mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-28 13:10:19 +00:00
f3f7bf51fa
After the 3.1 release it is time to shift the focus on the Qt effort - and the best way to do this is to merge the changes in the Qt branch into master. Linus was extremely nice and did a merge for me. I decided to do my own merge instead (which by accident actually based on a different version of the Qt branch) and then used his merge to double check what I was doing. I resolved a few things differently but overall what we did was very much the same (and I say this with pride since Linus is a professional git merger) Here's his merge commit message: This is a rough and tumble merge of the Qt branch into 'master', trying to sort out the conflicts as best as I could. There were two major kinds of conflicts: - the Makefile changes, in particular the split of the single Makefile into Rules.mk and Configure.mk, along with the obvious Qt build changes themselves. Those changes conflicted with some of the updates done in mainline wrt "release" targets and some helper macros ($(NAME) etc). Resolved by largely taking the Qt branch versions, and then editing in the most obvious parts of the Makefile updates from mainline. NOTE! The script/get_version shell script was made to just fail silently on not finding a git repository, which avoided having to take some particularly ugly Makefile changes. - Various random updates in mainline to support things like dive tags. The conflicts were mainly to the gtk GUI parts, which obviously looked different afterwards. I fixed things up to look like the newer code, but since the gtk files themselves are actually dead in the Qt branch, this is largely irrelevant. NOTE! This does *NOT* introduce the equivalent Qt functionality. The fields are there in the code now, but there's no Qt UI for the whole dive tag stuff etc. This seems to compile for me (although I have to force "QMAKE=qmake-qt4" on f19), and results in a Linux binary that seems to work, but it is otherwise largely untested. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
1218 lines
33 KiB
C
1218 lines
33 KiB
C
/* profile.c */
|
|
/* creates all the necessary data for drawing the dive profile
|
|
* uses cairo to draw it
|
|
*/
|
|
#include <glib/gi18n.h>
|
|
|
|
#include "dive.h"
|
|
#include "display.h"
|
|
#if USE_GTK_UI
|
|
#include "display-gtk.h"
|
|
#endif
|
|
#include "divelist.h"
|
|
|
|
#include "profile.h"
|
|
#include "libdivecomputer/parser.h"
|
|
#include "libdivecomputer/version.h"
|
|
|
|
int selected_dive = -1; /* careful: 0 is a valid value */
|
|
char zoomed_plot = 0;
|
|
char dc_number = 0;
|
|
|
|
|
|
static struct plot_data *last_pi_entry = NULL;
|
|
|
|
#define cairo_set_line_width_scaled(cr, w) \
|
|
cairo_set_line_width((cr), (w) * plot_scale);
|
|
|
|
#if USE_GTK_UI
|
|
|
|
/* keep the last used gc around so we can invert the SCALEX calculation in
|
|
* order to calculate a time value for an x coordinate */
|
|
static struct graphics_context last_gc;
|
|
int x_to_time(double x)
|
|
{
|
|
int seconds = (x - last_gc.drawing_area.x) / last_gc.maxx * (last_gc.rightx - last_gc.leftx) + last_gc.leftx;
|
|
return (seconds > 0) ? seconds : 0;
|
|
}
|
|
|
|
/* x offset into the drawing area */
|
|
int x_abs(double x)
|
|
{
|
|
return x - last_gc.drawing_area.x;
|
|
}
|
|
#endif /* USE_GTK_UI */
|
|
|
|
/* debugging tool - not normally used */
|
|
static void dump_pi (struct plot_info *pi)
|
|
{
|
|
int i;
|
|
|
|
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
|
|
" maxpressure:%d mintemp:%d maxtemp:%d\n",
|
|
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
|
|
pi->maxpressure, pi->mintemp, pi->maxtemp);
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = &pi->entry[i];
|
|
printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
|
|
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
|
|
i, entry->cylinderindex, entry->sec,
|
|
entry->pressure[0], entry->pressure[1],
|
|
entry->sec / 60, entry->sec % 60,
|
|
entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
|
|
entry->po2, entry->phe, entry->pn2,
|
|
entry->po2 + entry->phe + entry->pn2);
|
|
}
|
|
printf(" }\n");
|
|
}
|
|
|
|
#define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y))
|
|
|
|
/*
|
|
* When showing dive profiles, we scale things to the
|
|
* current dive. However, we don't scale past less than
|
|
* 30 minutes or 90 ft, just so that small dives show
|
|
* up as such unless zoom is enabled.
|
|
* We also need to add 180 seconds at the end so the min/max
|
|
* plots correctly
|
|
*/
|
|
int get_maxtime(struct plot_info *pi)
|
|
{
|
|
int seconds = pi->maxtime;
|
|
if (zoomed_plot) {
|
|
/* Rounded up to one minute, with at least 2.5 minutes to
|
|
* spare.
|
|
* For dive times shorter than 10 minutes, we use seconds/4 to
|
|
* calculate the space dynamically.
|
|
* This is seamless since 600/4 = 150.
|
|
*/
|
|
if (seconds < 600)
|
|
return ROUND_UP(seconds+seconds/4, 60);
|
|
else
|
|
return ROUND_UP(seconds+150, 60);
|
|
} else {
|
|
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
|
|
return MAX(30*60, ROUND_UP(seconds+150, 60*5));
|
|
}
|
|
}
|
|
|
|
/* get the maximum depth to which we want to plot
|
|
* take into account the additional verical space needed to plot
|
|
* partial pressure graphs */
|
|
int get_maxdepth(struct plot_info *pi)
|
|
{
|
|
unsigned mm = pi->maxdepth;
|
|
int md;
|
|
|
|
if (zoomed_plot) {
|
|
/* Rounded up to 10m, with at least 3m to spare */
|
|
md = ROUND_UP(mm+3000, 10000);
|
|
} else {
|
|
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
|
|
md = MAX(30000, ROUND_UP(mm+3000, 10000));
|
|
}
|
|
md += pi->maxpp * 9000;
|
|
return md;
|
|
}
|
|
|
|
/* collect all event names and whether we display them */
|
|
struct ev_select *ev_namelist;
|
|
int evn_allocated;
|
|
int evn_used;
|
|
|
|
int evn_foreach(void (*callback)(const char *, int *, void *), void *data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < evn_used; i++) {
|
|
/* here we display an event name on screen - so translate */
|
|
callback(_(ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
void clear_events(void)
|
|
{
|
|
evn_used = 0;
|
|
}
|
|
|
|
void remember_event(const char *eventname)
|
|
{
|
|
int i = 0, len;
|
|
|
|
if (!eventname || (len = strlen(eventname)) == 0)
|
|
return;
|
|
while (i < evn_used) {
|
|
if (!strncmp(eventname, ev_namelist[i].ev_name, len))
|
|
return;
|
|
i++;
|
|
}
|
|
if (evn_used == evn_allocated) {
|
|
evn_allocated += 10;
|
|
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
|
|
if (! ev_namelist)
|
|
/* we are screwed, but let's just bail out */
|
|
return;
|
|
}
|
|
ev_namelist[evn_used].ev_name = strdup(eventname);
|
|
ev_namelist[evn_used].plot_ev = TRUE;
|
|
evn_used++;
|
|
}
|
|
|
|
int setup_temperature_limits(struct graphics_context *gc)
|
|
{
|
|
int maxtime, mintemp, maxtemp, delta;
|
|
|
|
struct plot_info *pi = &gc->pi;
|
|
/* Get plot scaling limits */
|
|
maxtime = get_maxtime(pi);
|
|
mintemp = pi->mintemp;
|
|
maxtemp = pi->maxtemp;
|
|
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
/* Show temperatures in roughly the lower third, but make sure the scale
|
|
is at least somewhat reasonable */
|
|
delta = maxtemp - mintemp;
|
|
if (delta < 3000) /* less than 3K in fluctuation */
|
|
delta = 3000;
|
|
gc->topy = maxtemp + delta*2;
|
|
|
|
if (PP_GRAPHS_ENABLED)
|
|
gc->bottomy = mintemp - delta * 2;
|
|
else
|
|
gc->bottomy = mintemp - delta / 3;
|
|
|
|
pi->endtempcoord = SCALEY(gc, pi->mintemp);
|
|
return maxtemp && maxtemp >= mintemp;
|
|
}
|
|
|
|
void setup_pp_limits(struct graphics_context *gc)
|
|
{
|
|
int maxdepth;
|
|
|
|
gc->leftx = 0;
|
|
gc->rightx = get_maxtime(&gc->pi);
|
|
|
|
/* the maxdepth already includes extra vertical space - and if
|
|
* we use 1.5 times the corresponding pressure as maximum partial
|
|
* pressure the graph seems to look fine*/
|
|
maxdepth = get_maxdepth(&gc->pi);
|
|
gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * SURFACE_PRESSURE / 1000;
|
|
gc->bottomy = -gc->topy / 20;
|
|
}
|
|
|
|
|
|
#if 0
|
|
|
|
static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
struct plot_data *entry = pi->entry;
|
|
|
|
set_source_rgba(gc, SMOOTHED);
|
|
move_to(gc, entry->sec, entry->smoothed);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
line_to(gc, entry->sec, entry->smoothed);
|
|
}
|
|
cairo_stroke(gc->cr);
|
|
}
|
|
|
|
static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi,
|
|
int index)
|
|
{
|
|
int i;
|
|
struct plot_data *entry = pi->entry;
|
|
|
|
set_source_rgba(gc, MINUTE);
|
|
move_to(gc, entry->sec, entry->min[index]->depth);
|
|
for (i = 1; i < pi->nr; i++) {
|
|
entry++;
|
|
line_to(gc, entry->sec, entry->min[index]->depth);
|
|
}
|
|
for (i = 1; i < pi->nr; i++) {
|
|
line_to(gc, entry->sec, entry->max[index]->depth);
|
|
entry--;
|
|
}
|
|
cairo_close_path(gc->cr);
|
|
cairo_fill(gc->cr);
|
|
}
|
|
|
|
static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi)
|
|
{
|
|
if (gc->printer)
|
|
return;
|
|
plot_minmax_profile_minute(gc, pi, 2);
|
|
plot_minmax_profile_minute(gc, pi, 1);
|
|
plot_minmax_profile_minute(gc, pi, 0);
|
|
}
|
|
|
|
#endif /* USE_GTK_UI */
|
|
|
|
int get_cylinder_pressure_range(struct graphics_context *gc)
|
|
{
|
|
gc->leftx = 0;
|
|
gc->rightx = get_maxtime(&gc->pi);
|
|
|
|
if (PP_GRAPHS_ENABLED)
|
|
gc->bottomy = -gc->pi.maxpressure * 0.75;
|
|
else
|
|
gc->bottomy = 0;
|
|
gc->topy = gc->pi.maxpressure * 1.5;
|
|
if (!gc->pi.maxpressure)
|
|
return FALSE;
|
|
|
|
while (gc->pi.endtempcoord <= SCALEY(gc, gc->pi.minpressure - (gc->topy) * 0.1))
|
|
gc->bottomy -= gc->topy * 0.1 * gc->maxy/abs(gc->maxy);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Get local sac-rate (in ml/min) between entry1 and entry2 */
|
|
int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive)
|
|
{
|
|
int index = entry1->cylinderindex;
|
|
cylinder_t *cyl;
|
|
int duration = entry2->sec - entry1->sec;
|
|
int depth, airuse;
|
|
pressure_t a, b;
|
|
double atm;
|
|
|
|
if (entry2->cylinderindex != index)
|
|
return 0;
|
|
if (duration <= 0)
|
|
return 0;
|
|
a.mbar = GET_PRESSURE(entry1);
|
|
b.mbar = GET_PRESSURE(entry2);
|
|
if (!a.mbar || !b.mbar)
|
|
return 0;
|
|
|
|
/* Mean pressure in ATM */
|
|
depth = (entry1->depth + entry2->depth) / 2;
|
|
atm = (double) depth_to_mbar(depth, dive) / SURFACE_PRESSURE;
|
|
|
|
cyl = dive->cylinder + index;
|
|
|
|
airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
|
|
|
|
/* milliliters per minute */
|
|
return airuse / atm * 60 / duration;
|
|
}
|
|
|
|
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
|
|
{
|
|
struct plot_data *p = entry;
|
|
int time = entry->sec;
|
|
int seconds = 90*(index+1);
|
|
struct plot_data *min, *max;
|
|
int avg, nr;
|
|
|
|
/* Go back 'seconds' in time */
|
|
while (p > first) {
|
|
if (p[-1].sec < time - seconds)
|
|
break;
|
|
p--;
|
|
}
|
|
|
|
/* Then go forward until we hit an entry past the time */
|
|
min = max = p;
|
|
avg = p->depth;
|
|
nr = 1;
|
|
while (++p < last) {
|
|
int depth = p->depth;
|
|
if (p->sec > time + seconds)
|
|
break;
|
|
avg += depth;
|
|
nr ++;
|
|
if (depth < min->depth)
|
|
min = p;
|
|
if (depth > max->depth)
|
|
max = p;
|
|
}
|
|
entry->min[index] = min;
|
|
entry->max[index] = max;
|
|
entry->avg[index] = (avg + nr/2) / nr;
|
|
}
|
|
|
|
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
|
|
{
|
|
analyze_plot_info_minmax_minute(entry, first, last, 0);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 1);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 2);
|
|
}
|
|
|
|
static velocity_t velocity(int speed)
|
|
{
|
|
velocity_t v;
|
|
|
|
if (speed < -304) /* ascent faster than -60ft/min */
|
|
v = CRAZY;
|
|
else if (speed < -152) /* above -30ft/min */
|
|
v = FAST;
|
|
else if (speed < -76) /* -15ft/min */
|
|
v = MODERATE;
|
|
else if (speed < -25) /* -5ft/min */
|
|
v = SLOW;
|
|
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
|
|
for descent are usually about 2x ascent rate; still, we want
|
|
stable to mean stable */
|
|
v = STABLE;
|
|
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
|
|
v = SLOW;
|
|
else if (speed < 304) /* up to 60ft/min is moderate */
|
|
v = MODERATE;
|
|
else if (speed < 507) /* up to 100ft/min is fast */
|
|
v = FAST;
|
|
else /* more than that is just crazy - you'll blow your ears out */
|
|
v = CRAZY;
|
|
|
|
return v;
|
|
}
|
|
|
|
static struct plot_info *analyze_plot_info(struct plot_info *pi)
|
|
{
|
|
int i;
|
|
int nr = pi->nr;
|
|
|
|
/* Smoothing function: 5-point triangular smooth */
|
|
for (i = 2; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
int depth;
|
|
|
|
if (i < nr-2) {
|
|
depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth;
|
|
entry->smoothed = (depth+4) / 9;
|
|
}
|
|
/* vertical velocity in mm/sec */
|
|
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
|
|
if (entry[0].sec - entry[-1].sec) {
|
|
entry->velocity = velocity((entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec));
|
|
/* if our samples are short and we aren't too FAST*/
|
|
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
|
|
int past = -2;
|
|
while (i+past > 0 && entry[0].sec - entry[past].sec < 15)
|
|
past--;
|
|
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
|
|
(entry[0].sec - entry[past].sec));
|
|
}
|
|
} else {
|
|
entry->velocity = STABLE;
|
|
}
|
|
}
|
|
|
|
/* One-, two- and three-minute minmax data */
|
|
for (i = 0; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry +i;
|
|
analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr);
|
|
}
|
|
|
|
return pi;
|
|
}
|
|
|
|
/*
|
|
* simple structure to track the beginning and end tank pressure as
|
|
* well as the integral of depth over time spent while we have no
|
|
* pressure reading from the tank */
|
|
typedef struct pr_track_struct pr_track_t;
|
|
struct pr_track_struct {
|
|
int start;
|
|
int end;
|
|
int t_start;
|
|
int t_end;
|
|
int pressure_time;
|
|
pr_track_t *next;
|
|
};
|
|
|
|
static pr_track_t *pr_track_alloc(int start, int t_start) {
|
|
pr_track_t *pt = malloc(sizeof(pr_track_t));
|
|
pt->start = start;
|
|
pt->end = 0;
|
|
pt->t_start = pt->t_end = t_start;
|
|
pt->pressure_time = 0;
|
|
pt->next = NULL;
|
|
return pt;
|
|
}
|
|
|
|
/* poor man's linked list */
|
|
static pr_track_t *list_last(pr_track_t *list)
|
|
{
|
|
pr_track_t *tail = list;
|
|
if (!tail)
|
|
return NULL;
|
|
while (tail->next) {
|
|
tail = tail->next;
|
|
}
|
|
return tail;
|
|
}
|
|
|
|
static pr_track_t *list_add(pr_track_t *list, pr_track_t *element)
|
|
{
|
|
pr_track_t *tail = list_last(list);
|
|
if (!tail)
|
|
return element;
|
|
tail->next = element;
|
|
return list;
|
|
}
|
|
|
|
static void list_free(pr_track_t *list)
|
|
{
|
|
if (!list)
|
|
return;
|
|
list_free(list->next);
|
|
free(list);
|
|
}
|
|
|
|
static void dump_pr_track(pr_track_t **track_pr)
|
|
{
|
|
int cyl;
|
|
pr_track_t *list;
|
|
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
list = track_pr[cyl];
|
|
while (list) {
|
|
printf("cyl%d: start %d end %d t_start %d t_end %d pt %d\n", cyl,
|
|
list->start, list->end, list->t_start, list->t_end, list->pressure_time);
|
|
list = list->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This looks at the pressures for one cylinder, and
|
|
* calculates any missing beginning/end pressures for
|
|
* each segment by taking the over-all SAC-rate into
|
|
* account for that cylinder.
|
|
*
|
|
* NOTE! Many segments have full pressure information
|
|
* (both beginning and ending pressure). But if we have
|
|
* switched away from a cylinder, we will have the
|
|
* beginning pressure for the first segment with a
|
|
* missing end pressure. We may then have one or more
|
|
* segments without beginning or end pressures, until
|
|
* we finally have a segment with an end pressure.
|
|
*
|
|
* We want to spread out the pressure over these missing
|
|
* segments according to how big of a time_pressure area
|
|
* they have.
|
|
*/
|
|
static void fill_missing_segment_pressures(pr_track_t *list)
|
|
{
|
|
while (list) {
|
|
int start = list->start, end;
|
|
pr_track_t *tmp = list;
|
|
int pt_sum = 0, pt = 0;
|
|
|
|
for (;;) {
|
|
pt_sum += tmp->pressure_time;
|
|
end = tmp->end;
|
|
if (end)
|
|
break;
|
|
end = start;
|
|
if (!tmp->next)
|
|
break;
|
|
tmp = tmp->next;
|
|
}
|
|
|
|
if (!start)
|
|
start = end;
|
|
|
|
/*
|
|
* Now 'start' and 'end' contain the pressure values
|
|
* for the set of segments described by 'list'..'tmp'.
|
|
* pt_sum is the sum of all the pressure-times of the
|
|
* segments.
|
|
*
|
|
* Now dole out the pressures relative to pressure-time.
|
|
*/
|
|
list->start = start;
|
|
tmp->end = end;
|
|
for (;;) {
|
|
int pressure;
|
|
pt += list->pressure_time;
|
|
pressure = start;
|
|
if (pt_sum)
|
|
pressure -= (start-end)*(double)pt/pt_sum;
|
|
list->end = pressure;
|
|
if (list == tmp)
|
|
break;
|
|
list = list->next;
|
|
list->start = pressure;
|
|
}
|
|
|
|
/* Ok, we've done that set of segments */
|
|
list = list->next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* What's the pressure-time between two plot data entries?
|
|
* We're calculating the integral of pressure over time by
|
|
* adding these up.
|
|
*
|
|
* The units won't matter as long as everybody agrees about
|
|
* them, since they'll cancel out - we use this to calculate
|
|
* a constant SAC-rate-equivalent, but we only use it to
|
|
* scale pressures, so it ends up being a unitless scaling
|
|
* factor.
|
|
*/
|
|
static inline int pressure_time(struct dive *dive, struct divecomputer *dc, struct plot_data *a, struct plot_data *b)
|
|
{
|
|
int time = b->sec - a->sec;
|
|
int depth = (a->depth + b->depth)/2;
|
|
|
|
return depth_to_mbar(depth, dive) * time;
|
|
}
|
|
|
|
static void fill_missing_tank_pressures(struct dive *dive, struct plot_info *pi, pr_track_t **track_pr)
|
|
{
|
|
int cyl, i;
|
|
struct plot_data *entry;
|
|
int cur_pr[MAX_CYLINDERS];
|
|
|
|
if (0) {
|
|
/* another great debugging tool */
|
|
dump_pr_track(track_pr);
|
|
}
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
if (!track_pr[cyl])
|
|
continue;
|
|
fill_missing_segment_pressures(track_pr[cyl]);
|
|
cur_pr[cyl] = track_pr[cyl]->start;
|
|
}
|
|
|
|
/* The first two are "fillers", but in case we don't have a sample
|
|
* at time 0 we need to process the second of them here */
|
|
for (i = 1; i < pi->nr; i++) {
|
|
double magic, cur_pt;
|
|
pr_track_t *segment;
|
|
int pressure;
|
|
|
|
entry = pi->entry + i;
|
|
cyl = entry->cylinderindex;
|
|
|
|
if (SENSOR_PRESSURE(entry)) {
|
|
cur_pr[cyl] = SENSOR_PRESSURE(entry);
|
|
continue;
|
|
}
|
|
|
|
/* Find the right pressure segment for this entry.. */
|
|
segment = track_pr[cyl];
|
|
while (segment && segment->t_end < entry->sec)
|
|
segment = segment->next;
|
|
|
|
/* No (or empty) segment? Just use our current pressure */
|
|
if (!segment || !segment->pressure_time) {
|
|
SENSOR_PRESSURE(entry) = cur_pr[cyl];
|
|
continue;
|
|
}
|
|
|
|
/* Overall pressure change over total pressure-time for this segment*/
|
|
magic = (segment->end - segment->start) / (double) segment->pressure_time;
|
|
|
|
/* Use that overall pressure change to update the current pressure */
|
|
cur_pt = pressure_time(dive, &dive->dc, entry-1, entry);
|
|
pressure = cur_pr[cyl] + cur_pt * magic + 0.5;
|
|
INTERPOLATED_PRESSURE(entry) = pressure;
|
|
cur_pr[cyl] = pressure;
|
|
}
|
|
}
|
|
|
|
static int get_cylinder_index(struct dive *dive, struct event *ev)
|
|
{
|
|
int i;
|
|
int best = 0, score = INT_MAX;
|
|
int target_o2, target_he;
|
|
|
|
/*
|
|
* Crazy gas change events give us odd encoded o2/he in percent.
|
|
* Decode into our internal permille format.
|
|
*/
|
|
target_o2 = (ev->value & 0xFFFF) * 10;
|
|
target_he = (ev->value >> 16) * 10;
|
|
|
|
/*
|
|
* Try to find a cylinder that best matches the target gas
|
|
* mix.
|
|
*/
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
|
cylinder_t *cyl = dive->cylinder+i;
|
|
int delta_o2, delta_he, distance;
|
|
|
|
if (cylinder_nodata(cyl))
|
|
continue;
|
|
|
|
delta_o2 = get_o2(&cyl->gasmix) - target_o2;
|
|
delta_he = get_he(&cyl->gasmix) - target_he;
|
|
distance = delta_o2 * delta_o2 + delta_he * delta_he;
|
|
if (distance >= score)
|
|
continue;
|
|
score = distance;
|
|
best = i;
|
|
}
|
|
return best;
|
|
}
|
|
|
|
struct event *get_next_event(struct event *event, char *name)
|
|
{
|
|
if (!name || !*name)
|
|
return NULL;
|
|
while (event) {
|
|
if (!strcmp(event->name, name))
|
|
return event;
|
|
event = event->next;
|
|
}
|
|
return event;
|
|
}
|
|
|
|
static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
|
|
{
|
|
while (i < pi->nr) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (entry->sec > end)
|
|
break;
|
|
if (entry->cylinderindex != cylinderindex) {
|
|
entry->cylinderindex = cylinderindex;
|
|
entry->pressure[0] = 0;
|
|
}
|
|
i++;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i = 0, cylinderindex = 0;
|
|
struct event *ev = get_next_event(dc->events, "gaschange");
|
|
|
|
if (!ev)
|
|
return;
|
|
|
|
do {
|
|
i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
|
|
cylinderindex = get_cylinder_index(dive, ev);
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
} while (ev);
|
|
set_cylinder_index(pi, i, cylinderindex, ~0u);
|
|
}
|
|
|
|
void calculate_max_limits(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc)
|
|
{
|
|
struct plot_info *pi;
|
|
int maxdepth;
|
|
int maxtime = 0;
|
|
int maxpressure = 0, minpressure = INT_MAX;
|
|
int mintemp, maxtemp;
|
|
int cyl;
|
|
|
|
/* The plot-info is embedded in the graphics context */
|
|
pi = &gc->pi;
|
|
memset(pi, 0, sizeof(*pi));
|
|
|
|
maxdepth = dive->maxdepth.mm;
|
|
mintemp = dive->mintemp.mkelvin;
|
|
maxtemp = dive->maxtemp.mkelvin;
|
|
|
|
/* Get the per-cylinder maximum pressure if they are manual */
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
unsigned int mbar = dive->cylinder[cyl].start.mbar;
|
|
if (mbar > maxpressure)
|
|
maxpressure = mbar;
|
|
}
|
|
|
|
/* Then do all the samples from all the dive computers */
|
|
do {
|
|
int i = dc->samples;
|
|
int lastdepth = 0;
|
|
struct sample *s = dc->sample;
|
|
|
|
while (--i >= 0) {
|
|
int depth = s->depth.mm;
|
|
int pressure = s->cylinderpressure.mbar;
|
|
int temperature = s->temperature.mkelvin;
|
|
|
|
if (!mintemp && temperature < mintemp)
|
|
mintemp = temperature;
|
|
if (temperature > maxtemp)
|
|
maxtemp = temperature;
|
|
|
|
if (pressure && pressure < minpressure)
|
|
minpressure = pressure;
|
|
if (pressure > maxpressure)
|
|
maxpressure = pressure;
|
|
|
|
if (depth > maxdepth)
|
|
maxdepth = s->depth.mm;
|
|
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
|
|
s->time.seconds > maxtime)
|
|
maxtime = s->time.seconds;
|
|
lastdepth = depth;
|
|
s++;
|
|
}
|
|
} while ((dc = dc->next) != NULL);
|
|
|
|
if (minpressure > maxpressure)
|
|
minpressure = 0;
|
|
|
|
pi->maxdepth = maxdepth;
|
|
pi->maxtime = maxtime;
|
|
pi->maxpressure = maxpressure;
|
|
pi->minpressure = minpressure;
|
|
pi->mintemp = mintemp;
|
|
pi->maxtemp = maxtemp;
|
|
}
|
|
|
|
static struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int idx, maxtime, nr, i;
|
|
int lastdepth, lasttime;
|
|
struct plot_data *plot_data;
|
|
|
|
maxtime = pi->maxtime;
|
|
|
|
/*
|
|
* We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
|
|
* but samples could be more dense than that (so add in dc->samples), and
|
|
* additionally we want two surface events around the whole thing (thus the
|
|
* additional 4).
|
|
*/
|
|
nr = dc->samples + 5 + maxtime / 10;
|
|
plot_data = calloc(nr, sizeof(struct plot_data));
|
|
pi->entry = plot_data;
|
|
if (!plot_data)
|
|
return NULL;
|
|
pi->nr = nr;
|
|
idx = 2; /* the two extra events at the start */
|
|
|
|
lastdepth = 0;
|
|
lasttime = 0;
|
|
for (i = 0; i < dc->samples; i++) {
|
|
struct plot_data *entry = plot_data + idx;
|
|
struct sample *sample = dc->sample+i;
|
|
int time = sample->time.seconds;
|
|
int depth = sample->depth.mm;
|
|
int offset, delta;
|
|
|
|
/* Add intermediate plot entries if required */
|
|
delta = time - lasttime;
|
|
if (delta < 0) {
|
|
time = lasttime;
|
|
delta = 0;
|
|
}
|
|
for (offset = 10; offset < delta; offset += 10) {
|
|
if (lasttime + offset > maxtime)
|
|
break;
|
|
|
|
/* Use the data from the previous plot entry */
|
|
*entry = entry[-1];
|
|
|
|
/* .. but update depth and time, obviously */
|
|
entry->sec = lasttime + offset;
|
|
entry->depth = interpolate(lastdepth, depth, offset, delta);
|
|
|
|
/* And clear out the sensor pressure, since we'll interpolate */
|
|
SENSOR_PRESSURE(entry) = 0;
|
|
|
|
idx++; entry++;
|
|
}
|
|
|
|
if (time > maxtime)
|
|
break;
|
|
|
|
entry->sec = time;
|
|
entry->depth = depth;
|
|
|
|
entry->stopdepth = sample->stopdepth.mm;
|
|
entry->stoptime = sample->stoptime.seconds;
|
|
entry->ndl = sample->ndl.seconds;
|
|
pi->has_ndl |= sample->ndl.seconds;
|
|
entry->in_deco = sample->in_deco;
|
|
entry->cns = sample->cns;
|
|
entry->po2 = sample->po2 / 1000.0;
|
|
/* FIXME! sensor index -> cylinder index translation! */
|
|
entry->cylinderindex = sample->sensor;
|
|
SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
|
|
entry->temperature = sample->temperature.mkelvin;
|
|
|
|
lasttime = time;
|
|
lastdepth = depth;
|
|
idx++;
|
|
}
|
|
|
|
/* Add two final surface events */
|
|
plot_data[idx++].sec = lasttime+10;
|
|
plot_data[idx++].sec = lasttime+20;
|
|
pi->nr = idx;
|
|
|
|
return plot_data;
|
|
}
|
|
|
|
static void populate_cylinder_pressure_data(int idx, int start, int end, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
|
|
/* First: check that none of the entries has sensor pressure for this cylinder index */
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (entry->cylinderindex != idx)
|
|
continue;
|
|
if (SENSOR_PRESSURE(entry))
|
|
return;
|
|
}
|
|
|
|
/* Then: populate the first entry with the beginning cylinder pressure */
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (entry->cylinderindex != idx)
|
|
continue;
|
|
SENSOR_PRESSURE(entry) = start;
|
|
break;
|
|
}
|
|
|
|
/* .. and the last entry with the ending cylinder pressure */
|
|
for (i = pi->nr; --i >= 0; /* nothing */) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (entry->cylinderindex != idx)
|
|
continue;
|
|
SENSOR_PRESSURE(entry) = end;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void populate_secondary_sensor_data(struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
/* We should try to see if it has interesting pressure data here */
|
|
}
|
|
|
|
static void setup_gas_sensor_pressure(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
struct divecomputer *secondary;
|
|
|
|
/* First, populate the pressures with the manual cylinder data.. */
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
|
cylinder_t *cyl = dive->cylinder+i;
|
|
int start = cyl->start.mbar ? : cyl->sample_start.mbar;
|
|
int end = cyl->end.mbar ? : cyl->sample_end.mbar;
|
|
|
|
if (!start || !end)
|
|
continue;
|
|
|
|
populate_cylinder_pressure_data(i, start, end, pi);
|
|
}
|
|
|
|
/*
|
|
* Here, we should try to walk through all the dive computers,
|
|
* and try to see if they have sensor data different from the
|
|
* primary dive computer (dc).
|
|
*/
|
|
secondary = &dive->dc;
|
|
do {
|
|
if (secondary == dc)
|
|
continue;
|
|
populate_secondary_sensor_data(dc, pi);
|
|
} while ((secondary = secondary->next) != NULL);
|
|
}
|
|
|
|
static void populate_pressure_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i, cylinderindex;
|
|
pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, };
|
|
pr_track_t *current;
|
|
gboolean missing_pr = FALSE;
|
|
|
|
cylinderindex = -1;
|
|
current = NULL;
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
unsigned pressure = SENSOR_PRESSURE(entry);
|
|
|
|
/* discrete integration of pressure over time to get the SAC rate equivalent */
|
|
if (current) {
|
|
current->pressure_time += pressure_time(dive, dc, entry-1, entry);
|
|
current->t_end = entry->sec;
|
|
}
|
|
|
|
/* track the segments per cylinder and their pressure/time integral */
|
|
if (entry->cylinderindex != cylinderindex) {
|
|
cylinderindex = entry->cylinderindex;
|
|
current = pr_track_alloc(pressure, entry->sec);
|
|
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
|
|
continue;
|
|
}
|
|
|
|
if (!pressure) {
|
|
missing_pr = 1;
|
|
continue;
|
|
}
|
|
|
|
current->end = pressure;
|
|
|
|
/* Was it continuous? */
|
|
if (SENSOR_PRESSURE(entry-1))
|
|
continue;
|
|
|
|
/* transmitter changed its working status */
|
|
current = pr_track_alloc(pressure, entry->sec);
|
|
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
|
|
}
|
|
|
|
if (missing_pr) {
|
|
fill_missing_tank_pressures(dive, pi, track_pr);
|
|
}
|
|
for (i = 0; i < MAX_CYLINDERS; i++)
|
|
list_free(track_pr[i]);
|
|
}
|
|
|
|
static void calculate_deco_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
double amb_pressure;
|
|
double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, TRUE)) / 1000.0;
|
|
|
|
for (i = 1; i < pi->nr; i++) {
|
|
int fo2, fhe, j, t0, t1;
|
|
double tissue_tolerance;
|
|
struct plot_data *entry = pi->entry + i;
|
|
int cylinderindex = entry->cylinderindex;
|
|
|
|
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
|
|
fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix);
|
|
fhe = get_he(&dive->cylinder[cylinderindex].gasmix);
|
|
double ratio = (double)fhe / (1000.0 - fo2);
|
|
|
|
if (entry->po2) {
|
|
/* we have an O2 partial pressure in the sample - so this
|
|
* is likely a CC dive... use that instead of the value
|
|
* from the cylinder info */
|
|
double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2;
|
|
entry->po2 = po2;
|
|
entry->phe = (amb_pressure - po2) * ratio;
|
|
entry->pn2 = amb_pressure - po2 - entry->phe;
|
|
} else {
|
|
entry->po2 = fo2 / 1000.0 * amb_pressure;
|
|
entry->phe = fhe / 1000.0 * amb_pressure;
|
|
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
|
|
}
|
|
|
|
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
|
|
* so there is no difference in calculating between OC and CC
|
|
* EAD takes O2 + N2 (air) into account
|
|
* END just uses N2 */
|
|
entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000;
|
|
entry->ead = (entry->depth + 10000) *
|
|
(entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000;
|
|
entry->end = (entry->depth + 10000) *
|
|
(amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000;
|
|
entry->eadd = (entry->depth + 10000) *
|
|
(entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure *
|
|
N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) /
|
|
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000;
|
|
if (entry->mod < 0)
|
|
entry->mod = 0;
|
|
if (entry->ead < 0)
|
|
entry->ead = 0;
|
|
if (entry->end < 0)
|
|
entry->end = 0;
|
|
if (entry->eadd < 0)
|
|
entry->eadd = 0;
|
|
|
|
if (entry->po2 > pi->maxpp && prefs.pp_graphs.po2)
|
|
pi->maxpp = entry->po2;
|
|
if (entry->phe > pi->maxpp && prefs.pp_graphs.phe)
|
|
pi->maxpp = entry->phe;
|
|
if (entry->pn2 > pi->maxpp && prefs.pp_graphs.pn2)
|
|
pi->maxpp = entry->pn2;
|
|
|
|
/* and now let's try to do some deco calculations */
|
|
t0 = (entry - 1)->sec;
|
|
t1 = entry->sec;
|
|
tissue_tolerance = 0;
|
|
for (j = t0+1; j <= t1; j++) {
|
|
int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0);
|
|
double min_pressure = add_segment(depth_to_mbar(depth, dive) / 1000.0,
|
|
&dive->cylinder[cylinderindex].gasmix, 1, entry->po2 * 1000, dive);
|
|
tissue_tolerance = min_pressure;
|
|
}
|
|
if (t0 == t1)
|
|
entry->ceiling = (entry - 1)->ceiling;
|
|
else
|
|
entry->ceiling = deco_allowed_depth(tissue_tolerance, surface_pressure, dive, !prefs.calc_ceiling_3m_incr);
|
|
}
|
|
|
|
#if DECO_CALC_DEBUG & 1
|
|
dump_tissues();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Create a plot-info with smoothing and ranged min/max
|
|
*
|
|
* This also makes sure that we have extra empty events on both
|
|
* sides, so that you can do end-points without having to worry
|
|
* about it.
|
|
*/
|
|
struct plot_info *create_plot_info(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc)
|
|
{
|
|
struct plot_info *pi;
|
|
|
|
/* The plot-info is embedded in the graphics context */
|
|
pi = &gc->pi;
|
|
|
|
/* reset deco information to start the calculation */
|
|
init_decompression(dive);
|
|
|
|
/* Create the new plot data */
|
|
if (last_pi_entry)
|
|
free((void *)last_pi_entry);
|
|
last_pi_entry = populate_plot_entries(dive, dc, pi);
|
|
|
|
/* Populate the gas index from the gas change events */
|
|
check_gas_change_events(dive, dc, pi);
|
|
|
|
/* Try to populate our gas pressure knowledge */
|
|
setup_gas_sensor_pressure(dive, dc, pi);
|
|
|
|
/* .. calculate missing pressure entries */
|
|
populate_pressure_information(dive, dc, pi);
|
|
|
|
/* Then, calculate partial pressures and deco information */
|
|
calculate_deco_information(dive, dc, pi);
|
|
pi->meandepth = dive->dc.meandepth.mm;
|
|
|
|
if (0) /* awesome for debugging - not useful otherwise */
|
|
dump_pi(pi);
|
|
return analyze_plot_info(pi);
|
|
}
|
|
|
|
/* make sure you pass this the FIRST dc - it just walks the list */
|
|
static int nr_dcs(struct divecomputer *main)
|
|
{
|
|
int i = 1;
|
|
struct divecomputer *dc = main;
|
|
|
|
while ((dc = dc->next) != NULL)
|
|
i++;
|
|
return i;
|
|
}
|
|
|
|
struct divecomputer *select_dc(struct divecomputer *main)
|
|
{
|
|
int i = dc_number;
|
|
struct divecomputer *dc = main;
|
|
|
|
while (i < 0)
|
|
i += nr_dcs(main);
|
|
do {
|
|
if (--i < 0)
|
|
return dc;
|
|
} while ((dc = dc->next) != NULL);
|
|
|
|
/* If we switched dives to one with fewer DC's, reset the dive computer counter */
|
|
dc_number = 0;
|
|
return main;
|
|
}
|
|
|
|
static void plot_string(struct plot_data *entry, char *buf, int bufsize,
|
|
int depth, int pressure, int temp, gboolean has_ndl)
|
|
{
|
|
int pressurevalue, mod, ead, end, eadd;
|
|
const char *depth_unit, *pressure_unit, *temp_unit;
|
|
char *buf2 = malloc(bufsize);
|
|
double depthvalue, tempvalue;
|
|
|
|
depthvalue = get_depth_units(depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, _("D:%.1f %s"), depthvalue, depth_unit);
|
|
if (pressure) {
|
|
pressurevalue = get_pressure_units(pressure, &pressure_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\nP:%d %s"), buf2, pressurevalue, pressure_unit);
|
|
}
|
|
if (temp) {
|
|
tempvalue = get_temp_units(temp, &temp_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\nT:%.1f %s"), buf2, tempvalue, temp_unit);
|
|
}
|
|
if (entry->ceiling) {
|
|
depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\nCalculated ceiling %.0f %s"), buf2, depthvalue, depth_unit);
|
|
}
|
|
if (entry->stopdepth) {
|
|
depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
if (entry->ndl) {
|
|
/* this is a safety stop as we still have ndl */
|
|
if (entry->stoptime)
|
|
snprintf(buf, bufsize, _("%s\nSafetystop:%umin @ %.0f %s"), buf2, entry->stoptime / 60,
|
|
depthvalue, depth_unit);
|
|
else
|
|
snprintf(buf, bufsize, _("%s\nSafetystop:unkn time @ %.0f %s"), buf2,
|
|
depthvalue, depth_unit);
|
|
} else {
|
|
/* actual deco stop */
|
|
if (entry->stoptime)
|
|
snprintf(buf, bufsize, _("%s\nDeco:%umin @ %.0f %s"), buf2, entry->stoptime / 60,
|
|
depthvalue, depth_unit);
|
|
else
|
|
snprintf(buf, bufsize, _("%s\nDeco:unkn time @ %.0f %s"), buf2,
|
|
depthvalue, depth_unit);
|
|
}
|
|
} else if (entry->in_deco) {
|
|
/* this means we had in_deco set but don't have a stop depth */
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\nIn deco"), buf2);
|
|
} else if (has_ndl) {
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\nNDL:%umin"), buf2, entry->ndl / 60);
|
|
}
|
|
if (entry->cns) {
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\nCNS:%u%%"), buf2, entry->cns);
|
|
}
|
|
if (prefs.pp_graphs.po2) {
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\npO%s:%.2fbar"), buf2, UTF8_SUBSCRIPT_2, entry->po2);
|
|
}
|
|
if (prefs.pp_graphs.pn2) {
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\npN%s:%.2fbar"), buf2, UTF8_SUBSCRIPT_2, entry->pn2);
|
|
}
|
|
if (prefs.pp_graphs.phe) {
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\npHe:%.2fbar"), buf2, entry->phe);
|
|
}
|
|
if (prefs.mod) {
|
|
mod = (int)get_depth_units(entry->mod, NULL, &depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\nMOD:%d%s"), buf2, mod, depth_unit);
|
|
}
|
|
if (prefs.ead) {
|
|
ead = (int)get_depth_units(entry->ead, NULL, &depth_unit);
|
|
end = (int)get_depth_units(entry->end, NULL, &depth_unit);
|
|
eadd = (int)get_depth_units(entry->eadd, NULL, &depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, _("%s\nEAD:%d%s\nEND:%d%s\nEADD:%d%s"), buf2, ead, depth_unit, end, depth_unit, eadd, depth_unit);
|
|
}
|
|
free(buf2);
|
|
}
|
|
|
|
void get_plot_details(struct graphics_context *gc, int time, char *buf, int bufsize)
|
|
{
|
|
struct plot_info *pi = &gc->pi;
|
|
int pressure = 0, temp = 0;
|
|
struct plot_data *entry = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
entry = pi->entry + i;
|
|
if (entry->temperature)
|
|
temp = entry->temperature;
|
|
if (GET_PRESSURE(entry))
|
|
pressure = GET_PRESSURE(entry);
|
|
if (entry->sec >= time)
|
|
break;
|
|
}
|
|
if (entry)
|
|
plot_string(entry, buf, bufsize, entry->depth, pressure, temp, pi->has_ndl);
|
|
}
|