mirror of
				https://github.com/subsurface/subsurface.git
				synced 2025-02-19 22:16:15 +00:00 
			
		
		
		
	Also deal with an unused argument in the case of a Subsurface-mobile build. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
		
			
				
	
	
		
			1666 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1666 lines
		
	
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | ||
| /* profile.c */
 | ||
| /* creates all the necessary data for drawing the dive profile
 | ||
|  */
 | ||
| #include "gettext.h"
 | ||
| #include <limits.h>
 | ||
| #include <string.h>
 | ||
| #include <assert.h>
 | ||
| 
 | ||
| #include "dive.h"
 | ||
| #include "display.h"
 | ||
| #include "divelist.h"
 | ||
| 
 | ||
| #include "profile.h"
 | ||
| #include "gaspressures.h"
 | ||
| #include "deco.h"
 | ||
| #include "libdivecomputer/parser.h"
 | ||
| #include "libdivecomputer/version.h"
 | ||
| #include "membuffer.h"
 | ||
| #include "qthelperfromc.h"
 | ||
| 
 | ||
| //#define DEBUG_GAS 1
 | ||
| 
 | ||
| #define MAX_PROFILE_DECO 7200
 | ||
| 
 | ||
| 
 | ||
| int selected_dive = -1; /* careful: 0 is a valid value */
 | ||
| unsigned int dc_number = 0;
 | ||
| 
 | ||
| static struct plot_data *last_pi_entry_new = NULL;
 | ||
| void populate_pressure_information(struct dive *, struct divecomputer *, struct plot_info *, int);
 | ||
| 
 | ||
| extern bool in_planner();
 | ||
| 
 | ||
| #ifdef DEBUG_PI
 | ||
| /* debugging tool - not normally used */
 | ||
| static void dump_pi(struct plot_info *pi)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
 | ||
| 	       "    maxpressure:%d mintemp:%d maxtemp:%d\n",
 | ||
| 	       pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
 | ||
| 	       pi->maxpressure, pi->mintemp, pi->maxtemp);
 | ||
| 	for (i = 0; i < pi->nr; i++) {
 | ||
| 		struct plot_data *entry = &pi->entry[i];
 | ||
| 		printf("    entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
 | ||
| 		       "                time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
 | ||
| 		       i, entry->sensor[0], entry->sec,
 | ||
| 		       entry->pressure[0], entry->pressure[1],
 | ||
| 		       entry->sec / 60, entry->sec % 60,
 | ||
| 		       entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
 | ||
| 		       entry->pressures.o2, entry->pressures.he, entry->pressures.n2,
 | ||
| 		       entry->pressures.o2 + entry->pressures.he + entry->pressures.n2);
 | ||
| 	}
 | ||
| 	printf("   }\n");
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| #define ROUND_UP(x, y) ((((x) + (y) - 1) / (y)) * (y))
 | ||
| #define DIV_UP(x, y) (((x) + (y) - 1) / (y))
 | ||
| 
 | ||
| /*
 | ||
|  * When showing dive profiles, we scale things to the
 | ||
|  * current dive. However, we don't scale past less than
 | ||
|  * 30 minutes or 90 ft, just so that small dives show
 | ||
|  * up as such unless zoom is enabled.
 | ||
|  * We also need to add 180 seconds at the end so the min/max
 | ||
|  * plots correctly
 | ||
|  */
 | ||
| int get_maxtime(struct plot_info *pi)
 | ||
| {
 | ||
| 	int seconds = pi->maxtime;
 | ||
| 
 | ||
| 	int DURATION_THR = (pi->dive_type == FREEDIVING ? 60 : 600);
 | ||
| 	int CEILING = (pi->dive_type == FREEDIVING ? 30 : 60);
 | ||
| 
 | ||
| 	if (prefs.zoomed_plot) {
 | ||
| 		/* Rounded up to one minute, with at least 2.5 minutes to
 | ||
| 		 * spare.
 | ||
| 		 * For dive times shorter than 10 minutes, we use seconds/4 to
 | ||
| 		 * calculate the space dynamically.
 | ||
| 		 * This is seamless since 600/4 = 150.
 | ||
| 		 */
 | ||
| 		if (seconds < DURATION_THR)
 | ||
| 			return ROUND_UP(seconds + seconds / 4, CEILING);
 | ||
| 		else
 | ||
| 			return ROUND_UP(seconds + DURATION_THR/4, CEILING);
 | ||
| 	} else {
 | ||
| #ifndef SUBSURFACE_MOBILE
 | ||
| 		/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
 | ||
| 		return MAX(30 * 60, ROUND_UP(seconds + DURATION_THR/4, CEILING * 5));
 | ||
| #else
 | ||
| 		/* just add 2.5 minutes so we have a consistant right margin */
 | ||
| 		return seconds + DURATION_THR / 4;
 | ||
| #endif
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /* get the maximum depth to which we want to plot
 | ||
|  * take into account the additional vertical space needed to plot
 | ||
|  * partial pressure graphs */
 | ||
| int get_maxdepth(struct plot_info *pi)
 | ||
| {
 | ||
| 	unsigned mm = pi->maxdepth;
 | ||
| 	int md;
 | ||
| 
 | ||
| 	if (prefs.zoomed_plot) {
 | ||
| 		/* Rounded up to 10m, with at least 3m to spare */
 | ||
| 		md = ROUND_UP(mm + 3000, 10000);
 | ||
| 	} else {
 | ||
| 		/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
 | ||
| 		md = MAX((unsigned)30000, ROUND_UP(mm + 3000, 10000));
 | ||
| 	}
 | ||
| 	md += lrint(pi->maxpp * 9000);
 | ||
| 	return md;
 | ||
| }
 | ||
| 
 | ||
| /* collect all event names and whether we display them */
 | ||
| struct ev_select *ev_namelist;
 | ||
| int evn_allocated;
 | ||
| int evn_used;
 | ||
| 
 | ||
| #if WE_DONT_USE_THIS /* we need to implement event filters in Qt */
 | ||
| int evn_foreach (void (*callback)(const char *, bool *, void *), void *data) {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	for (i = 0; i < evn_used; i++) {
 | ||
| 		/* here we display an event name on screen - so translate */
 | ||
| 		callback(translate("gettextFromC", ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
 | ||
| 	}
 | ||
| 	return i;
 | ||
| }
 | ||
| #endif /* WE_DONT_USE_THIS */
 | ||
| 
 | ||
| void clear_events(void)
 | ||
| {
 | ||
| 	for (int i = 0; i < evn_used; i++)
 | ||
| 		free(ev_namelist[i].ev_name);
 | ||
| 	evn_used = 0;
 | ||
| }
 | ||
| 
 | ||
| void remember_event(const char *eventname)
 | ||
| {
 | ||
| 	int i = 0, len;
 | ||
| 
 | ||
| 	if (!eventname || (len = strlen(eventname)) == 0)
 | ||
| 		return;
 | ||
| 	while (i < evn_used) {
 | ||
| 		if (!strncmp(eventname, ev_namelist[i].ev_name, len))
 | ||
| 			return;
 | ||
| 		i++;
 | ||
| 	}
 | ||
| 	if (evn_used == evn_allocated) {
 | ||
| 		evn_allocated += 10;
 | ||
| 		ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
 | ||
| 		if (!ev_namelist)
 | ||
| 			/* we are screwed, but let's just bail out */
 | ||
| 			return;
 | ||
| 	}
 | ||
| 	ev_namelist[evn_used].ev_name = strdup(eventname);
 | ||
| 	ev_namelist[evn_used].plot_ev = true;
 | ||
| 	evn_used++;
 | ||
| }
 | ||
| 
 | ||
| /* UNUSED! */
 | ||
| static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive) __attribute__((unused));
 | ||
| 
 | ||
| /* Get local sac-rate (in ml/min) between entry1 and entry2 */
 | ||
| static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive)
 | ||
| {
 | ||
| 	int index = 0;
 | ||
| 	cylinder_t *cyl;
 | ||
| 	int duration = entry2->sec - entry1->sec;
 | ||
| 	int depth, airuse;
 | ||
| 	pressure_t a, b;
 | ||
| 	double atm;
 | ||
| 
 | ||
| 	if (duration <= 0)
 | ||
| 		return 0;
 | ||
| 	a.mbar = GET_PRESSURE(entry1, 0);
 | ||
| 	b.mbar = GET_PRESSURE(entry2, 0);
 | ||
| 	if (!b.mbar || a.mbar <= b.mbar)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Mean pressure in ATM */
 | ||
| 	depth = (entry1->depth + entry2->depth) / 2;
 | ||
| 	atm = depth_to_atm(depth, dive);
 | ||
| 
 | ||
| 	cyl = dive->cylinder + index;
 | ||
| 
 | ||
| 	airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
 | ||
| 
 | ||
| 	/* milliliters per minute */
 | ||
| 	return lrint(airuse / atm * 60 / duration);
 | ||
| }
 | ||
| 
 | ||
| #define HALF_INTERVAL 9 * 30
 | ||
| /*
 | ||
|  * Run the min/max calculations: over a 9 minute interval
 | ||
|  * around the entry point (indices 0, 1, 2 respectively).
 | ||
|  */
 | ||
| static void analyze_plot_info_minmax(struct plot_info *pi, int entry_index)
 | ||
| {
 | ||
| 	struct plot_data *plot_entry = pi->entry + entry_index;  // fixed
 | ||
| 	struct plot_data *p = plot_entry;  // moves with 'entry'
 | ||
| 	int start = p->sec - HALF_INTERVAL, end = p->sec + HALF_INTERVAL;
 | ||
| 	int min, max;
 | ||
| 
 | ||
| 	/* Go back 'seconds' in time */
 | ||
| 	while (entry_index > 0) {
 | ||
| 		if (p[-1].sec < start)
 | ||
| 			break;
 | ||
| 		entry_index--;
 | ||
| 		p--;
 | ||
| 	}
 | ||
| 
 | ||
| 	// indexes to the min/max entries
 | ||
| 	min = max = entry_index;
 | ||
| 
 | ||
| 	/* Then go forward until we hit an entry past the time */
 | ||
| 	while (entry_index < pi->nr) {
 | ||
| 		int time = p->sec;
 | ||
| 		int depth = p->depth;
 | ||
| 
 | ||
| 		if (time > end)
 | ||
| 			break;
 | ||
| 
 | ||
| 		if (depth < pi->entry[min].depth)
 | ||
| 			min = entry_index;
 | ||
| 		if (depth > pi->entry[max].depth)
 | ||
| 			max = entry_index;
 | ||
| 
 | ||
| 		p++;
 | ||
| 		entry_index++;
 | ||
| 	}
 | ||
| 
 | ||
| 	plot_entry->min = min;
 | ||
| 	plot_entry->max = max;
 | ||
| }
 | ||
| 
 | ||
| static velocity_t velocity(int speed)
 | ||
| {
 | ||
| 	velocity_t v;
 | ||
| 
 | ||
| 	if (speed < -304) /* ascent faster than -60ft/min */
 | ||
| 		v = CRAZY;
 | ||
| 	else if (speed < -152) /* above -30ft/min */
 | ||
| 		v = FAST;
 | ||
| 	else if (speed < -76) /* -15ft/min */
 | ||
| 		v = MODERATE;
 | ||
| 	else if (speed < -25) /* -5ft/min */
 | ||
| 		v = SLOW;
 | ||
| 	else if (speed < 25) /* very hard to find data, but it appears that the recommendations
 | ||
| 				for descent are usually about 2x ascent rate; still, we want
 | ||
| 				stable to mean stable */
 | ||
| 		v = STABLE;
 | ||
| 	else if (speed < 152) /* between 5 and 30ft/min is considered slow */
 | ||
| 		v = SLOW;
 | ||
| 	else if (speed < 304) /* up to 60ft/min is moderate */
 | ||
| 		v = MODERATE;
 | ||
| 	else if (speed < 507) /* up to 100ft/min is fast */
 | ||
| 		v = FAST;
 | ||
| 	else /* more than that is just crazy - you'll blow your ears out */
 | ||
| 		v = CRAZY;
 | ||
| 
 | ||
| 	return v;
 | ||
| }
 | ||
| 
 | ||
| struct plot_info *analyze_plot_info(struct plot_info *pi)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int nr = pi->nr;
 | ||
| 
 | ||
| 	/* Smoothing function: 5-point triangular smooth */
 | ||
| 	for (i = 2; i < nr; i++) {
 | ||
| 		struct plot_data *entry = pi->entry + i;
 | ||
| 		int depth;
 | ||
| 
 | ||
| 		if (i < nr - 2) {
 | ||
| 			depth = entry[-2].depth + 2 * entry[-1].depth + 3 * entry[0].depth + 2 * entry[1].depth + entry[2].depth;
 | ||
| 			entry->smoothed = (depth + 4) / 9;
 | ||
| 		}
 | ||
| 		/* vertical velocity in mm/sec */
 | ||
| 		/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
 | ||
| 		if (entry[0].sec - entry[-1].sec) {
 | ||
| 			entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec);
 | ||
| 			entry->velocity = velocity(entry->speed);
 | ||
| 			/* if our samples are short and we aren't too FAST*/
 | ||
| 			if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
 | ||
| 				int past = -2;
 | ||
| 				while (i + past > 0 && entry[0].sec - entry[past].sec < 15)
 | ||
| 					past--;
 | ||
| 				entry->velocity = velocity((entry[0].depth - entry[past].depth) /
 | ||
| 							   (entry[0].sec - entry[past].sec));
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			entry->velocity = STABLE;
 | ||
| 			entry->speed = 0;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/* get minmax data */
 | ||
| 	for (i = 0; i < nr; i++)
 | ||
| 		analyze_plot_info_minmax(pi, i);
 | ||
| 
 | ||
| 	return pi;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * If the event has an explicit cylinder index,
 | ||
|  * we return that. If it doesn't, we return the best
 | ||
|  * match based on the gasmix.
 | ||
|  *
 | ||
|  * Some dive computers give cylinder indexes, some
 | ||
|  * give just the gas mix.
 | ||
|  */
 | ||
| int get_cylinder_index(struct dive *dive, struct event *ev)
 | ||
| {
 | ||
| 	int best;
 | ||
| 	struct gasmix *mix;
 | ||
| 
 | ||
| 	if (ev->gas.index >= 0)
 | ||
| 		return ev->gas.index;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * This should no longer happen!
 | ||
| 	 *
 | ||
| 	 * We now match up gas change events with their cylinders at dive
 | ||
| 	 * event fixup time.
 | ||
| 	 */
 | ||
| 	fprintf(stderr, "Still looking up cylinder based on gas mix in get_cylinder_index()!\n");
 | ||
| 
 | ||
| 	mix = get_gasmix_from_event(dive, ev);
 | ||
| 	best = find_best_gasmix_match(mix, dive->cylinder, 0);
 | ||
| 	return best < 0 ? 0 : best;
 | ||
| }
 | ||
| 
 | ||
| struct event *get_next_event(struct event *event, const char *name)
 | ||
| {
 | ||
| 	if (!name || !*name)
 | ||
| 		return NULL;
 | ||
| 	while (event) {
 | ||
| 		if (!strcmp(event->name, name))
 | ||
| 			return event;
 | ||
| 		event = event->next;
 | ||
| 	}
 | ||
| 	return event;
 | ||
| }
 | ||
| 
 | ||
| static int count_events(struct divecomputer *dc)
 | ||
| {
 | ||
| 	int result = 0;
 | ||
| 	struct event *ev = dc->events;
 | ||
| 	while (ev != NULL) {
 | ||
| 		result++;
 | ||
| 		ev = ev->next;
 | ||
| 	}
 | ||
| 	return result;
 | ||
| }
 | ||
| 
 | ||
| static int set_setpoint(struct plot_info *pi, int i, int setpoint, int end)
 | ||
| {
 | ||
| 	while (i < pi->nr) {
 | ||
| 		struct plot_data *entry = pi->entry + i;
 | ||
| 		if (entry->sec > end)
 | ||
| 			break;
 | ||
| 		entry->o2pressure.mbar = setpoint;
 | ||
| 		i++;
 | ||
| 	}
 | ||
| 	return i;
 | ||
| }
 | ||
| 
 | ||
| static void check_setpoint_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
 | ||
| {
 | ||
| 	int i = 0;
 | ||
| 	pressure_t setpoint;
 | ||
| 	(void) dive;
 | ||
| 	setpoint.mbar = 0;
 | ||
| 	struct event *ev = get_next_event(dc->events, "SP change");
 | ||
| 
 | ||
| 	if (!ev)
 | ||
| 		return;
 | ||
| 
 | ||
| 	do {
 | ||
| 		i = set_setpoint(pi, i, setpoint.mbar, ev->time.seconds);
 | ||
| 		setpoint.mbar = ev->value;
 | ||
| 		if (setpoint.mbar)
 | ||
| 			dc->divemode = CCR;
 | ||
| 		ev = get_next_event(ev->next, "SP change");
 | ||
| 	} while (ev);
 | ||
| 	set_setpoint(pi, i, setpoint.mbar, INT_MAX);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| struct plot_info calculate_max_limits_new(struct dive *dive, struct divecomputer *given_dc)
 | ||
| {
 | ||
| 	struct divecomputer *dc = &(dive->dc);
 | ||
| 	bool seen = false;
 | ||
| 	static struct plot_info pi;
 | ||
| 	int maxdepth = dive->maxdepth.mm;
 | ||
| 	int maxtime = 0;
 | ||
| 	int maxpressure = 0, minpressure = INT_MAX;
 | ||
| 	int maxhr = 0, minhr = INT_MAX;
 | ||
| 	int mintemp = dive->mintemp.mkelvin;
 | ||
| 	int maxtemp = dive->maxtemp.mkelvin;
 | ||
| 	int cyl;
 | ||
| 
 | ||
| 	/* Get the per-cylinder maximum pressure if they are manual */
 | ||
| 	for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
 | ||
| 		int mbar = dive->cylinder[cyl].start.mbar;
 | ||
| 		if (mbar > maxpressure)
 | ||
| 			maxpressure = mbar;
 | ||
| 		if (mbar < minpressure)
 | ||
| 			minpressure = mbar;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Then do all the samples from all the dive computers */
 | ||
| 	do {
 | ||
| 		if (dc == given_dc)
 | ||
| 			seen = true;
 | ||
| 		int i = dc->samples;
 | ||
| 		int lastdepth = 0;
 | ||
| 		struct sample *s = dc->sample;
 | ||
| 		struct event *ev;
 | ||
| 
 | ||
| 		while (--i >= 0) {
 | ||
| 			int depth = s->depth.mm;
 | ||
| 			int pressure = s->pressure[0].mbar;
 | ||
| 			int temperature = s->temperature.mkelvin;
 | ||
| 			int heartbeat = s->heartbeat;
 | ||
| 
 | ||
| 			if (!mintemp && temperature < mintemp)
 | ||
| 				mintemp = temperature;
 | ||
| 			if (temperature > maxtemp)
 | ||
| 				maxtemp = temperature;
 | ||
| 
 | ||
| 			if (pressure && pressure < minpressure)
 | ||
| 				minpressure = pressure;
 | ||
| 			if (pressure > maxpressure)
 | ||
| 				maxpressure = pressure;
 | ||
| 			if (heartbeat > maxhr)
 | ||
| 				maxhr = heartbeat;
 | ||
| 			if (heartbeat < minhr)
 | ||
| 				minhr = heartbeat;
 | ||
| 
 | ||
| 			if (depth > maxdepth)
 | ||
| 				maxdepth = s->depth.mm;
 | ||
| 			if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
 | ||
| 			    s->time.seconds > maxtime)
 | ||
| 				maxtime = s->time.seconds;
 | ||
| 			lastdepth = depth;
 | ||
| 			s++;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Make sure we can fit all events */
 | ||
| 		ev = dc->events;
 | ||
| 		while (ev) {
 | ||
| 			if (ev->time.seconds > maxtime)
 | ||
| 				maxtime = ev->time.seconds;
 | ||
| 			ev = ev->next;
 | ||
| 		}
 | ||
| 
 | ||
| 		dc = dc->next;
 | ||
| 		if (dc == NULL && !seen) {
 | ||
| 			dc = given_dc;
 | ||
| 			seen = true;
 | ||
| 		}
 | ||
| 	} while (dc != NULL);
 | ||
| 
 | ||
| 	if (minpressure > maxpressure)
 | ||
| 		minpressure = 0;
 | ||
| 	if (minhr > maxhr)
 | ||
| 		minhr = 0;
 | ||
| 
 | ||
| 	memset(&pi, 0, sizeof(pi));
 | ||
| 	pi.maxdepth = maxdepth;
 | ||
| 	pi.maxtime = maxtime;
 | ||
| 	pi.maxpressure = maxpressure;
 | ||
| 	pi.minpressure = minpressure;
 | ||
| 	pi.minhr = minhr;
 | ||
| 	pi.maxhr = maxhr;
 | ||
| 	pi.mintemp = mintemp;
 | ||
| 	pi.maxtemp = maxtemp;
 | ||
| 	return pi;
 | ||
| }
 | ||
| 
 | ||
| /* copy the previous entry (we know this exists), update time and depth
 | ||
|  * and zero out the sensor pressure (since this is a synthetic entry)
 | ||
|  * increment the entry pointer and the count of synthetic entries. */
 | ||
| #define INSERT_ENTRY(_time, _depth, _sac) \
 | ||
| 	*entry = entry[-1];         \
 | ||
| 	entry->sec = _time;         \
 | ||
| 	entry->depth = _depth;      \
 | ||
| 	entry->running_sum = (entry - 1)->running_sum + (_time - (entry - 1)->sec) * (_depth + (entry - 1)->depth) / 2; \
 | ||
| 	memset(entry->pressure, 0, sizeof(entry->pressure)); \
 | ||
| 	entry->sac = _sac;          \
 | ||
| 	entry->ndl = -1;          \
 | ||
| 	entry->bearing = -1;          \
 | ||
| 	entry++;                    \
 | ||
| 	idx++
 | ||
| 
 | ||
| struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
 | ||
| {
 | ||
| 
 | ||
| 	int idx, maxtime, nr, i;
 | ||
| 	int lastdepth, lasttime, lasttemp = 0;
 | ||
| 	struct plot_data *plot_data;
 | ||
| 	struct event *ev = dc->events;
 | ||
| 	(void) dive;
 | ||
| 	maxtime = pi->maxtime;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
 | ||
| 	 * but samples could be more dense than that (so add in dc->samples). We also
 | ||
| 	 * need to have one for every event (so count events and add that) and
 | ||
| 	 * additionally we want two surface events around the whole thing (thus the
 | ||
| 	 * additional 4).  There is also one extra space for a final entry
 | ||
| 	 * that has time > maxtime (because there can be surface samples
 | ||
| 	 * past "maxtime" in the original sample data)
 | ||
| 	 */
 | ||
| 	nr = dc->samples + 6 + maxtime / 10 + count_events(dc);
 | ||
| 	plot_data = calloc(nr, sizeof(struct plot_data));
 | ||
| 	pi->entry = plot_data;
 | ||
| 	if (!plot_data)
 | ||
| 		return NULL;
 | ||
| 	pi->nr = nr;
 | ||
| 	idx = 2; /* the two extra events at the start */
 | ||
| 
 | ||
| 	lastdepth = 0;
 | ||
| 	lasttime = 0;
 | ||
| 	/* skip events at time = 0 */
 | ||
| 	while (ev && ev->time.seconds == 0)
 | ||
| 		ev = ev->next;
 | ||
| 	for (i = 0; i < dc->samples; i++) {
 | ||
| 		struct plot_data *entry = plot_data + idx;
 | ||
| 		struct sample *sample = dc->sample + i;
 | ||
| 		int time = sample->time.seconds;
 | ||
| 		int offset, delta;
 | ||
| 		int depth = sample->depth.mm;
 | ||
| 		int sac = sample->sac.mliter;
 | ||
| 
 | ||
| 		/* Add intermediate plot entries if required */
 | ||
| 		delta = time - lasttime;
 | ||
| 		if (delta <= 0) {
 | ||
| 			time = lasttime;
 | ||
| 			delta = 1; // avoid divide by 0
 | ||
| 		}
 | ||
| 		for (offset = 10; offset < delta; offset += 10) {
 | ||
| 			if (lasttime + offset > maxtime)
 | ||
| 				break;
 | ||
| 
 | ||
| 			/* Add events if they are between plot entries */
 | ||
| 			while (ev && (int)ev->time.seconds < lasttime + offset) {
 | ||
| 				INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
 | ||
| 				ev = ev->next;
 | ||
| 			}
 | ||
| 
 | ||
| 			/* now insert the time interpolated entry */
 | ||
| 			INSERT_ENTRY(lasttime + offset, interpolate(lastdepth, depth, offset, delta), sac);
 | ||
| 
 | ||
| 			/* skip events that happened at this time */
 | ||
| 			while (ev && (int)ev->time.seconds == lasttime + offset)
 | ||
| 				ev = ev->next;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Add events if they are between plot entries */
 | ||
| 		while (ev && (int)ev->time.seconds < time) {
 | ||
| 			INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
 | ||
| 			ev = ev->next;
 | ||
| 		}
 | ||
| 
 | ||
| 		entry->sec = time;
 | ||
| 		entry->depth = depth;
 | ||
| 
 | ||
| 		entry->running_sum = (entry - 1)->running_sum + (time - (entry - 1)->sec) * (depth + (entry - 1)->depth) / 2;
 | ||
| 		entry->stopdepth = sample->stopdepth.mm;
 | ||
| 		entry->stoptime = sample->stoptime.seconds;
 | ||
| 		entry->ndl = sample->ndl.seconds;
 | ||
| 		entry->tts = sample->tts.seconds;
 | ||
| 		entry->in_deco = sample->in_deco;
 | ||
| 		entry->cns = sample->cns;
 | ||
| 		if (dc->divemode == CCR) {
 | ||
| 			entry->o2pressure.mbar = entry->o2setpoint.mbar = sample->setpoint.mbar;     // for rebreathers
 | ||
| 			entry->o2sensor[0].mbar = sample->o2sensor[0].mbar; // for up to three rebreather O2 sensors
 | ||
| 			entry->o2sensor[1].mbar = sample->o2sensor[1].mbar;
 | ||
| 			entry->o2sensor[2].mbar = sample->o2sensor[2].mbar;
 | ||
| 		} else {
 | ||
| 			entry->pressures.o2 = sample->setpoint.mbar / 1000.0;
 | ||
| 		}
 | ||
| 		if (sample->pressure[0].mbar)
 | ||
| 			SENSOR_PRESSURE(entry, sample->sensor[0]) = sample->pressure[0].mbar;
 | ||
| 		if (sample->pressure[1].mbar)
 | ||
| 			SENSOR_PRESSURE(entry, sample->sensor[1]) = sample->pressure[1].mbar;
 | ||
| 		if (sample->temperature.mkelvin)
 | ||
| 			entry->temperature = lasttemp = sample->temperature.mkelvin;
 | ||
| 		else
 | ||
| 			entry->temperature = lasttemp;
 | ||
| 		entry->heartbeat = sample->heartbeat;
 | ||
| 		entry->bearing = sample->bearing.degrees;
 | ||
| 		entry->sac = sample->sac.mliter;
 | ||
| 		if (sample->rbt.seconds)
 | ||
| 			entry->rbt = sample->rbt.seconds;
 | ||
| 		/* skip events that happened at this time */
 | ||
| 		while (ev && (int)ev->time.seconds == time)
 | ||
| 			ev = ev->next;
 | ||
| 		lasttime = time;
 | ||
| 		lastdepth = depth;
 | ||
| 		idx++;
 | ||
| 
 | ||
| 		if (time > maxtime)
 | ||
| 			break;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Add any remaining events */
 | ||
| 	while (ev) {
 | ||
| 		struct plot_data *entry = plot_data + idx;
 | ||
| 		int time = ev->time.seconds;
 | ||
| 
 | ||
| 		if (time > lasttime) {
 | ||
| 			INSERT_ENTRY(ev->time.seconds, 0, 0);
 | ||
| 			lasttime = time;
 | ||
| 		}
 | ||
| 		ev = ev->next;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Add two final surface events */
 | ||
| 	plot_data[idx++].sec = lasttime + 1;
 | ||
| 	plot_data[idx++].sec = lasttime + 2;
 | ||
| 	pi->nr = idx;
 | ||
| 
 | ||
| 	return plot_data;
 | ||
| }
 | ||
| 
 | ||
| #undef INSERT_ENTRY
 | ||
| 
 | ||
| /*
 | ||
|  * Calculate the sac rate between the two plot entries 'first' and 'last'.
 | ||
|  *
 | ||
|  * Everything in between has a cylinder pressure for at least some of the cylinders.
 | ||
|  */
 | ||
| static int sac_between(struct dive *dive, struct plot_data *first, struct plot_data *last, unsigned int gases)
 | ||
| {
 | ||
| 	int i, airuse;
 | ||
| 	double pressuretime;
 | ||
| 
 | ||
| 	if (first == last)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Get airuse for the set of cylinders over the range */
 | ||
| 	airuse = 0;
 | ||
| 	for (i = 0; i < MAX_CYLINDERS; i++) {
 | ||
| 		pressure_t a, b;
 | ||
| 		cylinder_t *cyl;
 | ||
| 		int cyluse;
 | ||
| 
 | ||
| 		if (!(gases & (1u << i)))
 | ||
| 			continue;
 | ||
| 
 | ||
| 		a.mbar = GET_PRESSURE(first, i);
 | ||
| 		b.mbar = GET_PRESSURE(last, i);
 | ||
| 		cyl = dive->cylinder + i;
 | ||
| 		cyluse = gas_volume(cyl, a) - gas_volume(cyl, b);
 | ||
| 		if (cyluse > 0)
 | ||
| 			airuse += cyluse;
 | ||
| 	}
 | ||
| 	if (!airuse)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	/* Calculate depthpressure integrated over time */
 | ||
| 	pressuretime = 0.0;
 | ||
| 	do {
 | ||
| 		int depth = (first[0].depth + first[1].depth) / 2;
 | ||
| 		int time = first[1].sec - first[0].sec;
 | ||
| 		double atm = depth_to_atm(depth, dive);
 | ||
| 
 | ||
| 		pressuretime += atm * time;
 | ||
| 	} while (++first < last);
 | ||
| 
 | ||
| 	/* Turn "atmseconds" into "atmminutes" */
 | ||
| 	pressuretime /= 60;
 | ||
| 
 | ||
| 	/* SAC = mliter per minute */
 | ||
| 	return lrint(airuse / pressuretime);
 | ||
| }
 | ||
| 
 | ||
| /* Which of the set of gases have pressure data */
 | ||
| static unsigned int have_pressures(struct plot_data *entry, unsigned int gases)
 | ||
| {
 | ||
| 	int i;
 | ||
| 
 | ||
| 	for (i = 0; i < MAX_CYLINDERS; i++) {
 | ||
| 		unsigned int mask = 1 << i;
 | ||
| 		if (gases & mask) {
 | ||
| 			if (!GET_PRESSURE(entry, i))
 | ||
| 				gases &= ~mask;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return gases;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Try to do the momentary sac rate for this entry, averaging over one
 | ||
|  * minute.
 | ||
|  */
 | ||
| static void fill_sac(struct dive *dive, struct plot_info *pi, int idx, unsigned int gases)
 | ||
| {
 | ||
| 	struct plot_data *entry = pi->entry + idx;
 | ||
| 	struct plot_data *first, *last;
 | ||
| 	int time;
 | ||
| 
 | ||
| 	if (entry->sac)
 | ||
| 		return;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We may not have pressure data for all the cylinders,
 | ||
| 	 * but we'll calculate the SAC for the ones we do have.
 | ||
| 	 */
 | ||
| 	gases = have_pressures(entry, gases);
 | ||
| 	if (!gases)
 | ||
| 		return;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Try to go back 30 seconds to get 'first'.
 | ||
| 	 * Stop if the cylinder pressure data set changes.
 | ||
| 	 */
 | ||
| 	first = entry;
 | ||
| 	time = entry->sec - 30;
 | ||
| 	while (idx > 0) {
 | ||
| 		struct plot_data *prev = first-1;
 | ||
| 
 | ||
| 		if (prev->depth < SURFACE_THRESHOLD && first->depth < SURFACE_THRESHOLD)
 | ||
| 			break;
 | ||
| 		if (prev->sec < time)
 | ||
| 			break;
 | ||
| 		if (have_pressures(prev, gases) != gases)
 | ||
| 			break;
 | ||
| 		idx--;
 | ||
| 		first = prev;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Now find an entry a minute after the first one */
 | ||
| 	last = first;
 | ||
| 	time = first->sec + 60;
 | ||
| 	while (++idx < pi->nr) {
 | ||
| 		struct plot_data *next = last+1;
 | ||
| 		if (next->depth < SURFACE_THRESHOLD && last->depth < SURFACE_THRESHOLD)
 | ||
| 			break;
 | ||
| 		if (next->sec > time)
 | ||
| 			break;
 | ||
| 		if (have_pressures(next, gases) != gases)
 | ||
| 			break;
 | ||
| 		last = next;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Ok, now calculate the SAC between 'first' and 'last' */
 | ||
| 	entry->sac = sac_between(dive, first, last, gases);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Create a bitmap of cylinders that match our current gasmix
 | ||
|  */
 | ||
| static unsigned int matching_gases(struct dive *dive, struct gasmix *gasmix)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	unsigned int gases = 0;
 | ||
| 
 | ||
| 	for (i = 0; i < MAX_CYLINDERS; i++) {
 | ||
| 		cylinder_t *cyl = dive->cylinder + i;
 | ||
| 		if (same_gasmix(gasmix, &cyl->gasmix))
 | ||
| 			gases |= 1 << i;
 | ||
| 	}
 | ||
| 	return gases;
 | ||
| }
 | ||
| 
 | ||
| static void calculate_sac(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
 | ||
| {
 | ||
| 	struct gasmix *gasmix = NULL;
 | ||
| 	struct event *ev = NULL;
 | ||
| 	unsigned int gases = 0;
 | ||
| 
 | ||
| 	for (int i = 0; i < pi->nr; i++) {
 | ||
| 		struct plot_data *entry = pi->entry + i;
 | ||
| 		struct gasmix *newmix = get_gasmix(dive, dc, entry->sec, &ev, gasmix);
 | ||
| 		if (newmix != gasmix) {
 | ||
| 			gasmix = newmix;
 | ||
| 			gases = matching_gases(dive, newmix);
 | ||
| 		}
 | ||
| 
 | ||
| 		fill_sac(dive, pi, i, gases);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void populate_secondary_sensor_data(struct divecomputer *dc, struct plot_info *pi)
 | ||
| {
 | ||
| 	(void) dc;
 | ||
| 	(void) pi;
 | ||
| 	/* We should try to see if it has interesting pressure data here */
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This adds a pressure entry to the plot_info based on the gas change
 | ||
|  * information and the manually filled in pressures.
 | ||
|  */
 | ||
| static void add_plot_pressure(struct plot_info *pi, int time, int cyl, pressure_t p)
 | ||
| {
 | ||
| 	struct plot_data *entry;
 | ||
| 	for (int i = 0; i < pi->nr; i++) {
 | ||
| 		entry = pi->entry + i;
 | ||
| 
 | ||
| 		if (entry->sec >= time)
 | ||
| 			break;
 | ||
| 	}
 | ||
| 	SENSOR_PRESSURE(entry, cyl) = p.mbar;
 | ||
| }
 | ||
| 
 | ||
| static void setup_gas_sensor_pressure(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
 | ||
| {
 | ||
| 	int prev, i;
 | ||
| 	struct event *ev;
 | ||
| 	int seen[MAX_CYLINDERS] = { 0, };
 | ||
| 	unsigned int first[MAX_CYLINDERS] = { 0, };
 | ||
| 	unsigned int last[MAX_CYLINDERS] = { 0, };
 | ||
| 	struct divecomputer *secondary;
 | ||
| 
 | ||
| 	prev = explicit_first_cylinder(dive, dc);
 | ||
| 	seen[prev] = 1;
 | ||
| 	for (i = 0; i < MAX_CYLINDERS; i++)
 | ||
| 		last[i] = INT_MAX;
 | ||
| 
 | ||
| 	for (ev = get_next_event(dc->events, "gaschange"); ev != NULL; ev = get_next_event(ev->next, "gaschange")) {
 | ||
| 		int cyl = ev->gas.index;
 | ||
| 		int sec = ev->time.seconds;
 | ||
| 
 | ||
| 		if (cyl < 0)
 | ||
| 			continue;
 | ||
| 
 | ||
| 		last[prev] = sec;
 | ||
| 		prev = cyl;
 | ||
| 
 | ||
| 		last[cyl] = sec;
 | ||
| 		if (!seen[cyl]) {
 | ||
| 			// The end time may be updated by a subsequent cylinder change
 | ||
| 			first[cyl] = sec;
 | ||
| 			seen[cyl] = 1;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	last[prev] = INT_MAX;
 | ||
| 
 | ||
| 	// Fill in "seen[]" array - mark cylinders we're not interested
 | ||
| 	// in as negative.
 | ||
| 	for (i = 0; i < MAX_CYLINDERS; i++) {
 | ||
| 		cylinder_t *cyl = dive->cylinder + i;
 | ||
| 		int start = cyl->start.mbar;
 | ||
| 		int end = cyl->end.mbar;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Fundamentally uninteresting?
 | ||
| 		 *
 | ||
| 		 * A dive computer with no pressure data isn't interesting
 | ||
| 		 * to plot pressures for even if we've seen it..
 | ||
| 		 */
 | ||
| 		if (!start || !end || start == end) {
 | ||
| 			seen[i] = -1;
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 
 | ||
| 		/* If we've seen it, we're definitely interested */
 | ||
| 		if (seen[i])
 | ||
| 			continue;
 | ||
| 
 | ||
| 		/* If it's only mentioned by other dc's, ignore it */
 | ||
| 		for_each_dc(dive, secondary) {
 | ||
| 			if (has_gaschange_event(dive, secondary, i)) {
 | ||
| 				seen[i] = -1;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 
 | ||
| 	for (i = 0; i < MAX_CYLINDERS; i++) {
 | ||
| 		if (seen[i] >= 0) {
 | ||
| 			cylinder_t *cyl = dive->cylinder + i;
 | ||
| 
 | ||
| 			add_plot_pressure(pi, first[i], i, cyl->start);
 | ||
| 			add_plot_pressure(pi, last[i], i, cyl->end);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Here, we should try to walk through all the dive computers,
 | ||
| 	 * and try to see if they have sensor data different from the
 | ||
| 	 * primary dive computer (dc).
 | ||
| 	 */
 | ||
| 	secondary = &dive->dc;
 | ||
| 	do {
 | ||
| 		if (secondary == dc)
 | ||
| 			continue;
 | ||
| 		populate_secondary_sensor_data(dc, pi);
 | ||
| 	} while ((secondary = secondary->next) != NULL);
 | ||
| }
 | ||
| 
 | ||
| #ifndef SUBSURFACE_MOBILE
 | ||
| /* calculate DECO STOP / TTS / NDL */
 | ||
| static void calculate_ndl_tts(struct deco_state *ds, struct dive *dive, struct plot_data *entry, struct gasmix *gasmix, double surface_pressure)
 | ||
| {
 | ||
| 	/* FIXME: This should be configurable */
 | ||
| 	/* ascent speed up to first deco stop */
 | ||
| 	const int ascent_s_per_step = 1;
 | ||
| 	const int ascent_mm_per_step = 200; /* 12 m/min */
 | ||
| 	/* ascent speed between deco stops */
 | ||
| 	const int ascent_s_per_deco_step = 1;
 | ||
| 	const int ascent_mm_per_deco_step = 16; /* 1 m/min */
 | ||
| 	/* how long time steps in deco calculations? */
 | ||
| 	const int time_stepsize = 60;
 | ||
| 	const int deco_stepsize = 3000;
 | ||
| 	/* at what depth is the current deco-step? */
 | ||
| 	int next_stop = ROUND_UP(deco_allowed_depth(
 | ||
| 					 tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)),
 | ||
| 					 surface_pressure, dive, 1), deco_stepsize);
 | ||
| 	int ascent_depth = entry->depth;
 | ||
| 	/* at what time should we give up and say that we got enuff NDL? */
 | ||
| 	/* If iterating through a dive, entry->tts_calc needs to be reset */
 | ||
| 	entry->tts_calc = 0;
 | ||
| 
 | ||
| 	/* If we don't have a ceiling yet, calculate ndl. Don't try to calculate
 | ||
| 	 * a ndl for lower values than 3m it would take forever */
 | ||
| 	if (next_stop == 0) {
 | ||
| 		if (entry->depth < 3000) {
 | ||
| 			entry->ndl = MAX_PROFILE_DECO;
 | ||
| 			return;
 | ||
| 		}
 | ||
| 		/* stop if the ndl is above max_ndl seconds, and call it plenty of time */
 | ||
| 		while (entry->ndl_calc < MAX_PROFILE_DECO &&
 | ||
| 		       deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)),
 | ||
| 					  surface_pressure, dive, 1) <= 0
 | ||
| 		       ) {
 | ||
| 			entry->ndl_calc += time_stepsize;
 | ||
| 			add_segment(ds, depth_to_bar(entry->depth, dive),
 | ||
| 				    gasmix, time_stepsize, entry->o2pressure.mbar, dive, prefs.bottomsac);
 | ||
| 		}
 | ||
| 		/* we don't need to calculate anything else */
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	/* We are in deco */
 | ||
| 	entry->in_deco_calc = true;
 | ||
| 
 | ||
| 	/* Add segments for movement to stopdepth */
 | ||
| 	for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_step, entry->tts_calc += ascent_s_per_step) {
 | ||
| 		add_segment(ds, depth_to_bar(ascent_depth, dive),
 | ||
| 			    gasmix, ascent_s_per_step, entry->o2pressure.mbar, dive, prefs.decosac);
 | ||
| 		next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth, dive)),
 | ||
| 							surface_pressure, dive, 1), deco_stepsize);
 | ||
| 	}
 | ||
| 	ascent_depth = next_stop;
 | ||
| 
 | ||
| 	/* And how long is the current deco-step? */
 | ||
| 	entry->stoptime_calc = 0;
 | ||
| 	entry->stopdepth_calc = next_stop;
 | ||
| 	next_stop -= deco_stepsize;
 | ||
| 
 | ||
| 	/* And how long is the total TTS */
 | ||
| 	while (next_stop >= 0) {
 | ||
| 		/* save the time for the first stop to show in the graph */
 | ||
| 		if (ascent_depth == entry->stopdepth_calc)
 | ||
| 			entry->stoptime_calc += time_stepsize;
 | ||
| 
 | ||
| 		entry->tts_calc += time_stepsize;
 | ||
| 		if (entry->tts_calc > MAX_PROFILE_DECO)
 | ||
| 			break;
 | ||
| 		add_segment(ds, depth_to_bar(ascent_depth, dive),
 | ||
| 			    gasmix, time_stepsize, entry->o2pressure.mbar, dive, prefs.decosac);
 | ||
| 
 | ||
| 		if (deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth,dive)), surface_pressure, dive, 1) <= next_stop) {
 | ||
| 			/* move to the next stop and add the travel between stops */
 | ||
| 			for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_deco_step, entry->tts_calc += ascent_s_per_deco_step)
 | ||
| 				add_segment(ds, depth_to_bar(ascent_depth, dive),
 | ||
| 					    gasmix, ascent_s_per_deco_step, entry->o2pressure.mbar, dive, prefs.decosac);
 | ||
| 			ascent_depth = next_stop;
 | ||
| 			next_stop -= deco_stepsize;
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /* Let's try to do some deco calculations.
 | ||
|  */
 | ||
| void calculate_deco_information(struct deco_state *ds, struct deco_state *planner_ds, struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool print_mode)
 | ||
| {
 | ||
| 	int i, count_iteration = 0;
 | ||
| 	double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0;
 | ||
| 	bool first_iteration = true;
 | ||
| 	int prev_deco_time = 10000000, time_deep_ceiling = 0;
 | ||
| 	if (!in_planner()) {
 | ||
| 		ds->deco_time = 0;
 | ||
| 	} else {
 | ||
| 		ds->deco_time = planner_ds->deco_time;
 | ||
| 		ds->first_ceiling_pressure = planner_ds->first_ceiling_pressure;
 | ||
| 	}
 | ||
| 	struct deco_state *cache_data_initial = NULL;
 | ||
| 	lock_planner();
 | ||
| 	/* For VPM-B outside the planner, cache the initial deco state for CVA iterations */
 | ||
| 	if (decoMode() == VPMB) {
 | ||
| 		cache_deco_state(ds, &cache_data_initial);
 | ||
| 	}
 | ||
| 	/* For VPM-B outside the planner, iterate until deco time converges (usually one or two iterations after the initial)
 | ||
| 	 * Set maximum number of iterations to 10 just in case */
 | ||
| 	while ((abs(prev_deco_time - ds->deco_time) >= 30) && (count_iteration < 10)) {
 | ||
| 		int last_ndl_tts_calc_time = 0, first_ceiling = 0, current_ceiling, last_ceiling, final_tts = 0 , time_clear_ceiling = 0;
 | ||
| 		if (decoMode() == VPMB)
 | ||
| 			ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive);
 | ||
| 		struct gasmix *gasmix = NULL;
 | ||
| 		struct event *ev = NULL;
 | ||
| 
 | ||
| 		for (i = 1; i < pi->nr; i++) {
 | ||
| 			struct plot_data *entry = pi->entry + i;
 | ||
| 			int j, t0 = (entry - 1)->sec, t1 = entry->sec;
 | ||
| 			int time_stepsize = 20;
 | ||
| 
 | ||
| 			gasmix = get_gasmix(dive, dc, t1, &ev, gasmix);
 | ||
| 
 | ||
| 			entry->ambpressure = depth_to_bar(entry->depth, dive);
 | ||
| 			entry->gfline = get_gf(ds, entry->ambpressure, dive) * (100.0 - AMB_PERCENTAGE) + AMB_PERCENTAGE;
 | ||
| 			if (t0 > t1) {
 | ||
| 				fprintf(stderr, "non-monotonous dive stamps %d %d\n", t0, t1);
 | ||
| 				int xchg = t1;
 | ||
| 				t1 = t0;
 | ||
| 				t0 = xchg;
 | ||
| 			}
 | ||
| 			if (t0 != t1 && t1 - t0 < time_stepsize)
 | ||
| 				time_stepsize = t1 - t0;
 | ||
| 			for (j = t0 + time_stepsize; j <= t1; j += time_stepsize) {
 | ||
| 				int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0);
 | ||
| 				add_segment(ds, depth_to_bar(depth, dive),
 | ||
| 					gasmix, time_stepsize, entry->o2pressure.mbar, dive, entry->sac);
 | ||
| 				if ((t1 - j < time_stepsize) && (j < t1))
 | ||
| 					time_stepsize = t1 - j;
 | ||
| 			}
 | ||
| 			if (t0 == t1) {
 | ||
| 				entry->ceiling = (entry - 1)->ceiling;
 | ||
| 			} else {
 | ||
| 				/* Keep updating the VPM-B gradients until the start of the ascent phase of the dive. */
 | ||
| 				if (decoMode() == VPMB && last_ceiling >= first_ceiling && first_iteration == true) {
 | ||
| 					nuclear_regeneration(ds, t1);
 | ||
| 					vpmb_start_gradient(ds);
 | ||
| 					/* For CVA iterations, calculate next gradient */
 | ||
| 					if (!first_iteration || in_planner())
 | ||
| 						vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0);
 | ||
| 				}
 | ||
| 				entry->ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, !prefs.calcceiling3m);
 | ||
| 				if (prefs.calcceiling3m)
 | ||
| 					current_ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, true);
 | ||
| 				else
 | ||
| 					current_ceiling = entry->ceiling;
 | ||
| 				last_ceiling = current_ceiling;
 | ||
| 				/* If using VPM-B, take first_ceiling_pressure as the deepest ceiling */
 | ||
| 				if (decoMode() == VPMB) {
 | ||
| 					if  (current_ceiling >= first_ceiling ||
 | ||
| 					     (time_deep_ceiling == t0 && entry->depth == (entry - 1)->depth)) {
 | ||
| 						time_deep_ceiling = t1;
 | ||
| 						first_ceiling = current_ceiling;
 | ||
| 						ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive);
 | ||
| 						if (first_iteration) {
 | ||
| 							nuclear_regeneration(ds, t1);
 | ||
| 							vpmb_start_gradient(ds);
 | ||
| 							/* For CVA calculations, deco time = dive time remaining is a good guess,
 | ||
| 							   but we want to over-estimate deco_time for the first iteration so it
 | ||
| 							   converges correctly, so add 30min*/
 | ||
| 							if (!in_planner())
 | ||
| 								ds->deco_time = pi->maxtime - t1 + 1800;
 | ||
| 							vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0);
 | ||
| 						}
 | ||
| 					}
 | ||
| 					// Use the point where the ceiling clears as the end of deco phase for CVA calculations
 | ||
| 					if (current_ceiling > 0)
 | ||
| 						time_clear_ceiling = 0;
 | ||
| 					else if (time_clear_ceiling == 0 && t1 > time_deep_ceiling)
 | ||
| 						time_clear_ceiling = t1;
 | ||
| 				}
 | ||
| 			}
 | ||
| 			for (j = 0; j < 16; j++) {
 | ||
| 				double m_value = ds->buehlmann_inertgas_a[j] + entry->ambpressure / ds->buehlmann_inertgas_b[j];
 | ||
| 				entry->ceilings[j] = deco_allowed_depth(ds->tolerated_by_tissue[j], surface_pressure, dive, 1);
 | ||
| 				entry->percentages[j] = ds->tissue_inertgas_saturation[j] < entry->ambpressure ?
 | ||
| 					lrint(ds->tissue_inertgas_saturation[j] / entry->ambpressure * AMB_PERCENTAGE) :
 | ||
| 					lrint(AMB_PERCENTAGE + (ds->tissue_inertgas_saturation[j] - entry->ambpressure) / (m_value - entry->ambpressure) * (100.0 - AMB_PERCENTAGE));
 | ||
| 			}
 | ||
| 
 | ||
| 			/* should we do more calculations?
 | ||
| 			* We don't for print-mode because this info doesn't show up there
 | ||
| 			* If the ceiling hasn't cleared by the last data point, we need tts for VPM-B CVA calculation
 | ||
| 			* It is not necessary to do these calculation on the first VPMB iteration, except for the last data point */
 | ||
| 			if ((prefs.calcndltts && !print_mode && (decoMode() != VPMB || in_planner() || !first_iteration)) ||
 | ||
| 			    (decoMode() == VPMB && !in_planner() && i == pi->nr - 1)) {
 | ||
| 				/* only calculate ndl/tts on every 30 seconds */
 | ||
| 				if ((entry->sec - last_ndl_tts_calc_time) < 30 && i != pi->nr - 1) {
 | ||
| 					struct plot_data *prev_entry = (entry - 1);
 | ||
| 					entry->stoptime_calc = prev_entry->stoptime_calc;
 | ||
| 					entry->stopdepth_calc = prev_entry->stopdepth_calc;
 | ||
| 					entry->tts_calc = prev_entry->tts_calc;
 | ||
| 					entry->ndl_calc = prev_entry->ndl_calc;
 | ||
| 					continue;
 | ||
| 				}
 | ||
| 				last_ndl_tts_calc_time = entry->sec;
 | ||
| 
 | ||
| 				/* We are going to mess up deco state, so store it for later restore */
 | ||
| 				struct deco_state *cache_data = NULL;
 | ||
| 				cache_deco_state(ds, &cache_data);
 | ||
| 				calculate_ndl_tts(ds, dive, entry, gasmix, surface_pressure);
 | ||
| 				if (decoMode() == VPMB && !in_planner() && i == pi->nr - 1)
 | ||
| 					final_tts = entry->tts_calc;
 | ||
| 				/* Restore "real" deco state for next real time step */
 | ||
| 				restore_deco_state(cache_data, ds, decoMode() == VPMB);
 | ||
| 				free(cache_data);
 | ||
| 			}
 | ||
| 		}
 | ||
| 		if (decoMode() == VPMB && !in_planner()) {
 | ||
| 			int this_deco_time;
 | ||
| 			prev_deco_time = ds->deco_time;
 | ||
| 			// Do we need to update deco_time?
 | ||
| 			if (final_tts > 0)
 | ||
| 				ds->deco_time = last_ndl_tts_calc_time + final_tts - time_deep_ceiling;
 | ||
| 			else if (time_clear_ceiling > 0)
 | ||
| 				/* Consistent with planner, deco_time ends after ascending (20s @9m/min from 3m)
 | ||
| 				 * at end of whole minute after clearing ceiling. The deepest ceiling when planning a dive
 | ||
| 				 * comes typically 10-60s after the end of the bottom time, so add 20s to the calculated
 | ||
| 				 * deco time. */
 | ||
| 					ds->deco_time = ROUND_UP(time_clear_ceiling - time_deep_ceiling + 20, 60) + 20;
 | ||
| 			vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0);
 | ||
| 			final_tts = 0;
 | ||
| 			last_ndl_tts_calc_time = 0;
 | ||
| 			first_ceiling = 0;
 | ||
| 			first_iteration = false;
 | ||
| 			count_iteration ++;
 | ||
| 			this_deco_time = ds->deco_time;
 | ||
| 			restore_deco_state(cache_data_initial, ds, true);
 | ||
| 			ds->deco_time = this_deco_time;
 | ||
| 		} else {
 | ||
| 			// With Buhlmann iterating isn't needed.  This makes the while condition false.
 | ||
| 			prev_deco_time = ds->deco_time = 0;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	free(cache_data_initial);
 | ||
| #if DECO_CALC_DEBUG & 1
 | ||
| 	dump_tissues();
 | ||
| #endif
 | ||
| 	unlock_planner();
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /* Function calculate_ccr_po2: This function takes information from one plot_data structure (i.e. one point on
 | ||
|  * the dive profile), containing the oxygen sensor values of a CCR system and, for that plot_data structure,
 | ||
|  * calculates the po2 value from the sensor data. Several rules are applied, depending on how many o2 sensors
 | ||
|  * there are and the differences among the readings from these sensors.
 | ||
|  */
 | ||
| static int calculate_ccr_po2(struct plot_data *entry, struct divecomputer *dc)
 | ||
| {
 | ||
| 	int sump = 0, minp = 999999, maxp = -999999;
 | ||
| 	int diff_limit = 100; // The limit beyond which O2 sensor differences are considered significant (default = 100 mbar)
 | ||
| 	int i, np = 0;
 | ||
| 
 | ||
| 	for (i = 0; i < dc->no_o2sensors; i++)
 | ||
| 		if (entry->o2sensor[i].mbar) { // Valid reading
 | ||
| 			++np;
 | ||
| 			sump += entry->o2sensor[i].mbar;
 | ||
| 			minp = MIN(minp, entry->o2sensor[i].mbar);
 | ||
| 			maxp = MAX(maxp, entry->o2sensor[i].mbar);
 | ||
| 		}
 | ||
| 	switch (np) {
 | ||
| 	case 0: // Uhoh
 | ||
| 		return entry->o2pressure.mbar;
 | ||
| 	case 1: // Return what we have
 | ||
| 		return sump;
 | ||
| 	case 2: // Take the average
 | ||
| 		return sump / 2;
 | ||
| 	case 3:						   // Voting logic
 | ||
| 		if (2 * maxp - sump + minp < diff_limit) { // Upper difference acceptable...
 | ||
| 			if (2 * minp - sump + maxp)	// ...and lower difference acceptable
 | ||
| 				return sump / 3;
 | ||
| 			else
 | ||
| 				return (sump - minp) / 2;
 | ||
| 		} else {
 | ||
| 			if (2 * minp - sump + maxp) // ...but lower difference acceptable
 | ||
| 				return (sump - maxp) / 2;
 | ||
| 			else
 | ||
| 				return sump / 3;
 | ||
| 		}
 | ||
| 	default: // This should not happen
 | ||
| 		assert(np <= 3);
 | ||
| 		return 0;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| static void calculate_gas_information_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	double amb_pressure;
 | ||
| 	struct gasmix *gasmix = NULL;
 | ||
| 	struct event *ev = NULL;
 | ||
| 
 | ||
| 	for (i = 1; i < pi->nr; i++) {
 | ||
| 		int fn2, fhe;
 | ||
| 		struct plot_data *entry = pi->entry + i;
 | ||
| 
 | ||
| 		gasmix = get_gasmix(dive, dc, entry->sec, &ev, gasmix);
 | ||
| 
 | ||
| 		amb_pressure = depth_to_bar(entry->depth, dive);
 | ||
| 
 | ||
| 		fill_pressures(&entry->pressures, amb_pressure, gasmix, entry->o2pressure.mbar / 1000.0, dive->dc.divemode);
 | ||
| 		fn2 = (int)(1000.0 * entry->pressures.n2 / amb_pressure);
 | ||
| 		fhe = (int)(1000.0 * entry->pressures.he / amb_pressure);
 | ||
| 
 | ||
| 		/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
 | ||
| 		 * so there is no difference in calculating between OC and CC
 | ||
| 		 * END takes O₂ + N₂ (air) into account ("Narcotic" for trimix dives)
 | ||
| 		 * EAD just uses N₂ ("Air" for nitrox dives) */
 | ||
| 		pressure_t modpO2 = { .mbar = (int)(prefs.modpO2 * 1000) };
 | ||
| 		entry->mod = (double)gas_mod(gasmix, modpO2, dive, 1).mm;
 | ||
| 		entry->end = (entry->depth + 10000) * (1000 - fhe) / 1000.0 - 10000;
 | ||
| 		entry->ead = (entry->depth + 10000) * fn2 / (double)N2_IN_AIR - 10000;
 | ||
| 		entry->eadd = (entry->depth + 10000) *
 | ||
| 				      (entry->pressures.o2 / amb_pressure * O2_DENSITY +
 | ||
| 				       entry->pressures.n2 / amb_pressure * N2_DENSITY +
 | ||
| 				       entry->pressures.he / amb_pressure * HE_DENSITY) /
 | ||
| 				      (O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 - 10000;
 | ||
| 		entry->density = gas_density(gasmix, depth_to_mbar(entry->depth, dive));
 | ||
| 		if (entry->mod < 0)
 | ||
| 			entry->mod = 0;
 | ||
| 		if (entry->ead < 0)
 | ||
| 			entry->ead = 0;
 | ||
| 		if (entry->end < 0)
 | ||
| 			entry->end = 0;
 | ||
| 		if (entry->eadd < 0)
 | ||
| 			entry->eadd = 0;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void fill_o2_values(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
 | ||
| /* In the samples from each dive computer, there may be uninitialised oxygen
 | ||
|  * sensor or setpoint values, e.g. when events were inserted into the dive log
 | ||
|  * or if the dive computer does not report o2 values with every sample. But
 | ||
|  * for drawing the profile a complete series of valid o2 pressure values is
 | ||
|  * required. This function takes the oxygen sensor data and setpoint values
 | ||
|  * from the structures of plotinfo and replaces the zero values with their
 | ||
|  * last known values so that the oxygen sensor data are complete and ready
 | ||
|  * for plotting. This function called by: create_plot_info_new() */
 | ||
| {
 | ||
| 	int i, j;
 | ||
| 	pressure_t last_sensor[3], o2pressure;
 | ||
| 	pressure_t amb_pressure;
 | ||
| 
 | ||
| 	for (i = 0; i < pi->nr; i++) {
 | ||
| 		struct plot_data *entry = pi->entry + i;
 | ||
| 
 | ||
| 		if (dc->divemode == CCR) {
 | ||
| 			if (i == 0) { // For 1st iteration, initialise the last_sensor values
 | ||
| 				for (j = 0; j < dc->no_o2sensors; j++)
 | ||
| 					last_sensor[j].mbar = pi->entry->o2sensor[j].mbar;
 | ||
| 			} else { // Now re-insert the missing oxygen pressure values
 | ||
| 				for (j = 0; j < dc->no_o2sensors; j++)
 | ||
| 					if (entry->o2sensor[j].mbar)
 | ||
| 						last_sensor[j].mbar = entry->o2sensor[j].mbar;
 | ||
| 					else
 | ||
| 						entry->o2sensor[j].mbar = last_sensor[j].mbar;
 | ||
| 			} // having initialised the empty o2 sensor values for this point on the profile,
 | ||
| 			amb_pressure.mbar = depth_to_mbar(entry->depth, dive);
 | ||
| 			o2pressure.mbar = calculate_ccr_po2(entry, dc); // ...calculate the po2 based on the sensor data
 | ||
| 			entry->o2pressure.mbar = MIN(o2pressure.mbar, amb_pressure.mbar);
 | ||
| 		} else {
 | ||
| 			entry->o2pressure.mbar = 0; // initialise po2 to zero for dctype = OC
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| #ifdef DEBUG_GAS
 | ||
| /* A CCR debug function that writes the cylinder pressure and the oxygen values to the file debug_print_profiledata.dat:
 | ||
|  * Called in create_plot_info_new()
 | ||
|  */
 | ||
| static void debug_print_profiledata(struct plot_info *pi)
 | ||
| {
 | ||
| 	FILE *f1;
 | ||
| 	struct plot_data *entry;
 | ||
| 	int i;
 | ||
| 	if (!(f1 = fopen("debug_print_profiledata.dat", "w"))) {
 | ||
| 		printf("File open error for: debug_print_profiledata.dat\n");
 | ||
| 	} else {
 | ||
| 		fprintf(f1, "id t1 gas gasint t2 t3 dil dilint t4 t5 setpoint sensor1 sensor2 sensor3 t6 po2 fo2\n");
 | ||
| 		for (i = 0; i < pi->nr; i++) {
 | ||
| 			entry = pi->entry + i;
 | ||
| 			fprintf(f1, "%d gas=%8d %8d ; dil=%8d %8d ; o2_sp= %d %d %d %d PO2= %f\n", i, SENSOR_PRESSURE(entry),
 | ||
| 				INTERPOLATED_PRESSURE(entry), O2CYLINDER_PRESSURE(entry), INTERPOLATED_O2CYLINDER_PRESSURE(entry),
 | ||
| 				entry->o2pressure.mbar, entry->o2sensor[0].mbar, entry->o2sensor[1].mbar, entry->o2sensor[2].mbar, entry->pressures.o2);
 | ||
| 		}
 | ||
| 		fclose(f1);
 | ||
| 	}
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|  * Create a plot-info with smoothing and ranged min/max
 | ||
|  *
 | ||
|  * This also makes sure that we have extra empty events on both
 | ||
|  * sides, so that you can do end-points without having to worry
 | ||
|  * about it.
 | ||
|  */
 | ||
| void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool fast, struct deco_state *planner_ds)
 | ||
| {
 | ||
| 	int o2, he, o2max;
 | ||
| #ifndef SUBSURFACE_MOBILE
 | ||
| 	struct deco_state plot_deco_state;
 | ||
| 	init_decompression(&plot_deco_state, dive);
 | ||
| #else
 | ||
| 	(void)planner_ds;
 | ||
| #endif
 | ||
| 	/* Create the new plot data */
 | ||
| 	free((void *)last_pi_entry_new);
 | ||
| 
 | ||
| 	get_dive_gas(dive, &o2, &he, &o2max);
 | ||
| 	if (dc->divemode == FREEDIVE){
 | ||
| 		pi->dive_type = FREEDIVE;
 | ||
| 	} else 	if (he > 0) {
 | ||
| 		pi->dive_type = TRIMIX;
 | ||
| 	} else {
 | ||
| 		if (o2)
 | ||
| 			pi->dive_type = NITROX;
 | ||
| 		else
 | ||
| 			pi->dive_type = AIR;
 | ||
| 	}
 | ||
| 
 | ||
| 	last_pi_entry_new = populate_plot_entries(dive, dc, pi);
 | ||
| 
 | ||
| 	check_setpoint_events(dive, dc, pi);     /* Populate setpoints */
 | ||
| 	setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */
 | ||
| 	if (!fast) {
 | ||
| 		for (int cyl = 0; cyl < MAX_CYLINDERS; cyl++)
 | ||
| 			populate_pressure_information(dive, dc, pi, cyl);
 | ||
| 	}
 | ||
| 	fill_o2_values(dive, dc, pi);			 /* .. and insert the O2 sensor data having 0 values. */
 | ||
| 	calculate_sac(dive, dc, pi);			 /* Calculate sac */
 | ||
| #ifndef SUBSURFACE_MOBILE
 | ||
| 	calculate_deco_information(&plot_deco_state, planner_ds, dive, dc, pi, false); /* and ceiling information, using gradient factor values in Preferences) */
 | ||
| #endif
 | ||
| 	calculate_gas_information_new(dive, dc, pi);	 /* Calculate gas partial pressures */
 | ||
| 
 | ||
| #ifdef DEBUG_GAS
 | ||
| 	debug_print_profiledata(pi);
 | ||
| #endif
 | ||
| 
 | ||
| 	pi->meandepth = dive->dc.meandepth.mm;
 | ||
| 	analyze_plot_info(pi);
 | ||
| }
 | ||
| 
 | ||
| struct divecomputer *select_dc(struct dive *dive)
 | ||
| {
 | ||
| 	unsigned int max = number_of_computers(dive);
 | ||
| 	unsigned int i = dc_number;
 | ||
| 
 | ||
| 	/* Reset 'dc_number' if we've switched dives and it is now out of range */
 | ||
| 	if (i >= max)
 | ||
| 		dc_number = i = 0;
 | ||
| 
 | ||
| 	return get_dive_dc(dive, i);
 | ||
| }
 | ||
| 
 | ||
| static void plot_string(struct plot_info *pi, struct plot_data *entry, struct membuffer *b)
 | ||
| {
 | ||
| 	int pressurevalue, mod, ead, end, eadd;
 | ||
| 	const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit;
 | ||
| 	double depthvalue, tempvalue, speedvalue, sacvalue;
 | ||
| 	int decimals, cyl;
 | ||
| 	const char *unit;
 | ||
| 
 | ||
| 	depthvalue = get_depth_units(entry->depth, NULL, &depth_unit);
 | ||
| 	put_format(b, translate("gettextFromC", "@: %d:%02d\nD: %.1f%s\n"), FRACTION(entry->sec, 60), depthvalue, depth_unit);
 | ||
| 	for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
 | ||
| 		struct gasmix *mix;
 | ||
| 		int mbar = GET_PRESSURE(entry, cyl);
 | ||
| 		if (!mbar)
 | ||
| 			continue;
 | ||
| 		mix = &displayed_dive.cylinder[cyl].gasmix;
 | ||
| 		pressurevalue = get_pressure_units(mbar, &pressure_unit);
 | ||
| 		put_format(b, translate("gettextFromC", "P: %d%s (%s)\n"), pressurevalue, pressure_unit, gasname(mix));
 | ||
| 	}
 | ||
| 	if (entry->temperature) {
 | ||
| 		tempvalue = get_temp_units(entry->temperature, &temp_unit);
 | ||
| 		put_format(b, translate("gettextFromC", "T: %.1f%s\n"), tempvalue, temp_unit);
 | ||
| 	}
 | ||
| 	speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit);
 | ||
| 	/* Ascending speeds are positive, descending are negative */
 | ||
| 	if (entry->speed > 0)
 | ||
| 		speedvalue *= -1;
 | ||
| 	put_format(b, translate("gettextFromC", "V: %.1f%s\n"), speedvalue, vertical_speed_unit);
 | ||
| 	sacvalue = get_volume_units(entry->sac, &decimals, &unit);
 | ||
| 	if (entry->sac && prefs.show_sac)
 | ||
| 		put_format(b, translate("gettextFromC", "SAC: %.*f%s/min\n"), decimals, sacvalue, unit);
 | ||
| 	if (entry->cns)
 | ||
| 		put_format(b, translate("gettextFromC", "CNS: %u%%\n"), entry->cns);
 | ||
| 	if (prefs.pp_graphs.po2 && entry->pressures.o2 > 0)
 | ||
| 		put_format(b, translate("gettextFromC", "pO%s: %.2fbar\n"), UTF8_SUBSCRIPT_2, entry->pressures.o2);
 | ||
| 	if (prefs.pp_graphs.pn2 && entry->pressures.n2 > 0)
 | ||
| 		put_format(b, translate("gettextFromC", "pN%s: %.2fbar\n"), UTF8_SUBSCRIPT_2, entry->pressures.n2);
 | ||
| 	if (prefs.pp_graphs.phe && entry->pressures.he > 0)
 | ||
| 		put_format(b, translate("gettextFromC", "pHe: %.2fbar\n"), entry->pressures.he);
 | ||
| 	if (prefs.mod && entry->mod > 0) {
 | ||
| 		mod = lrint(get_depth_units(lrint(entry->mod), NULL, &depth_unit));
 | ||
| 		put_format(b, translate("gettextFromC", "MOD: %d%s\n"), mod, depth_unit);
 | ||
| 	}
 | ||
| 	eadd = lrint(get_depth_units(lrint(entry->eadd), NULL, &depth_unit));
 | ||
| 
 | ||
| 	if (prefs.ead) {
 | ||
| 		switch (pi->dive_type) {
 | ||
| 		case NITROX:
 | ||
| 			if (entry->ead > 0) {
 | ||
| 				ead = lrint(get_depth_units(lrint(entry->ead), NULL, &depth_unit));
 | ||
| 				put_format(b, translate("gettextFromC", "EAD: %d%s\nEADD: %d%s / %.1fg/ℓ\n"), ead, depth_unit, eadd, depth_unit, entry->density);
 | ||
| 				break;
 | ||
| 			}
 | ||
| 		case TRIMIX:
 | ||
| 			if (entry->end > 0) {
 | ||
| 				end = lrint(get_depth_units(lrint(entry->end), NULL, &depth_unit));
 | ||
| 				put_format(b, translate("gettextFromC", "END: %d%s\nEADD: %d%s / %.1fg/ℓ\n"), end, depth_unit, eadd, depth_unit, entry->density);
 | ||
| 				break;
 | ||
| 			}
 | ||
| 		case AIR:
 | ||
| 			if (entry->density > 0) {
 | ||
| 				put_format(b, translate("gettextFromC", "Density: %.1fg/ℓ\n"), entry->density);
 | ||
| 			}
 | ||
| 		case FREEDIVING:
 | ||
| 			/* nothing */
 | ||
| 			break;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if (entry->stopdepth) {
 | ||
| 		depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
 | ||
| 		if (entry->ndl > 0) {
 | ||
| 			/* this is a safety stop as we still have ndl */
 | ||
| 			if (entry->stoptime)
 | ||
| 				put_format(b, translate("gettextFromC", "Safety stop: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
 | ||
| 					   depthvalue, depth_unit);
 | ||
| 			else
 | ||
| 				put_format(b, translate("gettextFromC", "Safety stop: unknown time @ %.0f%s\n"),
 | ||
| 					   depthvalue, depth_unit);
 | ||
| 		} else {
 | ||
| 			/* actual deco stop */
 | ||
| 			if (entry->stoptime)
 | ||
| 				put_format(b, translate("gettextFromC", "Deco: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
 | ||
| 					   depthvalue, depth_unit);
 | ||
| 			else
 | ||
| 				put_format(b, translate("gettextFromC", "Deco: unknown time @ %.0f%s\n"),
 | ||
| 					   depthvalue, depth_unit);
 | ||
| 		}
 | ||
| 	} else if (entry->in_deco) {
 | ||
| 		put_string(b, translate("gettextFromC", "In deco\n"));
 | ||
| 	} else if (entry->ndl >= 0) {
 | ||
| 		put_format(b, translate("gettextFromC", "NDL: %umin\n"), DIV_UP(entry->ndl, 60));
 | ||
| 	}
 | ||
| 	if (entry->tts)
 | ||
| 		put_format(b, translate("gettextFromC", "TTS: %umin\n"), DIV_UP(entry->tts, 60));
 | ||
| 	if (entry->stopdepth_calc && entry->stoptime_calc) {
 | ||
| 		depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit);
 | ||
| 		put_format(b, translate("gettextFromC", "Deco: %umin @ %.0f%s (calc)\n"), DIV_UP(entry->stoptime_calc, 60),
 | ||
| 			   depthvalue, depth_unit);
 | ||
| 	} else if (entry->in_deco_calc) {
 | ||
| 		/* This means that we have no NDL left,
 | ||
| 		 * and we have no deco stop,
 | ||
| 		 * so if we just accend to the surface slowly
 | ||
| 		 * (ascent_mm_per_step / ascent_s_per_step)
 | ||
| 		 * everything will be ok. */
 | ||
| 		put_string(b, translate("gettextFromC", "In deco (calc)\n"));
 | ||
| 	} else if (prefs.calcndltts && entry->ndl_calc != 0) {
 | ||
| 		if(entry->ndl_calc < MAX_PROFILE_DECO)
 | ||
| 			put_format(b, translate("gettextFromC", "NDL: %umin (calc)\n"), DIV_UP(entry->ndl_calc, 60));
 | ||
| 		else
 | ||
| 			put_format(b, "%s", translate("gettextFromC", "NDL: >2h (calc)\n"));
 | ||
| 	}
 | ||
| 	if (entry->tts_calc) {
 | ||
| 		if (entry->tts_calc < MAX_PROFILE_DECO)
 | ||
| 			put_format(b, translate("gettextFromC", "TTS: %umin (calc)\n"), DIV_UP(entry->tts_calc, 60));
 | ||
| 		else
 | ||
| 			put_format(b, "%s", translate("gettextFromC", "TTS: >2h (calc)\n"));
 | ||
| 	}
 | ||
| 	if (entry->rbt)
 | ||
| 		put_format(b, translate("gettextFromC", "RBT: %umin\n"), DIV_UP(entry->rbt, 60));
 | ||
| 	if (entry->ceiling) {
 | ||
| 		depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit);
 | ||
| 		put_format(b, translate("gettextFromC", "Calculated ceiling %.0f%s\n"), depthvalue, depth_unit);
 | ||
| 		if (prefs.calcalltissues) {
 | ||
| 			int k;
 | ||
| 			for (k = 0; k < 16; k++) {
 | ||
| 				if (entry->ceilings[k]) {
 | ||
| 					depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit);
 | ||
| 					put_format(b, translate("gettextFromC", "Tissue %.0fmin: %.1f%s\n"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if (entry->heartbeat && prefs.hrgraph)
 | ||
| 		put_format(b, translate("gettextFromC", "heart rate: %d\n"), entry->heartbeat);
 | ||
| 	if (entry->bearing >= 0)
 | ||
| 		put_format(b, translate("gettextFromC", "bearing: %d\n"), entry->bearing);
 | ||
| 	if (entry->running_sum) {
 | ||
| 		depthvalue = get_depth_units(entry->running_sum / entry->sec, NULL, &depth_unit);
 | ||
| 		put_format(b, translate("gettextFromC", "mean depth to here %.1f%s\n"), depthvalue, depth_unit);
 | ||
| 	}
 | ||
| 
 | ||
| 	strip_mb(b);
 | ||
| }
 | ||
| 
 | ||
| struct plot_data *get_plot_details_new(struct plot_info *pi, int time, struct membuffer *mb)
 | ||
| {
 | ||
| 	struct plot_data *entry = NULL;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	/* The two first and the two last plot entries do not have useful data */
 | ||
| 	for (i = 2; i < pi->nr - 2; i++) {
 | ||
| 		entry = pi->entry + i;
 | ||
| 		if (entry->sec >= time)
 | ||
| 			break;
 | ||
| 	}
 | ||
| 	if (entry)
 | ||
| 		plot_string(pi, entry, mb);
 | ||
| 	return (entry);
 | ||
| }
 | ||
| 
 | ||
| /* Compare two plot_data entries and writes the results into a string */
 | ||
| void compare_samples(struct plot_data *e1, struct plot_data *e2, char *buf, int bufsize, int sum)
 | ||
| {
 | ||
| 	struct plot_data *start, *stop, *data;
 | ||
| 	const char *depth_unit, *pressure_unit, *vertical_speed_unit;
 | ||
| 	char *buf2 = malloc(bufsize);
 | ||
| 	int avg_speed, max_asc_speed, max_desc_speed;
 | ||
| 	int delta_depth, avg_depth, max_depth, min_depth;
 | ||
| 	int bar_used, last_pressure, pressurevalue;
 | ||
| 	int count, last_sec, delta_time;
 | ||
| 	bool crossed_tankchange = false;
 | ||
| 
 | ||
| 	double depthvalue, speedvalue;
 | ||
| 
 | ||
| 	if (bufsize > 0)
 | ||
| 		buf[0] = '\0';
 | ||
| 	if (e1 == NULL || e2 == NULL) {
 | ||
| 		free(buf2);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (e1->sec < e2->sec) {
 | ||
| 		start = e1;
 | ||
| 		stop = e2;
 | ||
| 	} else if (e1->sec > e2->sec) {
 | ||
| 		start = e2;
 | ||
| 		stop = e1;
 | ||
| 	} else {
 | ||
| 		free(buf2);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	count = 0;
 | ||
| 	avg_speed = 0;
 | ||
| 	max_asc_speed = 0;
 | ||
| 	max_desc_speed = 0;
 | ||
| 
 | ||
| 	delta_depth = abs(start->depth - stop->depth);
 | ||
| 	delta_time = abs(start->sec - stop->sec);
 | ||
| 	avg_depth = 0;
 | ||
| 	max_depth = 0;
 | ||
| 	min_depth = INT_MAX;
 | ||
| 	bar_used = 0;
 | ||
| 
 | ||
| 	last_sec = start->sec;
 | ||
| 	last_pressure = GET_PRESSURE(start, 0);
 | ||
| 
 | ||
| 	data = start;
 | ||
| 	while (data != stop) {
 | ||
| 		data = start + count;
 | ||
| 		if (sum)
 | ||
| 			avg_speed += abs(data->speed) * (data->sec - last_sec);
 | ||
| 		else
 | ||
| 			avg_speed += data->speed * (data->sec - last_sec);
 | ||
| 		avg_depth += data->depth * (data->sec - last_sec);
 | ||
| 
 | ||
| 		if (data->speed > max_desc_speed)
 | ||
| 			max_desc_speed = data->speed;
 | ||
| 		if (data->speed < max_asc_speed)
 | ||
| 			max_asc_speed = data->speed;
 | ||
| 
 | ||
| 		if (data->depth < min_depth)
 | ||
| 			min_depth = data->depth;
 | ||
| 		if (data->depth > max_depth)
 | ||
| 			max_depth = data->depth;
 | ||
| 		/* Try to detect gas changes - this hack might work for some side mount scenarios? */
 | ||
| 		if (GET_PRESSURE(data, 0) < last_pressure + 2000)
 | ||
| 			bar_used += last_pressure - GET_PRESSURE(data, 0);
 | ||
| 
 | ||
| 		count += 1;
 | ||
| 		last_sec = data->sec;
 | ||
| 		last_pressure = GET_PRESSURE(data, 0);
 | ||
| 	}
 | ||
| 	avg_depth /= stop->sec - start->sec;
 | ||
| 	avg_speed /= stop->sec - start->sec;
 | ||
| 
 | ||
| 	snprintf(buf, bufsize, translate("gettextFromC", "%sT: %d:%02d min"), UTF8_DELTA, delta_time / 60, delta_time % 60);
 | ||
| 	memcpy(buf2, buf, bufsize);
 | ||
| 
 | ||
| 	depthvalue = get_depth_units(delta_depth, NULL, &depth_unit);
 | ||
| 	snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s"), buf2, UTF8_DELTA, depthvalue, depth_unit);
 | ||
| 	memcpy(buf2, buf, bufsize);
 | ||
| 
 | ||
| 	depthvalue = get_depth_units(min_depth, NULL, &depth_unit);
 | ||
| 	snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s"), buf2, UTF8_DOWNWARDS_ARROW, depthvalue, depth_unit);
 | ||
| 	memcpy(buf2, buf, bufsize);
 | ||
| 
 | ||
| 	depthvalue = get_depth_units(max_depth, NULL, &depth_unit);
 | ||
| 	snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s"), buf2, UTF8_UPWARDS_ARROW, depthvalue, depth_unit);
 | ||
| 	memcpy(buf2, buf, bufsize);
 | ||
| 
 | ||
| 	depthvalue = get_depth_units(avg_depth, NULL, &depth_unit);
 | ||
| 	snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s\n"), buf2, UTF8_AVERAGE, depthvalue, depth_unit);
 | ||
| 	memcpy(buf2, buf, bufsize);
 | ||
| 
 | ||
| 	speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit);
 | ||
| 	snprintf(buf, bufsize, translate("gettextFromC", "%s%sV:%.2f%s"), buf2, UTF8_DOWNWARDS_ARROW, speedvalue, vertical_speed_unit);
 | ||
| 	memcpy(buf2, buf, bufsize);
 | ||
| 
 | ||
| 	speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit);
 | ||
| 	snprintf(buf, bufsize, translate("gettextFromC", "%s %sV:%.2f%s"), buf2, UTF8_UPWARDS_ARROW, speedvalue, vertical_speed_unit);
 | ||
| 	memcpy(buf2, buf, bufsize);
 | ||
| 
 | ||
| 	speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit);
 | ||
| 	snprintf(buf, bufsize, translate("gettextFromC", "%s %sV:%.2f%s"), buf2, UTF8_AVERAGE, speedvalue, vertical_speed_unit);
 | ||
| 	memcpy(buf2, buf, bufsize);
 | ||
| 
 | ||
| 	/* Only print if gas has been used */
 | ||
| 	if (bar_used) {
 | ||
| 		pressurevalue = get_pressure_units(bar_used, &pressure_unit);
 | ||
| 		memcpy(buf2, buf, bufsize);
 | ||
| 		snprintf(buf, bufsize, translate("gettextFromC", "%s %sP:%d %s"), buf2, UTF8_DELTA, pressurevalue, pressure_unit);
 | ||
| 		cylinder_t *cyl = displayed_dive.cylinder + 0;
 | ||
| 		/* if we didn't cross a tank change and know the cylidner size as well, show SAC rate */
 | ||
| 		if (!crossed_tankchange && cyl->type.size.mliter) {
 | ||
| 			double volume_value;
 | ||
| 			int volume_precision;
 | ||
| 			const char *volume_unit;
 | ||
| 			struct plot_data *first = start;
 | ||
| 			struct plot_data *last = stop;
 | ||
| 			while (first < stop && GET_PRESSURE(first, 0) == 0)
 | ||
| 				first++;
 | ||
| 			while (last > first && GET_PRESSURE(last, 0) == 0)
 | ||
| 				last--;
 | ||
| 
 | ||
| 			pressure_t first_pressure = { GET_PRESSURE(first, 0) };
 | ||
| 			pressure_t stop_pressure = { GET_PRESSURE(last, 0) };
 | ||
| 			int volume_used = gas_volume(cyl, first_pressure) - gas_volume(cyl, stop_pressure);
 | ||
| 
 | ||
| 			/* Mean pressure in ATM */
 | ||
| 			double atm = depth_to_atm(avg_depth, &displayed_dive);
 | ||
| 
 | ||
| 			/* milliliters per minute */
 | ||
| 			int sac = lrint(volume_used / atm * 60 / delta_time);
 | ||
| 			memcpy(buf2, buf, bufsize);
 | ||
| 			volume_value = get_volume_units(sac, &volume_precision, &volume_unit);
 | ||
| 			snprintf(buf, bufsize, translate("gettextFromC", "%s SAC: %.*f%s"), buf2, volume_precision, volume_value, volume_unit);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	free(buf2);
 | ||
| }
 |