mirror of
https://github.com/subsurface/subsurface.git
synced 2025-01-19 22:35:27 +00:00
23baf20f56
rint() is "round to nearest integer", and does a better job than +0.5 (followed by the implicit truncation inherent in integer casting). We already used 'rint()' for values that could be negative (where +0.5 is actively wrong), let's just make it consistent. Of course, as is usual for the messy C math functions, it depends on the current rounding mode. But the default round-to-nearest is what we want and use, and the functions that explicitly always round to nearest aren't standard enough to worry about. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
1648 lines
48 KiB
C
1648 lines
48 KiB
C
/* profile.c */
|
|
/* creates all the necessary data for drawing the dive profile
|
|
*/
|
|
#include "gettext.h"
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include "dive.h"
|
|
#include "display.h"
|
|
#include "divelist.h"
|
|
|
|
#include "profile.h"
|
|
#include "deco.h"
|
|
#include "libdivecomputer/parser.h"
|
|
#include "libdivecomputer/version.h"
|
|
#include "membuffer.h"
|
|
|
|
int selected_dive = -1; /* careful: 0 is a valid value */
|
|
char zoomed_plot = 0;
|
|
char dc_number = 0;
|
|
|
|
|
|
static struct plot_data *last_pi_entry = NULL;
|
|
|
|
#ifdef DEBUG_PI
|
|
/* debugging tool - not normally used */
|
|
static void dump_pi (struct plot_info *pi)
|
|
{
|
|
int i;
|
|
|
|
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
|
|
" maxpressure:%d mintemp:%d maxtemp:%d\n",
|
|
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
|
|
pi->maxpressure, pi->mintemp, pi->maxtemp);
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = &pi->entry[i];
|
|
printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
|
|
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
|
|
i, entry->cylinderindex, entry->sec,
|
|
entry->pressure[0], entry->pressure[1],
|
|
entry->sec / 60, entry->sec % 60,
|
|
entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
|
|
entry->po2, entry->phe, entry->pn2,
|
|
entry->po2 + entry->phe + entry->pn2);
|
|
}
|
|
printf(" }\n");
|
|
}
|
|
#endif
|
|
|
|
#define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y))
|
|
#define DIV_UP(x,y) (((x)+(y)-1)/(y))
|
|
|
|
/*
|
|
* When showing dive profiles, we scale things to the
|
|
* current dive. However, we don't scale past less than
|
|
* 30 minutes or 90 ft, just so that small dives show
|
|
* up as such unless zoom is enabled.
|
|
* We also need to add 180 seconds at the end so the min/max
|
|
* plots correctly
|
|
*/
|
|
int get_maxtime(struct plot_info *pi)
|
|
{
|
|
int seconds = pi->maxtime;
|
|
if (zoomed_plot) {
|
|
/* Rounded up to one minute, with at least 2.5 minutes to
|
|
* spare.
|
|
* For dive times shorter than 10 minutes, we use seconds/4 to
|
|
* calculate the space dynamically.
|
|
* This is seamless since 600/4 = 150.
|
|
*/
|
|
if (seconds < 600)
|
|
return ROUND_UP(seconds+seconds/4, 60);
|
|
else
|
|
return ROUND_UP(seconds+150, 60);
|
|
} else {
|
|
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
|
|
return MAX(30*60, ROUND_UP(seconds+150, 60*5));
|
|
}
|
|
}
|
|
|
|
/* get the maximum depth to which we want to plot
|
|
* take into account the additional vertical space needed to plot
|
|
* partial pressure graphs */
|
|
int get_maxdepth(struct plot_info *pi)
|
|
{
|
|
unsigned mm = pi->maxdepth;
|
|
int md;
|
|
|
|
if (zoomed_plot) {
|
|
/* Rounded up to 10m, with at least 3m to spare */
|
|
md = ROUND_UP(mm+3000, 10000);
|
|
} else {
|
|
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
|
|
md = MAX((unsigned)30000, ROUND_UP(mm+3000, 10000));
|
|
}
|
|
md += pi->maxpp * 9000;
|
|
return md;
|
|
}
|
|
|
|
/* collect all event names and whether we display them */
|
|
struct ev_select *ev_namelist;
|
|
int evn_allocated;
|
|
int evn_used;
|
|
|
|
#if WE_DONT_USE_THIS /* we need to implement event filters in Qt */
|
|
int evn_foreach(void (*callback)(const char *, bool *, void *), void *data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < evn_used; i++) {
|
|
/* here we display an event name on screen - so translate */
|
|
callback(translate("gettextFromC",ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
|
|
}
|
|
return i;
|
|
}
|
|
#endif /* WE_DONT_USE_THIS */
|
|
|
|
void clear_events(void)
|
|
{
|
|
evn_used = 0;
|
|
}
|
|
|
|
void remember_event(const char *eventname)
|
|
{
|
|
int i = 0, len;
|
|
|
|
if (!eventname || (len = strlen(eventname)) == 0)
|
|
return;
|
|
while (i < evn_used) {
|
|
if (!strncmp(eventname, ev_namelist[i].ev_name, len))
|
|
return;
|
|
i++;
|
|
}
|
|
if (evn_used == evn_allocated) {
|
|
evn_allocated += 10;
|
|
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
|
|
if (! ev_namelist)
|
|
/* we are screwed, but let's just bail out */
|
|
return;
|
|
}
|
|
ev_namelist[evn_used].ev_name = strdup(eventname);
|
|
ev_namelist[evn_used].plot_ev = true;
|
|
evn_used++;
|
|
}
|
|
|
|
int setup_temperature_limits(struct graphics_context *gc)
|
|
{
|
|
int maxtime, mintemp, maxtemp, delta;
|
|
|
|
struct plot_info *pi = &gc->pi;
|
|
/* Get plot scaling limits */
|
|
maxtime = get_maxtime(pi);
|
|
mintemp = pi->mintemp;
|
|
maxtemp = pi->maxtemp;
|
|
|
|
gc->leftx = 0; gc->rightx = maxtime;
|
|
/* Show temperatures in roughly the lower third, but make sure the scale
|
|
is at least somewhat reasonable */
|
|
delta = maxtemp - mintemp;
|
|
if (delta < 3000) /* less than 3K in fluctuation */
|
|
delta = 3000;
|
|
gc->topy = maxtemp + delta*2;
|
|
|
|
if (PP_GRAPHS_ENABLED)
|
|
gc->bottomy = mintemp - delta * 2;
|
|
else
|
|
gc->bottomy = mintemp - delta / 3;
|
|
|
|
pi->endtempcoord = SCALEY(gc, pi->mintemp);
|
|
return maxtemp && maxtemp >= mintemp;
|
|
}
|
|
|
|
void setup_pp_limits(struct graphics_context *gc)
|
|
{
|
|
int maxdepth;
|
|
|
|
gc->leftx = 0;
|
|
gc->rightx = get_maxtime(&gc->pi);
|
|
|
|
/* the maxdepth already includes extra vertical space - and if
|
|
* we use 1.5 times the corresponding pressure as maximum partial
|
|
* pressure the graph seems to look fine*/
|
|
maxdepth = get_maxdepth(&gc->pi);
|
|
gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * SURFACE_PRESSURE / 1000;
|
|
gc->bottomy = -gc->topy / 20;
|
|
}
|
|
|
|
int get_cylinder_pressure_range(struct graphics_context *gc)
|
|
{
|
|
gc->leftx = 0;
|
|
gc->rightx = get_maxtime(&gc->pi);
|
|
|
|
if (PP_GRAPHS_ENABLED)
|
|
gc->bottomy = -gc->pi.maxpressure * 0.75;
|
|
else
|
|
gc->bottomy = 0;
|
|
gc->topy = gc->pi.maxpressure * 1.5;
|
|
if (!gc->pi.maxpressure)
|
|
return false;
|
|
|
|
while (gc->pi.endtempcoord <= SCALEY(gc, gc->pi.minpressure - (gc->topy) * 0.1))
|
|
gc->bottomy -= gc->topy * 0.1 * gc->maxy/abs(gc->maxy);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Get local sac-rate (in ml/min) between entry1 and entry2 */
|
|
static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive)
|
|
{
|
|
int index = entry1->cylinderindex;
|
|
cylinder_t *cyl;
|
|
int duration = entry2->sec - entry1->sec;
|
|
int depth, airuse;
|
|
pressure_t a, b;
|
|
double atm;
|
|
|
|
if (entry2->cylinderindex != index)
|
|
return 0;
|
|
if (duration <= 0)
|
|
return 0;
|
|
a.mbar = GET_PRESSURE(entry1);
|
|
b.mbar = GET_PRESSURE(entry2);
|
|
if (!a.mbar || !b.mbar)
|
|
return 0;
|
|
|
|
/* Mean pressure in ATM */
|
|
depth = (entry1->depth + entry2->depth) / 2;
|
|
atm = depth_to_atm(depth, dive);
|
|
|
|
cyl = dive->cylinder + index;
|
|
|
|
airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
|
|
|
|
/* milliliters per minute */
|
|
return airuse / atm * 60 / duration;
|
|
}
|
|
|
|
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
|
|
{
|
|
struct plot_data *p = entry;
|
|
int time = entry->sec;
|
|
int seconds = 90*(index+1);
|
|
struct plot_data *min, *max;
|
|
int avg, nr;
|
|
|
|
/* Go back 'seconds' in time */
|
|
while (p > first) {
|
|
if (p[-1].sec < time - seconds)
|
|
break;
|
|
p--;
|
|
}
|
|
|
|
/* Then go forward until we hit an entry past the time */
|
|
min = max = p;
|
|
avg = p->depth;
|
|
nr = 1;
|
|
while (++p < last) {
|
|
int depth = p->depth;
|
|
if (p->sec > time + seconds)
|
|
break;
|
|
avg += depth;
|
|
nr ++;
|
|
if (depth < min->depth)
|
|
min = p;
|
|
if (depth > max->depth)
|
|
max = p;
|
|
}
|
|
entry->min[index] = min;
|
|
entry->max[index] = max;
|
|
entry->avg[index] = (avg + nr/2) / nr;
|
|
}
|
|
|
|
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
|
|
{
|
|
analyze_plot_info_minmax_minute(entry, first, last, 0);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 1);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 2);
|
|
}
|
|
|
|
static velocity_t velocity(int speed)
|
|
{
|
|
velocity_t v;
|
|
|
|
if (speed < -304) /* ascent faster than -60ft/min */
|
|
v = CRAZY;
|
|
else if (speed < -152) /* above -30ft/min */
|
|
v = FAST;
|
|
else if (speed < -76) /* -15ft/min */
|
|
v = MODERATE;
|
|
else if (speed < -25) /* -5ft/min */
|
|
v = SLOW;
|
|
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
|
|
for descent are usually about 2x ascent rate; still, we want
|
|
stable to mean stable */
|
|
v = STABLE;
|
|
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
|
|
v = SLOW;
|
|
else if (speed < 304) /* up to 60ft/min is moderate */
|
|
v = MODERATE;
|
|
else if (speed < 507) /* up to 100ft/min is fast */
|
|
v = FAST;
|
|
else /* more than that is just crazy - you'll blow your ears out */
|
|
v = CRAZY;
|
|
|
|
return v;
|
|
}
|
|
|
|
struct plot_info *analyze_plot_info(struct plot_info *pi)
|
|
{
|
|
int i;
|
|
int nr = pi->nr;
|
|
|
|
/* Smoothing function: 5-point triangular smooth */
|
|
for (i = 2; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
int depth;
|
|
|
|
if (i < nr-2) {
|
|
depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth;
|
|
entry->smoothed = (depth+4) / 9;
|
|
}
|
|
/* vertical velocity in mm/sec */
|
|
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
|
|
if (entry[0].sec - entry[-1].sec) {
|
|
entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec);
|
|
entry->velocity = velocity(entry->speed);
|
|
/* if our samples are short and we aren't too FAST*/
|
|
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
|
|
int past = -2;
|
|
while (i+past > 0 && entry[0].sec - entry[past].sec < 15)
|
|
past--;
|
|
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
|
|
(entry[0].sec - entry[past].sec));
|
|
}
|
|
} else {
|
|
entry->velocity = STABLE;
|
|
entry->speed = 0;
|
|
}
|
|
}
|
|
|
|
/* One-, two- and three-minute minmax data */
|
|
for (i = 0; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry +i;
|
|
analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr);
|
|
}
|
|
|
|
return pi;
|
|
}
|
|
|
|
/*
|
|
* simple structure to track the beginning and end tank pressure as
|
|
* well as the integral of depth over time spent while we have no
|
|
* pressure reading from the tank */
|
|
typedef struct pr_track_struct pr_track_t;
|
|
struct pr_track_struct {
|
|
int start;
|
|
int end;
|
|
int t_start;
|
|
int t_end;
|
|
int pressure_time;
|
|
pr_track_t *next;
|
|
};
|
|
|
|
static pr_track_t *pr_track_alloc(int start, int t_start) {
|
|
pr_track_t *pt = malloc(sizeof(pr_track_t));
|
|
pt->start = start;
|
|
pt->end = 0;
|
|
pt->t_start = pt->t_end = t_start;
|
|
pt->pressure_time = 0;
|
|
pt->next = NULL;
|
|
return pt;
|
|
}
|
|
|
|
/* poor man's linked list */
|
|
static pr_track_t *list_last(pr_track_t *list)
|
|
{
|
|
pr_track_t *tail = list;
|
|
if (!tail)
|
|
return NULL;
|
|
while (tail->next) {
|
|
tail = tail->next;
|
|
}
|
|
return tail;
|
|
}
|
|
|
|
static pr_track_t *list_add(pr_track_t *list, pr_track_t *element)
|
|
{
|
|
pr_track_t *tail = list_last(list);
|
|
if (!tail)
|
|
return element;
|
|
tail->next = element;
|
|
return list;
|
|
}
|
|
|
|
static void list_free(pr_track_t *list)
|
|
{
|
|
if (!list)
|
|
return;
|
|
list_free(list->next);
|
|
free(list);
|
|
}
|
|
|
|
#ifdef DEBUG_PR_TRACK
|
|
static void dump_pr_track(pr_track_t **track_pr)
|
|
{
|
|
int cyl;
|
|
pr_track_t *list;
|
|
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
list = track_pr[cyl];
|
|
while (list) {
|
|
printf("cyl%d: start %d end %d t_start %d t_end %d pt %d\n", cyl,
|
|
list->start, list->end, list->t_start, list->t_end, list->pressure_time);
|
|
list = list->next;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
typedef struct pr_interpolate_struct pr_interpolate_t;
|
|
struct pr_interpolate_struct {
|
|
int start;
|
|
int end;
|
|
int pressure_time;
|
|
int acc_pressure_time;
|
|
};
|
|
|
|
#ifdef DEBUG_PR_INTERPOLATE
|
|
static void dump_pr_interpolate(int i, pr_interpolate_t interpolate_pr)
|
|
{
|
|
printf("Interpolate for entry %d: start %d - end %d - pt %d - acc_pt %d\n", i,
|
|
interpolate_pr.start, interpolate_pr.end, interpolate_pr.pressure_time, interpolate_pr.acc_pressure_time);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This looks at the pressures for one cylinder, and
|
|
* calculates any missing beginning/end pressures for
|
|
* each segment by taking the over-all SAC-rate into
|
|
* account for that cylinder.
|
|
*
|
|
* NOTE! Many segments have full pressure information
|
|
* (both beginning and ending pressure). But if we have
|
|
* switched away from a cylinder, we will have the
|
|
* beginning pressure for the first segment with a
|
|
* missing end pressure. We may then have one or more
|
|
* segments without beginning or end pressures, until
|
|
* we finally have a segment with an end pressure.
|
|
*
|
|
* We want to spread out the pressure over these missing
|
|
* segments according to how big of a time_pressure area
|
|
* they have.
|
|
*/
|
|
static void fill_missing_segment_pressures(pr_track_t *list)
|
|
{
|
|
while (list) {
|
|
int start = list->start, end;
|
|
pr_track_t *tmp = list;
|
|
int pt_sum = 0, pt = 0;
|
|
|
|
for (;;) {
|
|
pt_sum += tmp->pressure_time;
|
|
end = tmp->end;
|
|
if (end)
|
|
break;
|
|
end = start;
|
|
if (!tmp->next)
|
|
break;
|
|
tmp = tmp->next;
|
|
}
|
|
|
|
if (!start)
|
|
start = end;
|
|
|
|
/*
|
|
* Now 'start' and 'end' contain the pressure values
|
|
* for the set of segments described by 'list'..'tmp'.
|
|
* pt_sum is the sum of all the pressure-times of the
|
|
* segments.
|
|
*
|
|
* Now dole out the pressures relative to pressure-time.
|
|
*/
|
|
list->start = start;
|
|
tmp->end = end;
|
|
for (;;) {
|
|
int pressure;
|
|
pt += list->pressure_time;
|
|
pressure = start;
|
|
if (pt_sum)
|
|
pressure -= (start-end)*(double)pt/pt_sum;
|
|
list->end = pressure;
|
|
if (list == tmp)
|
|
break;
|
|
list = list->next;
|
|
list->start = pressure;
|
|
}
|
|
|
|
/* Ok, we've done that set of segments */
|
|
list = list->next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* What's the pressure-time between two plot data entries?
|
|
* We're calculating the integral of pressure over time by
|
|
* adding these up.
|
|
*
|
|
* The units won't matter as long as everybody agrees about
|
|
* them, since they'll cancel out - we use this to calculate
|
|
* a constant SAC-rate-equivalent, but we only use it to
|
|
* scale pressures, so it ends up being a unitless scaling
|
|
* factor.
|
|
*/
|
|
static inline int pressure_time(struct dive *dive, struct divecomputer *dc, struct plot_data *a, struct plot_data *b)
|
|
{
|
|
int time = b->sec - a->sec;
|
|
int depth = (a->depth + b->depth)/2;
|
|
|
|
if (depth <= SURFACE_THRESHOLD)
|
|
return 0;
|
|
|
|
return depth_to_mbar(depth, dive) * time;
|
|
}
|
|
|
|
static struct pr_interpolate_struct get_pr_interpolate_data(pr_track_t *segment, struct plot_info *pi, int cur)
|
|
{
|
|
struct pr_interpolate_struct interpolate;
|
|
int i;
|
|
struct plot_data *entry;
|
|
|
|
interpolate.start = segment->start;
|
|
interpolate.end = segment->end;
|
|
interpolate.acc_pressure_time = 0;
|
|
interpolate.pressure_time = 0;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
entry = pi->entry + i;
|
|
if (entry->sec < segment->t_start)
|
|
continue;
|
|
if (entry->sec >= segment->t_end) {
|
|
interpolate.pressure_time += entry->pressure_time;
|
|
break;
|
|
}
|
|
if (entry->sec == segment->t_start) {
|
|
interpolate.acc_pressure_time = 0;
|
|
interpolate.pressure_time = 0;
|
|
if (SENSOR_PRESSURE(entry))
|
|
interpolate.start = SENSOR_PRESSURE(entry);
|
|
continue;
|
|
}
|
|
if (i < cur) {
|
|
if (SENSOR_PRESSURE(entry)) {
|
|
interpolate.start = SENSOR_PRESSURE(entry);
|
|
interpolate.acc_pressure_time = 0;
|
|
interpolate.pressure_time = 0;
|
|
} else {
|
|
interpolate.acc_pressure_time += entry->pressure_time;
|
|
interpolate.pressure_time += entry->pressure_time;
|
|
}
|
|
continue;
|
|
}
|
|
if (i == cur) {
|
|
interpolate.acc_pressure_time += entry->pressure_time;
|
|
interpolate.pressure_time += entry->pressure_time;
|
|
continue;
|
|
}
|
|
interpolate.pressure_time += entry->pressure_time;
|
|
if (SENSOR_PRESSURE(entry)) {
|
|
interpolate.end = SENSOR_PRESSURE(entry);
|
|
break;
|
|
}
|
|
}
|
|
return interpolate;
|
|
}
|
|
|
|
static void fill_missing_tank_pressures(struct dive *dive, struct plot_info *pi, pr_track_t **track_pr)
|
|
{
|
|
int cyl, i;
|
|
struct plot_data *entry;
|
|
int cur_pr[MAX_CYLINDERS];
|
|
|
|
#ifdef DEBUG_PR_TRACK
|
|
/* another great debugging tool */
|
|
dump_pr_track(track_pr);
|
|
#endif
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
if (!track_pr[cyl])
|
|
continue;
|
|
fill_missing_segment_pressures(track_pr[cyl]);
|
|
cur_pr[cyl] = track_pr[cyl]->start;
|
|
}
|
|
|
|
/* The first two are "fillers", but in case we don't have a sample
|
|
* at time 0 we need to process the second of them here */
|
|
for (i = 1; i < pi->nr; i++) {
|
|
double magic;
|
|
pr_track_t *segment;
|
|
pr_interpolate_t interpolate;
|
|
|
|
entry = pi->entry + i;
|
|
cyl = entry->cylinderindex;
|
|
|
|
if (SENSOR_PRESSURE(entry)) {
|
|
cur_pr[cyl] = SENSOR_PRESSURE(entry);
|
|
continue;
|
|
}
|
|
|
|
/* Find the right pressure segment for this entry.. */
|
|
segment = track_pr[cyl];
|
|
while (segment && segment->t_end < entry->sec)
|
|
segment = segment->next;
|
|
|
|
/* No (or empty) segment? Just use our current pressure */
|
|
if (!segment || !segment->pressure_time) {
|
|
SENSOR_PRESSURE(entry) = cur_pr[cyl];
|
|
continue;
|
|
}
|
|
|
|
interpolate = get_pr_interpolate_data(segment, pi, i);
|
|
#ifdef DEBUG_PR_INTERPOLATE
|
|
dump_pr_interpolate(i, interpolate);
|
|
#endif
|
|
/* if this segment has pressure time, calculate a new interpolated pressure */
|
|
if (interpolate.pressure_time) {
|
|
/* Overall pressure change over total pressure-time for this segment*/
|
|
magic = (interpolate.end - interpolate.start) / (double) interpolate.pressure_time;
|
|
|
|
/* Use that overall pressure change to update the current pressure */
|
|
cur_pr[cyl] = rint(interpolate.start + magic * interpolate.acc_pressure_time);
|
|
}
|
|
INTERPOLATED_PRESSURE(entry) = cur_pr[cyl];
|
|
}
|
|
}
|
|
|
|
int get_cylinder_index(struct dive *dive, struct event *ev)
|
|
{
|
|
int i;
|
|
int best = 0, score = INT_MAX;
|
|
int target_o2, target_he;
|
|
|
|
/*
|
|
* Crazy gas change events give us odd encoded o2/he in percent.
|
|
* Decode into our internal permille format.
|
|
*/
|
|
target_o2 = (ev->value & 0xFFFF) * 10;
|
|
target_he = (ev->value >> 16) * 10;
|
|
|
|
/*
|
|
* Try to find a cylinder that best matches the target gas
|
|
* mix.
|
|
*/
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
|
cylinder_t *cyl = dive->cylinder+i;
|
|
int delta_o2, delta_he, distance;
|
|
|
|
if (cylinder_nodata(cyl))
|
|
continue;
|
|
|
|
delta_o2 = get_o2(&cyl->gasmix) - target_o2;
|
|
delta_he = get_he(&cyl->gasmix) - target_he;
|
|
distance = delta_o2 * delta_o2;
|
|
|
|
/* Check the event type to figure out if we should care about the he part.
|
|
* 11 is SAMPLE_EVENT_GASCHANGE, aka without he
|
|
* 25 is SAMPLE_EVENT_GASCHANGE2, aka with he
|
|
*/
|
|
if (ev->type == 25)
|
|
distance += delta_he * delta_he;
|
|
if (distance >= score)
|
|
continue;
|
|
score = distance;
|
|
best = i;
|
|
}
|
|
return best;
|
|
}
|
|
|
|
struct event *get_next_event(struct event *event, char *name)
|
|
{
|
|
if (!name || !*name)
|
|
return NULL;
|
|
while (event) {
|
|
if (!strcmp(event->name, name))
|
|
return event;
|
|
event = event->next;
|
|
}
|
|
return event;
|
|
}
|
|
|
|
static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
|
|
{
|
|
while (i < pi->nr) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (entry->sec > end)
|
|
break;
|
|
if (entry->cylinderindex != cylinderindex) {
|
|
entry->cylinderindex = cylinderindex;
|
|
entry->pressure[0] = 0;
|
|
}
|
|
i++;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i = 0, cylinderindex = 0;
|
|
struct event *ev = get_next_event(dc->events, "gaschange");
|
|
|
|
if (!ev)
|
|
return;
|
|
|
|
do {
|
|
i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
|
|
cylinderindex = get_cylinder_index(dive, ev);
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
} while (ev);
|
|
set_cylinder_index(pi, i, cylinderindex, ~0u);
|
|
}
|
|
|
|
|
|
struct plot_info calculate_max_limits_new(struct dive *dive, struct divecomputer *dc)
|
|
{
|
|
struct plot_info pi;
|
|
int maxdepth = dive->maxdepth.mm;
|
|
int maxtime = 0;
|
|
int maxpressure = 0, minpressure = INT_MAX;
|
|
int mintemp = dive->mintemp.mkelvin;
|
|
int maxtemp = dive->maxtemp.mkelvin;
|
|
int cyl;
|
|
|
|
/* Get the per-cylinder maximum pressure if they are manual */
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
unsigned int mbar = dive->cylinder[cyl].start.mbar;
|
|
if (mbar > maxpressure)
|
|
maxpressure = mbar;
|
|
}
|
|
|
|
/* Then do all the samples from all the dive computers */
|
|
do {
|
|
int i = dc->samples;
|
|
int lastdepth = 0;
|
|
struct sample *s = dc->sample;
|
|
|
|
while (--i >= 0) {
|
|
int depth = s->depth.mm;
|
|
int pressure = s->cylinderpressure.mbar;
|
|
int temperature = s->temperature.mkelvin;
|
|
|
|
if (!mintemp && temperature < mintemp)
|
|
mintemp = temperature;
|
|
if (temperature > maxtemp)
|
|
maxtemp = temperature;
|
|
|
|
if (pressure && pressure < minpressure)
|
|
minpressure = pressure;
|
|
if (pressure > maxpressure)
|
|
maxpressure = pressure;
|
|
|
|
if (depth > maxdepth)
|
|
maxdepth = s->depth.mm;
|
|
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
|
|
s->time.seconds > maxtime)
|
|
maxtime = s->time.seconds;
|
|
lastdepth = depth;
|
|
s++;
|
|
}
|
|
} while ((dc = dc->next) != NULL);
|
|
|
|
if (minpressure > maxpressure)
|
|
minpressure = 0;
|
|
|
|
memset(&pi, 0, sizeof(pi));
|
|
pi.maxdepth = maxdepth;
|
|
pi.maxtime = maxtime;
|
|
pi.maxpressure = maxpressure;
|
|
pi.minpressure = minpressure;
|
|
pi.mintemp = mintemp;
|
|
pi.maxtemp = maxtemp;
|
|
return pi;
|
|
}
|
|
|
|
void calculate_max_limits(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc)
|
|
{
|
|
struct plot_info *pi;
|
|
int maxdepth;
|
|
int maxtime = 0;
|
|
int maxpressure = 0, minpressure = INT_MAX;
|
|
int mintemp, maxtemp;
|
|
int cyl;
|
|
|
|
/* The plot-info is embedded in the graphics context */
|
|
pi = &gc->pi;
|
|
memset(pi, 0, sizeof(*pi));
|
|
|
|
maxdepth = dive->maxdepth.mm;
|
|
mintemp = dive->mintemp.mkelvin;
|
|
maxtemp = dive->maxtemp.mkelvin;
|
|
|
|
/* Get the per-cylinder maximum pressure if they are manual */
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
unsigned int mbar = dive->cylinder[cyl].start.mbar;
|
|
if (mbar > maxpressure)
|
|
maxpressure = mbar;
|
|
}
|
|
|
|
/* Then do all the samples from all the dive computers */
|
|
do {
|
|
int i = dc->samples;
|
|
int lastdepth = 0;
|
|
struct sample *s = dc->sample;
|
|
|
|
while (--i >= 0) {
|
|
int depth = s->depth.mm;
|
|
int pressure = s->cylinderpressure.mbar;
|
|
int temperature = s->temperature.mkelvin;
|
|
|
|
if (!mintemp && temperature < mintemp)
|
|
mintemp = temperature;
|
|
if (temperature > maxtemp)
|
|
maxtemp = temperature;
|
|
|
|
if (pressure && pressure < minpressure)
|
|
minpressure = pressure;
|
|
if (pressure > maxpressure)
|
|
maxpressure = pressure;
|
|
|
|
if (depth > maxdepth)
|
|
maxdepth = s->depth.mm;
|
|
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
|
|
s->time.seconds > maxtime)
|
|
maxtime = s->time.seconds;
|
|
lastdepth = depth;
|
|
s++;
|
|
}
|
|
} while ((dc = dc->next) != NULL);
|
|
|
|
if (minpressure > maxpressure)
|
|
minpressure = 0;
|
|
|
|
pi->maxdepth = maxdepth;
|
|
pi->maxtime = maxtime;
|
|
pi->maxpressure = maxpressure;
|
|
pi->minpressure = minpressure;
|
|
pi->mintemp = mintemp;
|
|
pi->maxtemp = maxtemp;
|
|
}
|
|
|
|
struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int idx, maxtime, nr, i;
|
|
int lastdepth, lasttime, lasttemp = 0;
|
|
struct plot_data *plot_data;
|
|
|
|
maxtime = pi->maxtime;
|
|
|
|
/*
|
|
* We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
|
|
* but samples could be more dense than that (so add in dc->samples), and
|
|
* additionally we want two surface events around the whole thing (thus the
|
|
* additional 4).
|
|
*/
|
|
nr = dc->samples + 5 + maxtime / 10;
|
|
plot_data = calloc(nr, sizeof(struct plot_data));
|
|
pi->entry = plot_data;
|
|
if (!plot_data)
|
|
return NULL;
|
|
pi->nr = nr;
|
|
idx = 2; /* the two extra events at the start */
|
|
|
|
lastdepth = 0;
|
|
lasttime = 0;
|
|
for (i = 0; i < dc->samples; i++) {
|
|
struct plot_data *entry = plot_data + idx;
|
|
struct sample *sample = dc->sample+i;
|
|
int time = sample->time.seconds;
|
|
int depth = sample->depth.mm;
|
|
int offset, delta;
|
|
|
|
/* Add intermediate plot entries if required */
|
|
delta = time - lasttime;
|
|
if (delta < 0) {
|
|
time = lasttime;
|
|
delta = 0;
|
|
}
|
|
for (offset = 10; offset < delta; offset += 10) {
|
|
if (lasttime + offset > maxtime)
|
|
break;
|
|
|
|
/* Use the data from the previous plot entry */
|
|
*entry = entry[-1];
|
|
|
|
/* .. but update depth and time, obviously */
|
|
entry->sec = lasttime + offset;
|
|
entry->depth = interpolate(lastdepth, depth, offset, delta);
|
|
|
|
/* And clear out the sensor pressure, since we'll interpolate */
|
|
SENSOR_PRESSURE(entry) = 0;
|
|
|
|
idx++; entry++;
|
|
}
|
|
|
|
if (time > maxtime)
|
|
break;
|
|
|
|
entry->sec = time;
|
|
entry->depth = depth;
|
|
|
|
entry->stopdepth = sample->stopdepth.mm;
|
|
entry->stoptime = sample->stoptime.seconds;
|
|
entry->ndl = sample->ndl.seconds;
|
|
pi->has_ndl |= sample->ndl.seconds;
|
|
entry->in_deco = sample->in_deco;
|
|
entry->cns = sample->cns;
|
|
entry->po2 = sample->po2 / 1000.0;
|
|
/* FIXME! sensor index -> cylinder index translation! */
|
|
entry->cylinderindex = sample->sensor;
|
|
SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
|
|
if (sample->temperature.mkelvin)
|
|
entry->temperature = lasttemp = sample->temperature.mkelvin;
|
|
else
|
|
entry->temperature = lasttemp;
|
|
entry->heartbeat = sample->heartbeat;
|
|
entry->bearing = sample->bearing;
|
|
|
|
lasttime = time;
|
|
lastdepth = depth;
|
|
idx++;
|
|
}
|
|
|
|
/* Add two final surface events */
|
|
plot_data[idx++].sec = lasttime+1;
|
|
plot_data[idx++].sec = lasttime+2;
|
|
pi->nr = idx;
|
|
|
|
return plot_data;
|
|
}
|
|
|
|
static void populate_cylinder_pressure_data(int idx, int start, int end, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
|
|
/* First: check that none of the entries has sensor pressure for this cylinder index */
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (entry->cylinderindex != idx)
|
|
continue;
|
|
if (SENSOR_PRESSURE(entry))
|
|
return;
|
|
}
|
|
|
|
/* Then: populate the first entry with the beginning cylinder pressure */
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (entry->cylinderindex != idx)
|
|
continue;
|
|
SENSOR_PRESSURE(entry) = start;
|
|
break;
|
|
}
|
|
|
|
/* .. and the last entry with the ending cylinder pressure */
|
|
for (i = pi->nr; --i >= 0; /* nothing */) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (entry->cylinderindex != idx)
|
|
continue;
|
|
SENSOR_PRESSURE(entry) = end;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void calculate_sac(struct dive *dive, struct plot_info *pi)
|
|
{
|
|
int i = 0, last = 0;
|
|
struct plot_data *last_entry = NULL;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry+i;
|
|
if (!last_entry || last_entry->cylinderindex != entry->cylinderindex) {
|
|
last = i;
|
|
last_entry = entry;
|
|
entry->sac = get_local_sac(entry, pi->entry + i + 1, dive);
|
|
} else {
|
|
int j;
|
|
entry->sac = 0;
|
|
for (j = last; j < i; j++)
|
|
entry->sac += get_local_sac(pi->entry + j, pi->entry + j + 1, dive);
|
|
entry->sac /= (i - last);
|
|
if (entry->sec - last_entry->sec >= SAC_WINDOW) {
|
|
last++;
|
|
last_entry = pi->entry + last;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void populate_secondary_sensor_data(struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
/* We should try to see if it has interesting pressure data here */
|
|
}
|
|
|
|
static void setup_gas_sensor_pressure(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
struct divecomputer *secondary;
|
|
|
|
/* First, populate the pressures with the manual cylinder data.. */
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
|
cylinder_t *cyl = dive->cylinder+i;
|
|
int start = cyl->start.mbar ? : cyl->sample_start.mbar;
|
|
int end = cyl->end.mbar ? : cyl->sample_end.mbar;
|
|
|
|
if (!start || !end)
|
|
continue;
|
|
|
|
populate_cylinder_pressure_data(i, start, end, pi);
|
|
}
|
|
|
|
/*
|
|
* Here, we should try to walk through all the dive computers,
|
|
* and try to see if they have sensor data different from the
|
|
* primary dive computer (dc).
|
|
*/
|
|
secondary = &dive->dc;
|
|
do {
|
|
if (secondary == dc)
|
|
continue;
|
|
populate_secondary_sensor_data(dc, pi);
|
|
} while ((secondary = secondary->next) != NULL);
|
|
}
|
|
|
|
static void populate_pressure_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i, cylinderindex;
|
|
pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, };
|
|
pr_track_t *current;
|
|
bool missing_pr = false;
|
|
|
|
cylinderindex = -1;
|
|
current = NULL;
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
unsigned pressure = SENSOR_PRESSURE(entry);
|
|
|
|
/* discrete integration of pressure over time to get the SAC rate equivalent */
|
|
if (current) {
|
|
entry->pressure_time = pressure_time(dive, dc, entry-1, entry);
|
|
current->pressure_time += entry->pressure_time;
|
|
current->t_end = entry->sec;
|
|
}
|
|
|
|
/* track the segments per cylinder and their pressure/time integral */
|
|
if (entry->cylinderindex != cylinderindex) {
|
|
cylinderindex = entry->cylinderindex;
|
|
current = pr_track_alloc(pressure, entry->sec);
|
|
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
|
|
continue;
|
|
}
|
|
|
|
if (!pressure) {
|
|
missing_pr = 1;
|
|
continue;
|
|
}
|
|
|
|
current->end = pressure;
|
|
|
|
/* Was it continuous? */
|
|
if (SENSOR_PRESSURE(entry-1))
|
|
continue;
|
|
|
|
/* transmitter changed its working status */
|
|
current = pr_track_alloc(pressure, entry->sec);
|
|
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
|
|
}
|
|
|
|
if (missing_pr) {
|
|
fill_missing_tank_pressures(dive, pi, track_pr);
|
|
}
|
|
for (i = 0; i < MAX_CYLINDERS; i++)
|
|
list_free(track_pr[i]);
|
|
}
|
|
|
|
/* calculate DECO STOP / TTS / NDL */
|
|
static void calculate_ndl_tts(double tissue_tolerance, struct plot_data *entry, struct dive *dive, double surface_pressure) {
|
|
/* FIXME: This should be configurable */
|
|
/* ascent speed up to first deco stop */
|
|
const int ascent_s_per_step = 1;
|
|
const int ascent_mm_per_step = 200; /* 12 m/min */
|
|
/* ascent speed between deco stops */
|
|
const int ascent_s_per_deco_step = 1;
|
|
const int ascent_mm_per_deco_step = 16; /* 1 m/min */
|
|
/* how long time steps in deco calculations? */
|
|
const int time_stepsize = 10;
|
|
const int deco_stepsize = 3000;
|
|
/* at what depth is the current deco-step? */
|
|
int next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize);
|
|
int ascent_depth = entry->depth;
|
|
/* at what time should we give up and say that we got enuff NDL? */
|
|
const int max_ndl = 7200;
|
|
int cylinderindex = entry->cylinderindex;
|
|
|
|
/* If we don't have a ceiling yet, calculate ndl. Don't try to calculate
|
|
* a ndl for lower values than 3m it would take forever */
|
|
if (next_stop == 0) {
|
|
if (entry->depth < 3000) {
|
|
entry->ndl = max_ndl;
|
|
return;
|
|
}
|
|
/* stop if the ndl is above max_ndl seconds, and call it plenty of time */
|
|
while (entry->ndl_calc < max_ndl && deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= 0) {
|
|
entry->ndl_calc += time_stepsize;
|
|
tissue_tolerance = add_segment(depth_to_mbar(entry->depth, dive) / 1000.0,
|
|
&dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->po2 * 1000, dive);
|
|
}
|
|
/* we don't need to calculate anything else */
|
|
return;
|
|
}
|
|
|
|
/* We are in deco */
|
|
entry->in_deco_calc = true;
|
|
|
|
/* Add segments for movement to stopdepth */
|
|
for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_step, entry->tts_calc += ascent_s_per_step) {
|
|
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
|
|
&dive->cylinder[cylinderindex].gasmix, ascent_s_per_step, entry->po2 * 1000, dive);
|
|
next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize);
|
|
}
|
|
ascent_depth = next_stop;
|
|
|
|
/* And how long is the current deco-step? */
|
|
entry->stoptime_calc = 0;
|
|
entry->stopdepth_calc = next_stop;
|
|
next_stop -= deco_stepsize;
|
|
|
|
/* And how long is the total TTS */
|
|
while(next_stop >= 0) {
|
|
/* save the time for the first stop to show in the graph */
|
|
if (ascent_depth == entry->stopdepth_calc)
|
|
entry->stoptime_calc += time_stepsize;
|
|
|
|
entry->tts_calc += time_stepsize;
|
|
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
|
|
&dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->po2 * 1000, dive);
|
|
|
|
if (deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= next_stop) {
|
|
/* move to the next stop and add the travel between stops */
|
|
for (; ascent_depth > next_stop ; ascent_depth -= ascent_mm_per_deco_step, entry->tts_calc += ascent_s_per_deco_step)
|
|
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
|
|
&dive->cylinder[cylinderindex].gasmix, ascent_s_per_deco_step, entry->po2 * 1000, dive);
|
|
ascent_depth = next_stop;
|
|
next_stop -= deco_stepsize;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Let's try to do some deco calculations.
|
|
* Needs to be run before calculate_gas_information so we know that if we have a po2, where in ccr-mode.
|
|
*/
|
|
void calculate_deco_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool print_mode)
|
|
{
|
|
int i;
|
|
double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0;
|
|
double tissue_tolerance = 0;
|
|
for (i = 1; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
int j, t0 = (entry - 1)->sec, t1 = entry->sec;
|
|
for (j = t0+1; j <= t1; j++) {
|
|
int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0);
|
|
double min_pressure = add_segment(depth_to_mbar(depth, dive) / 1000.0,
|
|
&dive->cylinder[entry->cylinderindex].gasmix, 1, entry->po2 * 1000, dive);
|
|
tissue_tolerance = min_pressure;
|
|
}
|
|
if (t0 == t1)
|
|
entry->ceiling = (entry - 1)->ceiling;
|
|
else
|
|
entry->ceiling = deco_allowed_depth(tissue_tolerance, surface_pressure, dive, !prefs.calc_ceiling_3m_incr);
|
|
for (j=0; j<16; j++)
|
|
entry->ceilings[j] = deco_allowed_depth(tolerated_by_tissue[j], surface_pressure, dive, 1);
|
|
|
|
/* should we do more calculations?
|
|
* We don't for print-mode because this info doesn't show up there */
|
|
if (prefs.calc_ndl_tts && !print_mode) {
|
|
/* We are going to mess up deco state, so store it for later restore */
|
|
char *cache_data = NULL;
|
|
cache_deco_state(tissue_tolerance, &cache_data);
|
|
calculate_ndl_tts(tissue_tolerance, entry, dive, surface_pressure);
|
|
/* Restore "real" deco state for next real time step */
|
|
tissue_tolerance = restore_deco_state(cache_data);
|
|
free(cache_data);
|
|
}
|
|
}
|
|
#if DECO_CALC_DEBUG & 1
|
|
dump_tissues();
|
|
#endif
|
|
}
|
|
|
|
static void calculate_gas_information(struct dive *dive, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
double amb_pressure;
|
|
|
|
for (i = 1; i < pi->nr; i++) {
|
|
int fo2, fhe;
|
|
struct plot_data *entry = pi->entry + i;
|
|
int cylinderindex = entry->cylinderindex;
|
|
|
|
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
|
|
fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix);
|
|
fhe = get_he(&dive->cylinder[cylinderindex].gasmix);
|
|
double ratio = (double)fhe / (1000.0 - fo2);
|
|
|
|
if (entry->po2) {
|
|
/* we have an O2 partial pressure in the sample - so this
|
|
* is likely a CC dive... use that instead of the value
|
|
* from the cylinder info */
|
|
double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2;
|
|
entry->po2 = po2;
|
|
entry->phe = (amb_pressure - po2) * ratio;
|
|
entry->pn2 = amb_pressure - po2 - entry->phe;
|
|
} else {
|
|
entry->po2 = fo2 / 1000.0 * amb_pressure;
|
|
entry->phe = fhe / 1000.0 * amb_pressure;
|
|
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
|
|
}
|
|
|
|
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
|
|
* so there is no difference in calculating between OC and CC
|
|
* EAD takes O2 + N2 (air) into account
|
|
* END just uses N2 */
|
|
entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000;
|
|
entry->ead = (entry->depth + 10000) *
|
|
(entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000;
|
|
entry->end = (entry->depth + 10000) *
|
|
(amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000;
|
|
entry->eadd = (entry->depth + 10000) *
|
|
(entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure *
|
|
N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) /
|
|
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000;
|
|
if (entry->mod < 0)
|
|
entry->mod = 0;
|
|
if (entry->ead < 0)
|
|
entry->ead = 0;
|
|
if (entry->end < 0)
|
|
entry->end = 0;
|
|
if (entry->eadd < 0)
|
|
entry->eadd = 0;
|
|
|
|
if (entry->po2 > pi->maxpp && prefs.pp_graphs.po2)
|
|
pi->maxpp = entry->po2;
|
|
if (entry->phe > pi->maxpp && prefs.pp_graphs.phe)
|
|
pi->maxpp = entry->phe;
|
|
if (entry->pn2 > pi->maxpp && prefs.pp_graphs.pn2)
|
|
pi->maxpp = entry->pn2;
|
|
}
|
|
}
|
|
|
|
|
|
static void calculate_gas_information_new(struct dive *dive, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
double amb_pressure;
|
|
|
|
for (i = 1; i < pi->nr; i++) {
|
|
int fo2, fhe;
|
|
struct plot_data *entry = pi->entry + i;
|
|
int cylinderindex = entry->cylinderindex;
|
|
|
|
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
|
|
fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix);
|
|
fhe = get_he(&dive->cylinder[cylinderindex].gasmix);
|
|
double ratio = (double)fhe / (1000.0 - fo2);
|
|
|
|
if (entry->po2) {
|
|
/* we have an O2 partial pressure in the sample - so this
|
|
* is likely a CC dive... use that instead of the value
|
|
* from the cylinder info */
|
|
double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2;
|
|
entry->po2 = po2;
|
|
entry->phe = (amb_pressure - po2) * ratio;
|
|
entry->pn2 = amb_pressure - po2 - entry->phe;
|
|
} else {
|
|
entry->po2 = fo2 / 1000.0 * amb_pressure;
|
|
entry->phe = fhe / 1000.0 * amb_pressure;
|
|
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
|
|
}
|
|
|
|
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
|
|
* so there is no difference in calculating between OC and CC
|
|
* EAD takes O2 + N2 (air) into account
|
|
* END just uses N2 */
|
|
entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000;
|
|
entry->ead = (entry->depth + 10000) *
|
|
(entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000;
|
|
entry->end = (entry->depth + 10000) *
|
|
(amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000;
|
|
entry->eadd = (entry->depth + 10000) *
|
|
(entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure *
|
|
N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) /
|
|
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000;
|
|
if (entry->mod < 0)
|
|
entry->mod = 0;
|
|
if (entry->ead < 0)
|
|
entry->ead = 0;
|
|
if (entry->end < 0)
|
|
entry->end = 0;
|
|
if (entry->eadd < 0)
|
|
entry->eadd = 0;
|
|
}
|
|
}
|
|
/*
|
|
* Create a plot-info with smoothing and ranged min/max
|
|
*
|
|
* This also makes sure that we have extra empty events on both
|
|
* sides, so that you can do end-points without having to worry
|
|
* about it.
|
|
*/
|
|
struct plot_info *create_plot_info(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc, bool print_mode)
|
|
{
|
|
struct plot_info *pi;
|
|
|
|
/* The plot-info is embedded in the graphics context */
|
|
pi = &gc->pi;
|
|
|
|
/* reset deco information to start the calculation */
|
|
if (prefs.profile_calc_ceiling)
|
|
init_decompression(dive);
|
|
|
|
/* Create the new plot data */
|
|
if (last_pi_entry)
|
|
free((void *)last_pi_entry);
|
|
last_pi_entry = populate_plot_entries(dive, dc, pi);
|
|
|
|
/* Populate the gas index from the gas change events */
|
|
check_gas_change_events(dive, dc, pi);
|
|
|
|
/* Try to populate our gas pressure knowledge */
|
|
setup_gas_sensor_pressure(dive, dc, pi);
|
|
|
|
/* .. calculate missing pressure entries */
|
|
populate_pressure_information(dive, dc, pi);
|
|
|
|
/* Calculate sac */
|
|
calculate_sac(dive, pi);
|
|
|
|
/* Then, calculate deco information */
|
|
if (prefs.profile_calc_ceiling)
|
|
calculate_deco_information(dive, dc, pi, print_mode);
|
|
|
|
/* And finaly calculate gas partial pressures */
|
|
calculate_gas_information(dive, pi);
|
|
|
|
pi->meandepth = dive->dc.meandepth.mm;
|
|
|
|
#ifdef DEBUG_PI
|
|
/* awesome for debugging - not useful otherwise */
|
|
dump_pi(pi);
|
|
#endif
|
|
return analyze_plot_info(pi);
|
|
}
|
|
|
|
void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
init_decompression(dive);
|
|
if (last_pi_entry) /* Create the new plot data */
|
|
free((void *)last_pi_entry);
|
|
last_pi_entry = populate_plot_entries(dive, dc, pi);
|
|
check_gas_change_events(dive, dc, pi); /* Populate the gas index from the gas change events */
|
|
setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */
|
|
populate_pressure_information(dive, dc, pi);/* .. calculate missing pressure entries */
|
|
calculate_sac(dive, pi); /* Calculate sac */
|
|
calculate_deco_information(dive, dc, pi, false);
|
|
calculate_gas_information_new(dive, pi); /* And finaly calculate gas partial pressures */
|
|
pi->meandepth = dive->dc.meandepth.mm;
|
|
analyze_plot_info(pi);
|
|
}
|
|
|
|
/* make sure you pass this the FIRST dc - it just walks the list */
|
|
static int nr_dcs(struct divecomputer *main)
|
|
{
|
|
int i = 1;
|
|
struct divecomputer *dc = main;
|
|
|
|
while ((dc = dc->next) != NULL)
|
|
i++;
|
|
return i;
|
|
}
|
|
|
|
struct divecomputer *select_dc(struct divecomputer *main)
|
|
{
|
|
int i = dc_number;
|
|
struct divecomputer *dc = main;
|
|
|
|
while (i < 0)
|
|
i += nr_dcs(main);
|
|
do {
|
|
if (--i < 0)
|
|
return dc;
|
|
} while ((dc = dc->next) != NULL);
|
|
|
|
/* If we switched dives to one with fewer DC's, reset the dive computer counter */
|
|
dc_number = 0;
|
|
return main;
|
|
}
|
|
|
|
static void plot_string(struct plot_data *entry, struct membuffer *b, bool has_ndl)
|
|
{
|
|
int pressurevalue, mod, ead, end, eadd;
|
|
const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit;
|
|
double depthvalue, tempvalue, speedvalue;
|
|
|
|
depthvalue = get_depth_units(entry->depth, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC","@:%d:%02d\nD:%.1f %s\n"), FRACTION(entry->sec, 60), depthvalue, depth_unit);
|
|
if (GET_PRESSURE(entry)) {
|
|
pressurevalue = get_pressure_units(GET_PRESSURE(entry), &pressure_unit);
|
|
put_format(b, translate("gettextFromC","P:%d %s\n"), pressurevalue, pressure_unit);
|
|
}
|
|
if (entry->temperature) {
|
|
tempvalue = get_temp_units(entry->temperature, &temp_unit);
|
|
put_format(b, translate("gettextFromC","T:%.1f %s\n"), tempvalue, temp_unit);
|
|
}
|
|
speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit);
|
|
/* Ascending speeds are positive, descending are negative */
|
|
if (entry->speed > 0)
|
|
speedvalue *= -1;
|
|
put_format(b, translate("gettextFromC","V:%.2f %s\n"), speedvalue, vertical_speed_unit);
|
|
|
|
if (entry->sac && prefs.show_sac)
|
|
put_format(b, translate("gettextFromC","SAC:%2.1fl/min\n"), entry->sac / 1000.0);
|
|
if (entry->cns)
|
|
put_format(b, translate("gettextFromC","CNS:%u%%\n"), entry->cns);
|
|
if (prefs.pp_graphs.po2)
|
|
put_format(b, translate("gettextFromC","pO%s:%.2fbar\n"), UTF8_SUBSCRIPT_2, entry->po2);
|
|
if (prefs.pp_graphs.pn2)
|
|
put_format(b, translate("gettextFromC","pN%s:%.2fbar\n"), UTF8_SUBSCRIPT_2, entry->pn2);
|
|
if (prefs.pp_graphs.phe)
|
|
put_format(b, translate("gettextFromC","pHe:%.2fbar\n"), entry->phe);
|
|
if (prefs.mod) {
|
|
mod = (int)get_depth_units(entry->mod, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC","MOD:%d%s\n"), mod, depth_unit);
|
|
}
|
|
if (prefs.ead) {
|
|
ead = (int)get_depth_units(entry->ead, NULL, &depth_unit);
|
|
end = (int)get_depth_units(entry->end, NULL, &depth_unit);
|
|
eadd = (int)get_depth_units(entry->eadd, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC","EAD:%d%s\nEND:%d%s\nEADD:%d%s\n"), ead, depth_unit, end, depth_unit, eadd, depth_unit);
|
|
}
|
|
if (entry->stopdepth) {
|
|
depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
|
|
if (entry->ndl) {
|
|
/* this is a safety stop as we still have ndl */
|
|
if (entry->stoptime)
|
|
put_format(b, translate("gettextFromC","Safetystop:%umin @ %.0f %s\n"), DIV_UP(entry->stoptime, 60),
|
|
depthvalue, depth_unit);
|
|
else
|
|
put_format(b, translate("gettextFromC","Safetystop:unkn time @ %.0f %s\n"),
|
|
depthvalue, depth_unit);
|
|
} else {
|
|
/* actual deco stop */
|
|
if (entry->stoptime)
|
|
put_format(b, translate("gettextFromC","Deco:%umin @ %.0f %s\n"), DIV_UP(entry->stoptime, 60),
|
|
depthvalue, depth_unit);
|
|
else
|
|
put_format(b, translate("gettextFromC","Deco:unkn time @ %.0f %s\n"),
|
|
depthvalue, depth_unit);
|
|
}
|
|
} else if (entry->in_deco) {
|
|
put_string(b, translate("gettextFromC","In deco\n"));
|
|
} else if (has_ndl) {
|
|
put_format(b, translate("gettextFromC","NDL:%umin\n"), DIV_UP(entry->ndl, 60));
|
|
}
|
|
if (entry->stopdepth_calc && entry->stoptime_calc) {
|
|
depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC","Deco:%umin @ %.0f %s (calc)\n"), DIV_UP(entry->stoptime_calc, 60),
|
|
depthvalue, depth_unit);
|
|
} else if (entry->in_deco_calc) {
|
|
/* This means that we have no NDL left,
|
|
* and we have no deco stop,
|
|
* so if we just accend to the surface slowly
|
|
* (ascent_mm_per_step / ascent_s_per_step)
|
|
* everything will be ok. */
|
|
put_string(b, translate("gettextFromC","In deco (calc)\n"));
|
|
} else if (prefs.calc_ndl_tts && entry->ndl_calc != 0) {
|
|
put_format(b, translate("gettextFromC","NDL:%umin (calc)\n"), DIV_UP(entry->ndl_calc, 60));
|
|
}
|
|
if (entry->tts_calc)
|
|
put_format(b, translate("gettextFromC","TTS:%umin (calc)\n"), DIV_UP(entry->tts_calc, 60));
|
|
if (entry->ceiling) {
|
|
depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC","Calculated ceiling %.0f %s\n"), depthvalue, depth_unit);
|
|
if (prefs.calc_all_tissues) {
|
|
int k;
|
|
for (k=0; k<16; k++) {
|
|
if (entry->ceilings[k]) {
|
|
depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC","Tissue %.0fmin: %.0f %s\n"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (entry->heartbeat)
|
|
put_format(b, translate("gettextFromC","heartbeat:%d\n"), entry->heartbeat);
|
|
if (entry->bearing)
|
|
put_format(b, translate("gettextFromC","bearing:%d\n"), entry->bearing);
|
|
strip_mb(b);
|
|
}
|
|
|
|
void get_plot_details(struct graphics_context *gc, int time, struct membuffer *mb)
|
|
{
|
|
struct plot_info *pi = &gc->pi;
|
|
struct plot_data *entry = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
entry = pi->entry + i;
|
|
if (entry->sec >= time)
|
|
break;
|
|
}
|
|
if (entry)
|
|
plot_string(entry, mb, pi->has_ndl);
|
|
}
|
|
|
|
void get_plot_details_new(struct plot_info *pi, int time, struct membuffer *mb)
|
|
{
|
|
struct plot_data *entry = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
entry = pi->entry + i;
|
|
if (entry->sec >= time)
|
|
break;
|
|
}
|
|
if (entry)
|
|
plot_string(entry, mb, pi->has_ndl);
|
|
}
|
|
|
|
/* Compare two plot_data entries and writes the results into a string */
|
|
void compare_samples(struct plot_data *e1, struct plot_data *e2, char *buf, int bufsize, int sum)
|
|
{
|
|
struct plot_data *start, *stop, *data;
|
|
const char *depth_unit, *pressure_unit, *vertical_speed_unit;
|
|
char *buf2 = malloc(bufsize);
|
|
int avg_speed, max_asc_speed, max_desc_speed;
|
|
int delta_depth, avg_depth, max_depth, min_depth;
|
|
int bar_used, last_pressure, pressurevalue;
|
|
int count, last_sec, delta_time;
|
|
|
|
double depthvalue, speedvalue;
|
|
|
|
if (bufsize > 0)
|
|
buf[0] = '\0';
|
|
if (e1 == NULL || e2 == NULL) {
|
|
free(buf2);
|
|
return;
|
|
}
|
|
|
|
if (e1->sec < e2->sec) {
|
|
start = e1;
|
|
stop = e2;
|
|
} else if (e1->sec > e2->sec) {
|
|
start = e2;
|
|
stop = e1;
|
|
} else {
|
|
free(buf2);
|
|
return;
|
|
}
|
|
count = 0;
|
|
avg_speed = 0;
|
|
max_asc_speed = 0;
|
|
max_desc_speed = 0;
|
|
|
|
delta_depth = abs(start->depth-stop->depth);
|
|
delta_time = abs(start->sec-stop->sec);
|
|
avg_depth = 0;
|
|
max_depth = 0;
|
|
min_depth = INT_MAX;
|
|
bar_used = 0;
|
|
|
|
last_sec = start->sec;
|
|
last_pressure = GET_PRESSURE(start);
|
|
|
|
data = start;
|
|
while (data != stop) {
|
|
data = start+count;
|
|
if (sum)
|
|
avg_speed += abs(data->speed)*(data->sec-last_sec);
|
|
else
|
|
avg_speed += data->speed*(data->sec-last_sec);
|
|
avg_depth += data->depth*(data->sec-last_sec);
|
|
|
|
if (data->speed > max_desc_speed)
|
|
max_desc_speed = data->speed;
|
|
if (data->speed < max_asc_speed)
|
|
max_asc_speed = data->speed;
|
|
|
|
if (data->depth < min_depth)
|
|
min_depth = data->depth;
|
|
if (data->depth > max_depth)
|
|
max_depth = data->depth;
|
|
/* Try to detect gas changes */
|
|
if (GET_PRESSURE(data) < last_pressure+2000)
|
|
bar_used += last_pressure-GET_PRESSURE(data);
|
|
|
|
count+=1;
|
|
last_sec = data->sec;
|
|
last_pressure = GET_PRESSURE(data);
|
|
}
|
|
avg_depth /= stop->sec-start->sec;
|
|
avg_speed /= stop->sec-start->sec;
|
|
|
|
snprintf(buf, bufsize, translate("gettextFromC","%sT: %d:%02d min"), UTF8_DELTA, delta_time/60, delta_time%60);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
depthvalue = get_depth_units(delta_depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_DELTA, depthvalue, depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
depthvalue = get_depth_units(min_depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_DOWNWARDS_ARROW, depthvalue, depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
depthvalue = get_depth_units(max_depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_UPWARDS_ARROW, depthvalue, depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
depthvalue = get_depth_units(avg_depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s\n"), buf2, UTF8_AVERAGE, depthvalue, depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC","%s%sV:%.2f%s"), buf2, UTF8_DOWNWARDS_ARROW, speedvalue, vertical_speed_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC","%s %sV:%.2f%s"), buf2, UTF8_UPWARDS_ARROW, speedvalue, vertical_speed_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC","%s %sV:%.2f%s"), buf2, UTF8_AVERAGE, speedvalue, vertical_speed_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
/* Only print if gas has been used */
|
|
if (bar_used) {
|
|
pressurevalue = get_pressure_units(bar_used, &pressure_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, translate("gettextFromC","%s %sP:%d %s"), buf2, UTF8_DELTA, pressurevalue, pressure_unit);
|
|
}
|
|
|
|
free(buf2);
|
|
}
|