we have extra empty events on both
* sides, so that you can do end-points without having to worry
* about it.
*/
struct plot_info *create_plot_info(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc, bool print_mode)
{
struct plot_info *pi;
/* The plot-info is embedded in the graphics context */
pi = &gc->pi;
/* reset deco information to start the calculation */
if (prefs.profile_calc_ceiling)
init_decompression(dive);
/* Create the new plot data */
if (last_pi_entry)
free((void *)last_pi_entry);
last_pi_entry = populate_plot_entries(dive, dc, pi);
/* Populate the gas index from the gas change events */
check_gas_change_events(dive, dc, pi);
/* Try to populate our gas pressure knowledge */
setup_gas_sensor_pressure(dive, dc, pi);
/* .. calculate missing pressure entries */
populate_pressure_information(dive, dc, pi);
/* Calculate sac */
calculate_sac(dive, pi);
/* Then, calculate deco information */
if (prefs.profile_calc_ceiling)
calculate_deco_information(dive, dc, pi, print_mode);
/* And finaly calculate gas partial pressures */
calculate_gas_information(dive, pi);
pi->meandepth = dive->dc.meandepth.mm;
#ifdef DEBUG_PI
/* awesome for debugging - not useful otherwise */
dump_pi(pi);
#endif
return analyze_plot_info(pi);
}
void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
init_decompression(dive);
if (last_pi_entry) /* Create the new plot data */
free((void *)last_pi_entry);
last_pi_entry = populate_plot_entries(dive, dc, pi);
check_gas_change_events(dive, dc, pi); /* Populate the gas index from the gas change events */
setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */
populate_pressure_information(dive, dc, pi);/* .. calculate missing pressure entries */
calculate_sac(dive, pi); /* Calculate sac */
calculate_deco_information(dive, dc, pi, false);
calculate_gas_information_new(dive, pi); /* And finaly calculate gas partial pressures */
pi->meandepth = dive->dc.meandepth.mm;
analyze_plot_info(pi);
}
/* make sure you pass this the FIRST dc - it just walks the list */
static int nr_dcs(struct divecomputer *main)
{
int i = 1;
struct divecomputer *dc = main;
while ((dc = dc->next) != NULL)
i++;
return i;
}
struct divecomputer *select_dc(struct divecomputer *main)
{
int i = dc_number;
struct divecomputer *dc = main;
while (i < 0)
i += nr_dcs(main);
do {
if (--i < 0)
return dc;
} while ((dc = dc->next) != NULL);
/* If we switched dives to one with fewer DC's, reset the dive computer counter */
dc_number = 0;
return main;
}
static void plot_string(struct plot_data *entry, char *buf, int bufsize,
bool has_ndl)
{
int pressurevalue, mod, ead, end, eadd;
const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit;
char *buf2 = malloc(bufsize);
double depthvalue, tempvalue, speedvalue;
depthvalue = get_depth_units(entry->depth, NULL, &depth_unit);
snprintf(buf, bufsize, translate("gettextFromC","@:%d:%02d\nD:%.1f %s"), FRACTION(entry->sec, 60), depthvalue, depth_unit);
if (GET_PRESSURE(entry)) {
pressurevalue = get_pressure_units(GET_PRESSURE(entry), &pressure_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nP:%d %s"), buf2, pressurevalue, pressure_unit);
}
if (entry->temperature) {
tempvalue = get_temp_units(entry->temperature, &temp_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nT:%.1f %s"), buf2, tempvalue, temp_unit);
}
speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit);
memcpy(buf2, buf, bufsize);
/* Ascending speeds are positive, descending are negative */
if (entry->speed > 0)
speedvalue *= -1;
snprintf(buf, bufsize, translate("gettextFromC","%s\nV:%.2f %s"), buf2, speedvalue, vertical_speed_unit);
if (entry->sac && prefs.show_sac) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nSAC:%2.1fl/min"), buf2, entry->sac / 1000.0);
}
if (entry->cns) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nCNS:%u%%"), buf2, entry->cns);
}
if (prefs.pp_graphs.po2) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\npO%s:%.2fbar"), buf2, UTF8_SUBSCRIPT_2, entry->po2);
}
if (prefs.pp_graphs.pn2) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\npN%s:%.2fbar"), buf2, UTF8_SUBSCRIPT_2, entry->pn2);
}
if (prefs.pp_graphs.phe) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\npHe:%.2fbar"), buf2, entry->phe);
}
if (prefs.mod) {
mod = (int)get_depth_units(entry->mod, NULL, &depth_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nMOD:%d%s"), buf2, mod, depth_unit);
}
if (prefs.ead) {
ead = (int)get_depth_units(entry->ead, NULL, &depth_unit);
end = (int)get_depth_units(entry->end, NULL, &depth_unit);
eadd = (int)get_depth_units(entry->eadd, NULL, &depth_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nEAD:%d%s\nEND:%d%s\nEADD:%d%s"), buf2, ead, depth_unit, end, depth_unit, eadd, depth_unit);
}
if (entry->stopdepth) {
depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
memcpy(buf2, buf, bufsize);
if (entry->ndl) {
/* this is a safety stop as we still have ndl */
if (entry->stoptime)
snprintf(buf, bufsize, translate("gettextFromC","%s\nSafetystop:%umin @ %.0f %s"), buf2, DIV_UP(entry->stoptime, 60),
depthvalue, depth_unit);
else
snprintf(buf, bufsize, translate("gettextFromC","%s\nSafetystop:unkn time @ %.0f %s"), buf2,
depthvalue, depth_unit);
} else {
/* actual deco stop */
if (entry->stoptime)
snprintf(buf, bufsize, translate("gettextFromC","%s\nDeco:%umin @ %.0f %s"), buf2, DIV_UP(entry->stoptime, 60),
depthvalue, depth_unit);
else
snprintf(buf, bufsize, translate("gettextFromC","%s\nDeco:unkn time @ %.0f %s"), buf2,
depthvalue, depth_unit);
}
} else if (entry->in_deco) {
/* this means we had in_deco set but don't have a stop depth */
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nIn deco"), buf2);
} else if (has_ndl) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nNDL:%umin"), buf2, DIV_UP(entry->ndl, 60));
}
if (entry->stopdepth_calc && entry->stoptime_calc) {
depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nDeco:%umin @ %.0f %s (calc)"), buf2, DIV_UP(entry->stoptime_calc, 60),
depthvalue, depth_unit);
} else if (entry->in_deco_calc) {
/* This means that we have no NDL left,
* and we have no deco stop,
* so if we just accend to the surface slowly
* (ascent_mm_per_step / ascent_s_per_step)
* everything will be ok. */
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nIn deco (calc)"), buf2);
} else if (prefs.calc_ndl_tts && entry->ndl_calc != 0) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nNDL:%umin (calc)"), buf2, DIV_UP(entry->ndl_calc, 60));
}
if (entry->tts_calc) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nTTS:%umin (calc)"), buf2, DIV_UP(entry->tts_calc, 60));
}
if (entry->ceiling) {
depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nCalculated ceiling %.0f %s"), buf2, depthvalue, depth_unit);
if (prefs.calc_all_tissues) {
int k;
for (k=0; k<16; k++) {
if (entry->ceilings[k]) {
depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s\nTissue %.0fmin: %.0f %s"), buf2, buehlmann_N2_t_halflife[k], depthvalue, depth_unit);
}
}
}
}
free(buf2);
}
void get_plot_details(struct graphics_context *gc, int time, char *buf, int bufsize)
{
struct plot_info *pi = &gc->pi;
struct plot_data *entry = NULL;
int i;
for (i = 0; i < pi->nr; i++) {
entry = pi->entry + i;
if (entry->sec >= time)
break;
}
if (entry)
plot_string(entry, buf, bufsize, pi->has_ndl);
}
void get_plot_details_new(struct plot_info *pi, int time, char *buf, int bufsize)
{
struct plot_data *entry = NULL;
int i;
for (i = 0; i < pi->nr; i++) {
entry = pi->entry + i;
if (entry->sec >= time)
break;
}
if (entry)
plot_string(entry, buf, bufsize, pi->has_ndl);
}
/* Compare two plot_data entries and writes the results into a string */
void compare_samples(struct plot_data *e1, struct plot_data *e2, char *buf, int bufsize, int sum)
{
struct plot_data *start, *stop, *data;
const char *depth_unit, *pressure_unit, *vertical_speed_unit;
char *buf2 = malloc(bufsize);
int avg_speed, max_asc_speed, max_desc_speed;
int delta_depth, avg_depth, max_depth, min_depth;
int bar_used, last_pressure, pressurevalue;
int count, last_sec, delta_time;
double depthvalue, speedvalue;
if (bufsize > 0)
buf[0] = '\0';
if (e1 == NULL || e2 == NULL) {
free(buf2);
return;
}
if (e1->sec < e2->sec) {
start = e1;
stop = e2;
} else if (e1->sec > e2->sec) {
start = e2;
stop = e1;
} else {
free(buf2);
return;
}
count = 0;
avg_speed = 0;
max_asc_speed = 0;
max_desc_speed = 0;
delta_depth = abs(start->depth-stop->depth);
delta_time = abs(start->sec-stop->sec);
avg_depth = 0;
max_depth = 0;
min_depth = INT_MAX;
bar_used = 0;
last_sec = start->sec;
last_pressure = GET_PRESSURE(start);
data = start;
while (data != stop) {
data = start+count;
if (sum)
avg_speed += abs(data->speed)*(data->sec-last_sec);
else
avg_speed += data->speed*(data->sec-last_sec);
avg_depth += data->depth*(data->sec-last_sec);
if (data->speed > max_desc_speed)
max_desc_speed = data->speed;
if (data->speed < max_asc_speed)
max_asc_speed = data->speed;
if (data->depth < min_depth)
min_depth = data->depth;
if (data->depth > max_depth)
max_depth = data->depth;
/* Try to detect gas changes */
if (GET_PRESSURE(data) < last_pressure+2000)
bar_used += last_pressure-GET_PRESSURE(data);
count+=1;
last_sec = data->sec;
last_pressure = GET_PRESSURE(data);
}
avg_depth /= stop->sec-start->sec;
avg_speed /= stop->sec-start->sec;
snprintf(buf, bufsize, translate("gettextFromC","%sT: %d:%02d min"), UTF8_DELTA, delta_time/60, delta_time%60);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(delta_depth, NULL, &depth_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_DELTA, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(min_depth, NULL, &depth_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_DOWNWARDS_ARROW, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(max_depth, NULL, &depth_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_UPWARDS_ARROW, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(avg_depth, NULL, &depth_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s\n"), buf2, UTF8_AVERAGE, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s%sV:%.2f%s"), buf2, UTF8_DOWNWARDS_ARROW, speedvalue, vertical_speed_unit);
memcpy(buf2, buf, bufsize);
speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sV:%.2f%s"), buf2, UTF8_UPWARDS_ARROW, speedvalue, vertical_speed_unit);
memcpy(buf2, buf, bufsize);
speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sV:%.2f%s"), buf2, UTF8_AVERAGE, speedvalue, vertical_speed_unit);
memcpy(buf2, buf, bufsize);
/* Only print if gas has been used */
if (bar_used) {
pressurevalue = get_pressure_units(bar_used, &pressure_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s %sP:%d %s"), buf2, UTF8_DELTA, pressurevalue, pressure_unit);
}
free(buf2);
}