mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-28 13:10:19 +00:00
950638ec1c
is_cylinder_used uses get_cylinder_index as underlaying function that does the right thing with with respect on how to find the closest matching cylinder, and handles both types of gaschange events correctly. Signed-off-by: Anton Lundin <glance@acc.umu.se> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2551 lines
62 KiB
C
2551 lines
62 KiB
C
/* dive.c */
|
||
/* maintains the internal dive list structure */
|
||
#include <string.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <limits.h>
|
||
#include "gettext.h"
|
||
#include "dive.h"
|
||
#include "libdivecomputer.h"
|
||
|
||
/* one could argue about the best place to have this variable -
|
||
* it's used in the UI, but it seems to make the most sense to have it
|
||
* here */
|
||
struct dive displayed_dive;
|
||
|
||
struct tag_entry *g_tag_list = NULL;
|
||
|
||
static const char *default_tags[] = {
|
||
QT_TRANSLATE_NOOP("gettextFromC", "boat"), QT_TRANSLATE_NOOP("gettextFromC", "shore"), QT_TRANSLATE_NOOP("gettextFromC", "drift"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "deep"), QT_TRANSLATE_NOOP("gettextFromC", "cavern"), QT_TRANSLATE_NOOP("gettextFromC", "ice"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "wreck"), QT_TRANSLATE_NOOP("gettextFromC", "cave"), QT_TRANSLATE_NOOP("gettextFromC", "altitude"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "pool"), QT_TRANSLATE_NOOP("gettextFromC", "lake"), QT_TRANSLATE_NOOP("gettextFromC", "river"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "night"), QT_TRANSLATE_NOOP("gettextFromC", "fresh"), QT_TRANSLATE_NOOP("gettextFromC", "student"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "instructor"), QT_TRANSLATE_NOOP("gettextFromC", "photo"), QT_TRANSLATE_NOOP("gettextFromC", "video"),
|
||
QT_TRANSLATE_NOOP("gettextFromC", "deco")
|
||
};
|
||
|
||
void add_event(struct divecomputer *dc, int time, int type, int flags, int value, const char *name)
|
||
{
|
||
struct event *ev, **p;
|
||
unsigned int size, len = strlen(name);
|
||
|
||
size = sizeof(*ev) + len + 1;
|
||
ev = malloc(size);
|
||
if (!ev)
|
||
return;
|
||
memset(ev, 0, size);
|
||
memcpy(ev->name, name, len);
|
||
ev->time.seconds = time;
|
||
ev->type = type;
|
||
ev->flags = flags;
|
||
ev->value = value;
|
||
|
||
p = &dc->events;
|
||
|
||
/* insert in the sorted list of events */
|
||
while (*p && (*p)->time.seconds <= time)
|
||
p = &(*p)->next;
|
||
ev->next = *p;
|
||
*p = ev;
|
||
remember_event(name);
|
||
}
|
||
|
||
static int same_event(struct event *a, struct event *b)
|
||
{
|
||
if (a->time.seconds != b->time.seconds)
|
||
return 0;
|
||
if (a->type != b->type)
|
||
return 0;
|
||
if (a->flags != b->flags)
|
||
return 0;
|
||
if (a->value != b->value)
|
||
return 0;
|
||
return !strcmp(a->name, b->name);
|
||
}
|
||
|
||
void remove_event(struct event* event)
|
||
{
|
||
struct event **ep = ¤t_dc->events;
|
||
while (ep && !same_event(*ep, event))
|
||
ep = &(*ep)->next;
|
||
if (ep) {
|
||
*ep = event->next;
|
||
free(event);
|
||
}
|
||
}
|
||
|
||
/* since the name is an array as part of the structure (how silly is that?) we
|
||
* have to actually remove the existing event and replace it with a new one.
|
||
* WARNING, WARNING... this may end up freeing event in case that event is indeed
|
||
* WARNING, WARNING... part of this divecomputer on this dive! */
|
||
void update_event_name(struct dive *d, struct event* event, char *name)
|
||
{
|
||
if (!d || !event)
|
||
return;
|
||
struct divecomputer *dc = get_dive_dc(d, dc_number);
|
||
if (!dc)
|
||
return;
|
||
struct event **removep = &dc->events;
|
||
struct event *remove;
|
||
while ((*removep)->next && !same_event(*removep, event))
|
||
removep = &(*removep)->next;
|
||
if (!same_event(*removep, event))
|
||
return;
|
||
remove = *removep;
|
||
*removep = (*removep)->next;
|
||
add_event(dc, event->time.seconds, event->type, event->flags, event->value, name);
|
||
free(remove);
|
||
}
|
||
|
||
/* this returns a pointer to static variable - so use it right away after calling */
|
||
struct gasmix *get_gasmix_from_event(struct event *ev)
|
||
{
|
||
static struct gasmix g;
|
||
g.o2.permille = g.he.permille = 0;
|
||
if (ev && (ev->type == SAMPLE_EVENT_GASCHANGE || ev->type == SAMPLE_EVENT_GASCHANGE2)) {
|
||
g.o2.permille = 10 * ev->value & 0xffff;
|
||
if (ev->type == SAMPLE_EVENT_GASCHANGE2)
|
||
g.he.permille = 10 * (ev->value >> 16);
|
||
}
|
||
return &g;
|
||
}
|
||
|
||
int get_pressure_units(int mb, const char **units)
|
||
{
|
||
int pressure;
|
||
const char *unit;
|
||
struct units *units_p = get_units();
|
||
|
||
switch (units_p->pressure) {
|
||
case PASCAL:
|
||
pressure = mb * 100;
|
||
unit = translate("gettextFromC", "pascal");
|
||
break;
|
||
case BAR:
|
||
default:
|
||
pressure = (mb + 500) / 1000;
|
||
unit = translate("gettextFromC", "bar");
|
||
break;
|
||
case PSI:
|
||
pressure = mbar_to_PSI(mb);
|
||
unit = translate("gettextFromC", "psi");
|
||
break;
|
||
}
|
||
if (units)
|
||
*units = unit;
|
||
return pressure;
|
||
}
|
||
|
||
double get_temp_units(unsigned int mk, const char **units)
|
||
{
|
||
double deg;
|
||
const char *unit;
|
||
struct units *units_p = get_units();
|
||
|
||
if (units_p->temperature == FAHRENHEIT) {
|
||
deg = mkelvin_to_F(mk);
|
||
unit = UTF8_DEGREE "F";
|
||
} else {
|
||
deg = mkelvin_to_C(mk);
|
||
unit = UTF8_DEGREE "C";
|
||
}
|
||
if (units)
|
||
*units = unit;
|
||
return deg;
|
||
}
|
||
|
||
double get_volume_units(unsigned int ml, int *frac, const char **units)
|
||
{
|
||
int decimals;
|
||
double vol;
|
||
const char *unit;
|
||
struct units *units_p = get_units();
|
||
|
||
switch (units_p->volume) {
|
||
case LITER:
|
||
default:
|
||
vol = ml / 1000.0;
|
||
unit = translate("gettextFromC", "ℓ");
|
||
decimals = 1;
|
||
break;
|
||
case CUFT:
|
||
vol = ml_to_cuft(ml);
|
||
unit = translate("gettextFromC", "cuft");
|
||
decimals = 2;
|
||
break;
|
||
}
|
||
if (frac)
|
||
*frac = decimals;
|
||
if (units)
|
||
*units = unit;
|
||
return vol;
|
||
}
|
||
|
||
unsigned int units_to_depth(double depth)
|
||
{
|
||
if (get_units()->length == METERS)
|
||
return rint(depth * 1000);
|
||
return feet_to_mm(depth);
|
||
}
|
||
|
||
double get_depth_units(int mm, int *frac, const char **units)
|
||
{
|
||
int decimals;
|
||
double d;
|
||
const char *unit;
|
||
struct units *units_p = get_units();
|
||
|
||
switch (units_p->length) {
|
||
case METERS:
|
||
default:
|
||
d = mm / 1000.0;
|
||
unit = translate("gettextFromC", "m");
|
||
decimals = d < 20;
|
||
break;
|
||
case FEET:
|
||
d = mm_to_feet(mm);
|
||
unit = translate("gettextFromC", "ft");
|
||
decimals = 0;
|
||
break;
|
||
}
|
||
if (frac)
|
||
*frac = decimals;
|
||
if (units)
|
||
*units = unit;
|
||
return d;
|
||
}
|
||
|
||
double get_vertical_speed_units(unsigned int mms, int *frac, const char **units)
|
||
{
|
||
double d;
|
||
const char *unit;
|
||
const struct units *units_p = get_units();
|
||
const double time_factor = units_p->vertical_speed_time == MINUTES ? 60.0 : 1.0;
|
||
|
||
switch (units_p->length) {
|
||
case METERS:
|
||
default:
|
||
d = mms / 1000.0 * time_factor;
|
||
if (units_p->vertical_speed_time == MINUTES)
|
||
unit = translate("gettextFromC", "m/min");
|
||
else
|
||
unit = translate("gettextFromC", "m/s");
|
||
break;
|
||
case FEET:
|
||
d = mm_to_feet(mms) * time_factor;
|
||
if (units_p->vertical_speed_time == MINUTES)
|
||
unit = translate("gettextFromC", "ft/min");
|
||
else
|
||
unit = translate("gettextFromC", "ft/s");
|
||
break;
|
||
}
|
||
if (frac)
|
||
*frac = d < 10;
|
||
if (units)
|
||
*units = unit;
|
||
return d;
|
||
}
|
||
|
||
double get_weight_units(unsigned int grams, int *frac, const char **units)
|
||
{
|
||
int decimals;
|
||
double value;
|
||
const char *unit;
|
||
struct units *units_p = get_units();
|
||
|
||
if (units_p->weight == LBS) {
|
||
value = grams_to_lbs(grams);
|
||
unit = translate("gettextFromC", "lbs");
|
||
decimals = 0;
|
||
} else {
|
||
value = grams / 1000.0;
|
||
unit = translate("gettextFromC", "kg");
|
||
decimals = 1;
|
||
}
|
||
if (frac)
|
||
*frac = decimals;
|
||
if (units)
|
||
*units = unit;
|
||
return value;
|
||
}
|
||
|
||
bool has_hr_data(struct divecomputer *dc)
|
||
{
|
||
int i;
|
||
struct sample *sample;
|
||
|
||
if (!dc)
|
||
return false;
|
||
|
||
sample = dc->sample;
|
||
for (i = 0; i < dc->samples; i++)
|
||
if (sample[i].heartbeat)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
struct dive *alloc_dive(void)
|
||
{
|
||
struct dive *dive;
|
||
|
||
dive = malloc(sizeof(*dive));
|
||
if (!dive)
|
||
exit(1);
|
||
memset(dive, 0, sizeof(*dive));
|
||
dive->id = dive_getUniqID(dive);
|
||
return dive;
|
||
}
|
||
|
||
static void free_dc(struct divecomputer *dc);
|
||
static void free_pic(struct picture *picture);
|
||
|
||
/* this is very different from the copy_divecomputer later in this file;
|
||
* this function actually makes full copies of the content */
|
||
static void copy_dc(struct divecomputer *sdc, struct divecomputer *ddc)
|
||
{
|
||
*ddc = *sdc;
|
||
ddc->model = copy_string(sdc->model);
|
||
copy_samples(sdc, ddc);
|
||
copy_events(sdc, ddc);
|
||
}
|
||
|
||
/* copy an element in a list of pictures */
|
||
static void copy_pl(struct picture *sp, struct picture *dp)
|
||
{
|
||
*dp = *sp;
|
||
dp->filename = copy_string(sp->filename);
|
||
}
|
||
|
||
/* copy an element in a list of tags */
|
||
static void copy_tl(struct tag_entry *st, struct tag_entry *dt)
|
||
{
|
||
dt->tag = malloc(sizeof(struct divetag));
|
||
dt->tag->name = copy_string(st->tag->name);
|
||
dt->tag->source = copy_string(st->tag->source);
|
||
}
|
||
|
||
/* Clear everything but the first element;
|
||
* this works for taglist, picturelist, even dive computers */
|
||
#define STRUCTURED_LIST_FREE(_type, _start, _free) {\
|
||
_type *_ptr = _start; \
|
||
while(_ptr) { \
|
||
_type *_next = _ptr->next; \
|
||
_free(_ptr); \
|
||
_ptr = _next; \
|
||
}}
|
||
|
||
#define STRUCTURED_LIST_COPY(_type, _first, _dest, _cpy) {\
|
||
_type *_sptr = _first; \
|
||
_type **_dptr = &_dest; \
|
||
while(_sptr) { \
|
||
*_dptr = malloc(sizeof(_type)); \
|
||
_cpy(_sptr, *_dptr); \
|
||
_sptr = _sptr->next; \
|
||
_dptr = &(*_dptr)->next; \
|
||
} \
|
||
*_dptr = 0; \
|
||
}
|
||
|
||
/* copy_dive makes duplicates of many components of a dive;
|
||
* in order not to leak memory, we need to free those .
|
||
* copy_dive doesn't play with the divetrip and forward/backward pointers
|
||
* so we can ignore those */
|
||
void clear_dive(struct dive *d)
|
||
{
|
||
if (!d)
|
||
return;
|
||
/* free the strings */
|
||
free(d->buddy);
|
||
free(d->divemaster);
|
||
free(d->location);
|
||
free(d->notes);
|
||
free(d->suit);
|
||
/* free tags, additional dive computers, and pictures */
|
||
taglist_free(d->tag_list);
|
||
STRUCTURED_LIST_FREE(struct divecomputer, d->dc.next, free_dc);
|
||
STRUCTURED_LIST_FREE(struct picture, d->picture_list, free_pic);
|
||
memset(d, 0, sizeof(struct dive));
|
||
}
|
||
|
||
/* make a true copy that is independent of the source dive;
|
||
* all data structures are duplicated, so the copy can be modified without
|
||
* any impact on the source */
|
||
void copy_dive(struct dive *s, struct dive *d)
|
||
{
|
||
clear_dive(d);
|
||
/* simply copy things over, but then make actual copies of the
|
||
* relevant components that are referenced through pointers,
|
||
* so all the strings and the structured lists */
|
||
*d = *s;
|
||
d->buddy = copy_string(s->buddy);
|
||
d->divemaster = copy_string(s->divemaster);
|
||
d->location = copy_string(s->location);
|
||
d->notes = copy_string(s->notes);
|
||
d->suit = copy_string(s->suit);
|
||
STRUCTURED_LIST_COPY(struct picture, s->picture_list, d->picture_list, copy_pl);
|
||
STRUCTURED_LIST_COPY(struct tag_entry, s->tag_list, d->tag_list, copy_tl);
|
||
STRUCTURED_LIST_COPY(struct divecomputer, s->dc.next, d->dc.next, copy_dc);
|
||
/* this only copied dive computers 2 and up. The first dive computer is part
|
||
* of the struct dive, so let's make copies of its samples and events */
|
||
copy_samples(&s->dc, &d->dc);
|
||
copy_events(&s->dc, &d->dc);
|
||
}
|
||
|
||
/* make a clone of the source dive and clean out the source dive;
|
||
* this is specifically so we can create a dive in the displayed_dive and then
|
||
* add it to the divelist.
|
||
* Note the difference to copy_dive() / clean_dive() */
|
||
struct dive *clone_dive(struct dive *s)
|
||
{
|
||
struct dive *dive = alloc_dive();
|
||
*dive = *s; // so all the pointers in dive point to the things s pointed to
|
||
memset(s, 0, sizeof(struct dive)); // and now the pointers in s are gone
|
||
return dive;
|
||
}
|
||
|
||
/* only copies events from the first dive computer */
|
||
void copy_events(struct divecomputer *s, struct divecomputer *d)
|
||
{
|
||
struct event *ev;
|
||
if (!s || !d)
|
||
return;
|
||
ev = s->events;
|
||
d->events = NULL;
|
||
while (ev != NULL) {
|
||
add_event(d, ev->time.seconds, ev->type, ev->flags, ev->value, ev->name);
|
||
ev = ev->next;
|
||
}
|
||
}
|
||
|
||
int nr_cylinders(struct dive *dive)
|
||
{
|
||
int nr;
|
||
|
||
for (nr = MAX_CYLINDERS; nr; --nr) {
|
||
cylinder_t *cylinder = dive->cylinder + nr - 1;
|
||
if (!cylinder_nodata(cylinder))
|
||
break;
|
||
}
|
||
return nr;
|
||
}
|
||
|
||
int nr_weightsystems(struct dive *dive)
|
||
{
|
||
int nr;
|
||
|
||
for (nr = MAX_WEIGHTSYSTEMS; nr; --nr) {
|
||
weightsystem_t *ws = dive->weightsystem + nr - 1;
|
||
if (!weightsystem_none(ws))
|
||
break;
|
||
}
|
||
return nr;
|
||
}
|
||
|
||
void copy_cylinders(struct dive *s, struct dive *d, bool used_only)
|
||
{
|
||
int i;
|
||
if (!s || !d)
|
||
return;
|
||
for (i = 0; i < MAX_CYLINDERS; i++)
|
||
if (!used_only || is_cylinder_used(s, i))
|
||
d->cylinder[i] = s->cylinder[i];
|
||
else
|
||
memset(&d->cylinder[i], 0, sizeof(cylinder_t));
|
||
}
|
||
|
||
void copy_samples(struct divecomputer *s, struct divecomputer *d)
|
||
{
|
||
/* instead of carefully copying them one by one and calling add_sample
|
||
* over and over again, let's just copy the whole blob */
|
||
if (!s || !d)
|
||
return;
|
||
int nr = s->samples;
|
||
d->samples = nr;
|
||
d->sample = malloc(nr * sizeof(struct sample));
|
||
if (d->sample)
|
||
memcpy(d->sample, s->sample, nr * sizeof(struct sample));
|
||
}
|
||
|
||
struct sample *prepare_sample(struct divecomputer *dc)
|
||
{
|
||
if (dc) {
|
||
int nr = dc->samples;
|
||
int alloc_samples = dc->alloc_samples;
|
||
struct sample *sample;
|
||
if (nr >= alloc_samples) {
|
||
struct sample *newsamples;
|
||
|
||
alloc_samples = (alloc_samples * 3) / 2 + 10;
|
||
newsamples = realloc(dc->sample, alloc_samples * sizeof(struct sample));
|
||
if (!newsamples)
|
||
return NULL;
|
||
dc->alloc_samples = alloc_samples;
|
||
dc->sample = newsamples;
|
||
}
|
||
sample = dc->sample + nr;
|
||
memset(sample, 0, sizeof(*sample));
|
||
return sample;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
void finish_sample(struct divecomputer *dc)
|
||
{
|
||
dc->samples++;
|
||
}
|
||
|
||
/*
|
||
* So when we re-calculate maxdepth and meandepth, we will
|
||
* not override the old numbers if they are close to the
|
||
* new ones.
|
||
*
|
||
* Why? Because a dive computer may well actually track the
|
||
* max depth and mean depth at finer granularity than the
|
||
* samples it stores. So it's possible that the max and mean
|
||
* have been reported more correctly originally.
|
||
*
|
||
* Only if the values calculated from the samples are clearly
|
||
* different do we override the normal depth values.
|
||
*
|
||
* This considers 1m to be "clearly different". That's
|
||
* a totally random number.
|
||
*/
|
||
static void update_depth(depth_t *depth, int new)
|
||
{
|
||
if (new) {
|
||
int old = depth->mm;
|
||
|
||
if (abs(old - new) > 1000)
|
||
depth->mm = new;
|
||
}
|
||
}
|
||
|
||
static void update_temperature(temperature_t *temperature, int new)
|
||
{
|
||
if (new) {
|
||
int old = temperature->mkelvin;
|
||
|
||
if (abs(old - new) > 1000)
|
||
temperature->mkelvin = new;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Calculate how long we were actually under water, and the average
|
||
* depth while under water.
|
||
*
|
||
* This ignores any surface time in the middle of the dive.
|
||
*/
|
||
static void fixup_dc_duration(struct divecomputer *dc)
|
||
{
|
||
int duration, i;
|
||
int lasttime, lastdepth, depthtime;
|
||
|
||
duration = 0;
|
||
lasttime = 0;
|
||
lastdepth = 0;
|
||
depthtime = 0;
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample + i;
|
||
int time = sample->time.seconds;
|
||
int depth = sample->depth.mm;
|
||
|
||
/* We ignore segments at the surface */
|
||
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
|
||
duration += time - lasttime;
|
||
depthtime += (time - lasttime) * (depth + lastdepth) / 2;
|
||
}
|
||
lastdepth = depth;
|
||
lasttime = time;
|
||
}
|
||
if (duration) {
|
||
dc->duration.seconds = duration;
|
||
dc->meandepth.mm = (depthtime + duration / 2) / duration;
|
||
}
|
||
}
|
||
|
||
void per_cylinder_mean_depth(struct dive *dive, struct divecomputer *dc, int *mean, int *duration)
|
||
{
|
||
int i;
|
||
int depthtime[MAX_CYLINDERS] = { 0, };
|
||
int lasttime = 0, lastdepth = 0;
|
||
int idx = 0;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++)
|
||
mean[i] = duration[i] = 0;
|
||
struct event *ev = get_next_event(dc->events, "gaschange");
|
||
if (!ev) {
|
||
// special case - no gas changes
|
||
mean[0] = dc->meandepth.mm;
|
||
duration[0] = dc->duration.seconds;
|
||
return;
|
||
}
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample + i;
|
||
int time = sample->time.seconds;
|
||
int depth = sample->depth.mm;
|
||
if (ev && time >= ev->time.seconds) {
|
||
idx = get_cylinder_index(dive, ev);
|
||
ev = get_next_event(ev->next, "gaschange");
|
||
}
|
||
/* We ignore segments at the surface */
|
||
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
|
||
duration[idx] += time - lasttime;
|
||
depthtime[idx] += (time - lasttime) * (depth + lastdepth) / 2;
|
||
}
|
||
lastdepth = depth;
|
||
lasttime = time;
|
||
}
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
if (duration[i])
|
||
mean[i] = (depthtime[i] + duration[i] / 2) / duration[i];
|
||
}
|
||
}
|
||
|
||
static void fixup_pressure(struct dive *dive, struct sample *sample)
|
||
{
|
||
int pressure, index;
|
||
cylinder_t *cyl;
|
||
|
||
pressure = sample->cylinderpressure.mbar;
|
||
if (!pressure)
|
||
return;
|
||
index = sample->sensor;
|
||
|
||
/* FIXME! sensor -> cylinder mapping? */
|
||
if (index >= MAX_CYLINDERS)
|
||
return;
|
||
cyl = dive->cylinder + index;
|
||
if (!cyl->sample_start.mbar)
|
||
cyl->sample_start.mbar = pressure;
|
||
cyl->sample_end.mbar = pressure;
|
||
}
|
||
|
||
static void update_min_max_temperatures(struct dive *dive, temperature_t temperature)
|
||
{
|
||
if (temperature.mkelvin) {
|
||
if (!dive->maxtemp.mkelvin || temperature.mkelvin > dive->maxtemp.mkelvin)
|
||
dive->maxtemp = temperature;
|
||
if (!dive->mintemp.mkelvin || temperature.mkelvin < dive->mintemp.mkelvin)
|
||
dive->mintemp = temperature;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* At high pressures air becomes less compressible, and
|
||
* does not follow the ideal gas law any more.
|
||
*
|
||
* This tries to correct for that, becoming the same
|
||
* as to_ATM() at lower pressures.
|
||
*
|
||
* THIS IS A ROUGH APPROXIMATION! The real numbers will
|
||
* depend on the exact gas mix and temperature.
|
||
*/
|
||
double surface_volume_multiplier(pressure_t pressure)
|
||
{
|
||
double bar = pressure.mbar / 1000.0;
|
||
|
||
if (bar > 200)
|
||
bar = 0.00038 * bar * bar + 0.51629 * bar + 81.542;
|
||
return bar_to_atm(bar);
|
||
}
|
||
|
||
int gas_volume(cylinder_t *cyl, pressure_t p)
|
||
{
|
||
return cyl->type.size.mliter * surface_volume_multiplier(p);
|
||
}
|
||
|
||
int wet_volume(double cuft, pressure_t p)
|
||
{
|
||
return cuft_to_l(cuft) * 1000 / surface_volume_multiplier(p);
|
||
}
|
||
|
||
/*
|
||
* If the cylinder tank pressures are within half a bar
|
||
* (about 8 PSI) of the sample pressures, we consider it
|
||
* to be a rounding error, and throw them away as redundant.
|
||
*/
|
||
static int same_rounded_pressure(pressure_t a, pressure_t b)
|
||
{
|
||
return abs(a.mbar - b.mbar) <= 500;
|
||
}
|
||
|
||
void sanitize_gasmix(struct gasmix *mix)
|
||
{
|
||
unsigned int o2, he;
|
||
|
||
o2 = mix->o2.permille;
|
||
he = mix->he.permille;
|
||
|
||
/* Regular air: leave empty */
|
||
if (!he) {
|
||
if (!o2)
|
||
return;
|
||
/* 20.8% to 21% O2 is just air */
|
||
if (gasmix_is_air(mix)) {
|
||
mix->o2.permille = 0;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Sane mix? */
|
||
if (o2 <= 1000 && he <= 1000 && o2 + he <= 1000)
|
||
return;
|
||
fprintf(stderr, "Odd gasmix: %u O2 %u He\n", o2, he);
|
||
memset(mix, 0, sizeof(*mix));
|
||
}
|
||
|
||
/*
|
||
* See if the size/workingpressure looks like some standard cylinder
|
||
* size, eg "AL80".
|
||
*/
|
||
static void match_standard_cylinder(cylinder_type_t *type)
|
||
{
|
||
double cuft;
|
||
int psi, len;
|
||
const char *fmt;
|
||
char buffer[40], *p;
|
||
|
||
/* Do we already have a cylinder description? */
|
||
if (type->description)
|
||
return;
|
||
|
||
cuft = ml_to_cuft(type->size.mliter);
|
||
cuft *= surface_volume_multiplier(type->workingpressure);
|
||
psi = to_PSI(type->workingpressure);
|
||
|
||
switch (psi) {
|
||
case 2300 ... 2500: /* 2400 psi: LP tank */
|
||
fmt = "LP%d";
|
||
break;
|
||
case 2600 ... 2700: /* 2640 psi: LP+10% */
|
||
fmt = "LP%d";
|
||
break;
|
||
case 2900 ... 3100: /* 3000 psi: ALx tank */
|
||
fmt = "AL%d";
|
||
break;
|
||
case 3400 ... 3500: /* 3442 psi: HP tank */
|
||
fmt = "HP%d";
|
||
break;
|
||
case 3700 ... 3850: /* HP+10% */
|
||
fmt = "HP%d+";
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
len = snprintf(buffer, sizeof(buffer), fmt, (int)rint(cuft));
|
||
p = malloc(len + 1);
|
||
if (!p)
|
||
return;
|
||
memcpy(p, buffer, len + 1);
|
||
type->description = p;
|
||
}
|
||
|
||
|
||
/*
|
||
* There are two ways to give cylinder size information:
|
||
* - total amount of gas in cuft (depends on working pressure and physical size)
|
||
* - physical size
|
||
*
|
||
* where "physical size" is the one that actually matters and is sane.
|
||
*
|
||
* We internally use physical size only. But we save the workingpressure
|
||
* so that we can do the conversion if required.
|
||
*/
|
||
static void sanitize_cylinder_type(cylinder_type_t *type)
|
||
{
|
||
double volume_of_air, volume;
|
||
|
||
/* If we have no working pressure, it had *better* be just a physical size! */
|
||
if (!type->workingpressure.mbar)
|
||
return;
|
||
|
||
/* No size either? Nothing to go on */
|
||
if (!type->size.mliter)
|
||
return;
|
||
|
||
if (xml_parsing_units.volume == CUFT) {
|
||
/* confusing - we don't really start from ml but millicuft !*/
|
||
volume_of_air = cuft_to_l(type->size.mliter);
|
||
/* milliliters at 1 atm: "true size" */
|
||
volume = volume_of_air / surface_volume_multiplier(type->workingpressure);
|
||
type->size.mliter = rint(volume);
|
||
}
|
||
|
||
/* Ok, we have both size and pressure: try to match a description */
|
||
match_standard_cylinder(type);
|
||
}
|
||
|
||
static void sanitize_cylinder_info(struct dive *dive)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
sanitize_gasmix(&dive->cylinder[i].gasmix);
|
||
sanitize_cylinder_type(&dive->cylinder[i].type);
|
||
}
|
||
}
|
||
|
||
/* some events should never be thrown away */
|
||
static bool is_potentially_redundant(struct event *event)
|
||
{
|
||
if (!strcmp(event->name, "gaschange"))
|
||
return false;
|
||
if (!strcmp(event->name, "bookmark"))
|
||
return false;
|
||
if (!strcmp(event->name, "heading"))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* match just by name - we compare the details in the code that uses this helper */
|
||
static struct event *find_previous_event(struct divecomputer *dc, struct event *event)
|
||
{
|
||
struct event *ev = dc->events;
|
||
struct event *previous = NULL;
|
||
|
||
if (!event->name)
|
||
return NULL;
|
||
while (ev && ev != event) {
|
||
if (ev->name && !strcmp(ev->name, event->name))
|
||
previous = ev;
|
||
ev = ev->next;
|
||
}
|
||
return previous;
|
||
}
|
||
|
||
static void fixup_surface_pressure(struct dive *dive)
|
||
{
|
||
struct divecomputer *dc;
|
||
int sum = 0, nr = 0;
|
||
|
||
for_each_dc(dive, dc) {
|
||
if (dc->surface_pressure.mbar) {
|
||
sum += dc->surface_pressure.mbar;
|
||
nr++;
|
||
}
|
||
}
|
||
if (nr)
|
||
dive->surface_pressure.mbar = (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_water_salinity(struct dive *dive)
|
||
{
|
||
struct divecomputer *dc;
|
||
int sum = 0, nr = 0;
|
||
|
||
for_each_dc(dive, dc) {
|
||
if (dc->salinity) {
|
||
sum += dc->salinity;
|
||
nr++;
|
||
}
|
||
}
|
||
if (nr)
|
||
dive->salinity = (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_meandepth(struct dive *dive)
|
||
{
|
||
struct divecomputer *dc;
|
||
int sum = 0, nr = 0;
|
||
|
||
for_each_dc(dive, dc) {
|
||
if (dc->meandepth.mm) {
|
||
sum += dc->meandepth.mm;
|
||
nr++;
|
||
}
|
||
}
|
||
if (nr)
|
||
dive->meandepth.mm = (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_duration(struct dive *dive)
|
||
{
|
||
struct divecomputer *dc;
|
||
unsigned int duration = 0;
|
||
|
||
for_each_dc(dive, dc)
|
||
duration = MAX(duration, dc->duration.seconds);
|
||
|
||
dive->duration.seconds = duration;
|
||
}
|
||
|
||
/*
|
||
* What do the dive computers say the water temperature is?
|
||
* (not in the samples, but as dc property for dcs that support that)
|
||
*/
|
||
unsigned int dc_watertemp(struct divecomputer *dc)
|
||
{
|
||
int sum = 0, nr = 0;
|
||
|
||
do {
|
||
if (dc->watertemp.mkelvin) {
|
||
sum += dc->watertemp.mkelvin;
|
||
nr++;
|
||
}
|
||
} while ((dc = dc->next) != NULL);
|
||
if (!nr)
|
||
return 0;
|
||
return (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_watertemp(struct dive *dive)
|
||
{
|
||
if (!dive->watertemp.mkelvin)
|
||
dive->watertemp.mkelvin = dc_watertemp(&dive->dc);
|
||
}
|
||
|
||
/*
|
||
* What do the dive computers say the air temperature is?
|
||
*/
|
||
unsigned int dc_airtemp(struct divecomputer *dc)
|
||
{
|
||
int sum = 0, nr = 0;
|
||
|
||
do {
|
||
if (dc->airtemp.mkelvin) {
|
||
sum += dc->airtemp.mkelvin;
|
||
nr++;
|
||
}
|
||
} while ((dc = dc->next) != NULL);
|
||
if (!nr)
|
||
return 0;
|
||
return (sum + nr / 2) / nr;
|
||
}
|
||
|
||
static void fixup_airtemp(struct dive *dive)
|
||
{
|
||
if (!dive->airtemp.mkelvin)
|
||
dive->airtemp.mkelvin = dc_airtemp(&dive->dc);
|
||
}
|
||
|
||
/* zero out the airtemp in the dive structure if it was just created by
|
||
* running fixup on the dive. keep it if it had been edited by hand */
|
||
static void un_fixup_airtemp(struct dive *a)
|
||
{
|
||
if (a->airtemp.mkelvin && a->airtemp.mkelvin == dc_airtemp(&a->dc))
|
||
a->airtemp.mkelvin = 0;
|
||
}
|
||
|
||
/*
|
||
* events are stored as a linked list, so the concept of
|
||
* "consecutive, identical events" is somewhat hard to
|
||
* implement correctly (especially given that on some dive
|
||
* computers events are asynchronous, so they can come in
|
||
* between what would be the non-constant sample rate).
|
||
*
|
||
* So what we do is that we throw away clearly redundant
|
||
* events that are fewer than 61 seconds apart (assuming there
|
||
* is no dive computer with a sample rate of more than 60
|
||
* seconds... that would be pretty pointless to plot the
|
||
* profile with)
|
||
*
|
||
* We first only mark the events for deletion so that we
|
||
* still know when the previous event happened.
|
||
*/
|
||
static void fixup_dc_events(struct divecomputer *dc)
|
||
{
|
||
struct event *event;
|
||
|
||
event = dc->events;
|
||
while (event) {
|
||
struct event *prev;
|
||
if (is_potentially_redundant(event)) {
|
||
prev = find_previous_event(dc, event);
|
||
if (prev && prev->value == event->value &&
|
||
prev->flags == event->flags &&
|
||
event->time.seconds - prev->time.seconds < 61)
|
||
event->deleted = true;
|
||
}
|
||
event = event->next;
|
||
}
|
||
event = dc->events;
|
||
while (event) {
|
||
if (event->next && event->next->deleted) {
|
||
struct event *nextnext = event->next->next;
|
||
free(event->next);
|
||
event->next = nextnext;
|
||
} else {
|
||
event = event->next;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void fixup_dive_dc(struct dive *dive, struct divecomputer *dc)
|
||
{
|
||
int i, j;
|
||
double depthtime = 0;
|
||
int lasttime = 0;
|
||
int lastindex = -1;
|
||
int maxdepth = dc->maxdepth.mm;
|
||
int mintemp = 0;
|
||
int lastdepth = 0;
|
||
int lasttemp = 0, lastpressure = 0;
|
||
int pressure_delta[MAX_CYLINDERS] = { INT_MAX, };
|
||
|
||
/* Fixup duration and mean depth */
|
||
fixup_dc_duration(dc);
|
||
|
||
update_min_max_temperatures(dive, dc->watertemp);
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct sample *sample = dc->sample + i;
|
||
int time = sample->time.seconds;
|
||
int depth = sample->depth.mm;
|
||
int temp = sample->temperature.mkelvin;
|
||
int pressure = sample->cylinderpressure.mbar;
|
||
int index = sample->sensor;
|
||
|
||
if (index == lastindex) {
|
||
/* Remove duplicate redundant pressure information */
|
||
if (pressure == lastpressure)
|
||
sample->cylinderpressure.mbar = 0;
|
||
/* check for simply linear data in the samples
|
||
+INT_MAX means uninitialized, -INT_MAX means not linear */
|
||
if (pressure_delta[index] != -INT_MAX && lastpressure) {
|
||
if (pressure_delta[index] == INT_MAX) {
|
||
pressure_delta[index] = abs(pressure - lastpressure);
|
||
} else {
|
||
int cur_delta = abs(pressure - lastpressure);
|
||
if (cur_delta && abs(cur_delta - pressure_delta[index]) > 150) {
|
||
/* ok the samples aren't just a linearisation
|
||
* between start and end */
|
||
pressure_delta[index] = -INT_MAX;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
lastindex = index;
|
||
lastpressure = pressure;
|
||
|
||
if (depth > SURFACE_THRESHOLD) {
|
||
if (depth > maxdepth)
|
||
maxdepth = depth;
|
||
}
|
||
|
||
fixup_pressure(dive, sample);
|
||
|
||
if (temp) {
|
||
/*
|
||
* If we have consecutive identical
|
||
* temperature readings, throw away
|
||
* the redundant ones.
|
||
*/
|
||
if (lasttemp == temp)
|
||
sample->temperature.mkelvin = 0;
|
||
else
|
||
lasttemp = temp;
|
||
|
||
if (!mintemp || temp < mintemp)
|
||
mintemp = temp;
|
||
}
|
||
update_min_max_temperatures(dive, sample->temperature);
|
||
|
||
depthtime += (time - lasttime) * (lastdepth + depth) / 2;
|
||
lastdepth = depth;
|
||
lasttime = time;
|
||
if (sample->cns > dive->maxcns)
|
||
dive->maxcns = sample->cns;
|
||
}
|
||
|
||
/* if all the samples for a cylinder have pressure data that
|
||
* is basically equidistant throw out the sample cylinder pressure
|
||
* information but make sure we still have a valid start and end
|
||
* pressure
|
||
* this happens when DivingLog decides to linearalize the
|
||
* pressure between beginning and end and for strange reasons
|
||
* decides to put that in the sample data as if it came from
|
||
* the dive computer; we don't want that (we'll visualize with
|
||
* constant SAC rate instead)
|
||
* WARNING WARNING - I have only seen this in single tank dives
|
||
* --- maybe I should try to create a multi tank dive and see what
|
||
* --- divinglog does there - but the code right now is only tested
|
||
* --- for the single tank case */
|
||
for (j = 0; j < MAX_CYLINDERS; j++) {
|
||
if (abs(pressure_delta[j]) != INT_MAX) {
|
||
cylinder_t *cyl = dive->cylinder + j;
|
||
for (i = 0; i < dc->samples; i++)
|
||
if (dc->sample[i].sensor == j)
|
||
dc->sample[i].cylinderpressure.mbar = 0;
|
||
if (!cyl->start.mbar)
|
||
cyl->start.mbar = cyl->sample_start.mbar;
|
||
if (!cyl->end.mbar)
|
||
cyl->end.mbar = cyl->sample_end.mbar;
|
||
cyl->sample_start.mbar = 0;
|
||
cyl->sample_end.mbar = 0;
|
||
}
|
||
}
|
||
|
||
update_temperature(&dc->watertemp, mintemp);
|
||
update_depth(&dc->maxdepth, maxdepth);
|
||
if (maxdepth > dive->maxdepth.mm)
|
||
dive->maxdepth.mm = maxdepth;
|
||
fixup_dc_events(dc);
|
||
}
|
||
|
||
struct dive *fixup_dive(struct dive *dive)
|
||
{
|
||
int i;
|
||
struct divecomputer *dc;
|
||
|
||
sanitize_cylinder_info(dive);
|
||
dive->maxcns = dive->cns;
|
||
|
||
for_each_dc(dive, dc)
|
||
fixup_dive_dc(dive, dc);
|
||
|
||
fixup_water_salinity(dive);
|
||
fixup_surface_pressure(dive);
|
||
fixup_meandepth(dive);
|
||
fixup_duration(dive);
|
||
fixup_watertemp(dive);
|
||
fixup_airtemp(dive);
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
cylinder_t *cyl = dive->cylinder + i;
|
||
add_cylinder_description(&cyl->type);
|
||
if (same_rounded_pressure(cyl->sample_start, cyl->start))
|
||
cyl->start.mbar = 0;
|
||
if (same_rounded_pressure(cyl->sample_end, cyl->end))
|
||
cyl->end.mbar = 0;
|
||
}
|
||
for (i = 0; i < MAX_WEIGHTSYSTEMS; i++) {
|
||
weightsystem_t *ws = dive->weightsystem + i;
|
||
add_weightsystem_description(ws);
|
||
}
|
||
/* we should always have a uniq ID as that gets assigned during alloc_dive(),
|
||
* but we want to make sure... */
|
||
if (!dive->id)
|
||
dive->id = dive_getUniqID(dive);
|
||
|
||
return dive;
|
||
}
|
||
|
||
/* Don't pick a zero for MERGE_MIN() */
|
||
#define MERGE_MAX(res, a, b, n) res->n = MAX(a->n, b->n)
|
||
#define MERGE_MIN(res, a, b, n) res->n = (a->n) ? (b->n) ? MIN(a->n, b->n) : (a->n) : (b->n)
|
||
#define MERGE_TXT(res, a, b, n) res->n = merge_text(a->n, b->n)
|
||
#define MERGE_NONZERO(res, a, b, n) res->n = a->n ? a->n : b->n
|
||
|
||
static struct sample *add_sample(struct sample *sample, int time, struct divecomputer *dc)
|
||
{
|
||
struct sample *p = prepare_sample(dc);
|
||
|
||
if (p) {
|
||
*p = *sample;
|
||
p->time.seconds = time;
|
||
finish_sample(dc);
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/*
|
||
* This is like add_sample(), but if the distance from the last sample
|
||
* is excessive, we add two surface samples in between.
|
||
*
|
||
* This is so that if you merge two non-overlapping dives, we make sure
|
||
* that the time in between the dives is at the surface, not some "last
|
||
* sample that happened to be at a depth of 1.2m".
|
||
*/
|
||
static void merge_one_sample(struct sample *sample, int time, struct divecomputer *dc)
|
||
{
|
||
int last = dc->samples - 1;
|
||
if (last >= 0) {
|
||
static struct sample surface;
|
||
struct sample *prev = dc->sample + last;
|
||
int last_time = prev->time.seconds;
|
||
int last_depth = prev->depth.mm;
|
||
|
||
/*
|
||
* Only do surface events if the samples are more than
|
||
* a minute apart, and shallower than 5m
|
||
*/
|
||
if (time > last_time + 60 && last_depth < 5000) {
|
||
add_sample(&surface, last_time + 20, dc);
|
||
add_sample(&surface, time - 20, dc);
|
||
}
|
||
}
|
||
add_sample(sample, time, dc);
|
||
}
|
||
|
||
|
||
/*
|
||
* Merge samples. Dive 'a' is "offset" seconds before Dive 'b'
|
||
*/
|
||
static void merge_samples(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int offset)
|
||
{
|
||
int asamples = a->samples;
|
||
int bsamples = b->samples;
|
||
struct sample *as = a->sample;
|
||
struct sample *bs = b->sample;
|
||
|
||
/*
|
||
* We want a positive sample offset, so that sample
|
||
* times are always positive. So if the samples for
|
||
* 'b' are before the samples for 'a' (so the offset
|
||
* is negative), we switch a and b around, and use
|
||
* the reverse offset.
|
||
*/
|
||
if (offset < 0) {
|
||
offset = -offset;
|
||
asamples = bsamples;
|
||
bsamples = a->samples;
|
||
as = bs;
|
||
bs = a->sample;
|
||
}
|
||
|
||
for (;;) {
|
||
int at, bt;
|
||
struct sample sample;
|
||
|
||
if (!res)
|
||
return;
|
||
|
||
at = asamples ? as->time.seconds : -1;
|
||
bt = bsamples ? bs->time.seconds + offset : -1;
|
||
|
||
/* No samples? All done! */
|
||
if (at < 0 && bt < 0)
|
||
return;
|
||
|
||
/* Only samples from a? */
|
||
if (bt < 0) {
|
||
add_sample_a:
|
||
merge_one_sample(as, at, res);
|
||
as++;
|
||
asamples--;
|
||
continue;
|
||
}
|
||
|
||
/* Only samples from b? */
|
||
if (at < 0) {
|
||
add_sample_b:
|
||
merge_one_sample(bs, bt, res);
|
||
bs++;
|
||
bsamples--;
|
||
continue;
|
||
}
|
||
|
||
if (at < bt)
|
||
goto add_sample_a;
|
||
if (at > bt)
|
||
goto add_sample_b;
|
||
|
||
/* same-time sample: add a merged sample. Take the non-zero ones */
|
||
sample = *bs;
|
||
if (as->depth.mm)
|
||
sample.depth = as->depth;
|
||
if (as->temperature.mkelvin)
|
||
sample.temperature = as->temperature;
|
||
if (as->cylinderpressure.mbar)
|
||
sample.cylinderpressure = as->cylinderpressure;
|
||
if (as->sensor)
|
||
sample.sensor = as->sensor;
|
||
if (as->cns)
|
||
sample.cns = as->cns;
|
||
if (as->po2.mbar)
|
||
sample.po2 = as->po2;
|
||
if (as->ndl.seconds)
|
||
sample.ndl = as->ndl;
|
||
if (as->stoptime.seconds)
|
||
sample.stoptime = as->stoptime;
|
||
if (as->stopdepth.mm)
|
||
sample.stopdepth = as->stopdepth;
|
||
if (as->in_deco)
|
||
sample.in_deco = true;
|
||
|
||
merge_one_sample(&sample, at, res);
|
||
|
||
as++;
|
||
bs++;
|
||
asamples--;
|
||
bsamples--;
|
||
}
|
||
}
|
||
|
||
static char *merge_text(const char *a, const char *b)
|
||
{
|
||
char *res;
|
||
if (!a && !b)
|
||
return NULL;
|
||
if (!a || !*a)
|
||
return copy_string(b);
|
||
if (!b || !*b)
|
||
return strdup(a);
|
||
if (!strcmp(a, b))
|
||
return copy_string(a);
|
||
res = malloc(strlen(a) + strlen(b) + 32);
|
||
if (!res)
|
||
return (char *)a;
|
||
sprintf(res, translate("gettextFromC", "(%s) or (%s)"), a, b);
|
||
return res;
|
||
}
|
||
|
||
#define SORT(a, b, field) \
|
||
if (a->field != b->field) \
|
||
return a->field < b->field ? -1 : 1
|
||
|
||
static int sort_event(struct event *a, struct event *b)
|
||
{
|
||
SORT(a, b, time.seconds);
|
||
SORT(a, b, type);
|
||
SORT(a, b, flags);
|
||
SORT(a, b, value);
|
||
return strcmp(a->name, b->name);
|
||
}
|
||
|
||
static void merge_events(struct divecomputer *res, struct divecomputer *src1, struct divecomputer *src2, int offset)
|
||
{
|
||
struct event *a, *b;
|
||
struct event **p = &res->events;
|
||
|
||
/* Always use positive offsets */
|
||
if (offset < 0) {
|
||
struct divecomputer *tmp;
|
||
|
||
offset = -offset;
|
||
tmp = src1;
|
||
src1 = src2;
|
||
src2 = tmp;
|
||
}
|
||
|
||
a = src1->events;
|
||
b = src2->events;
|
||
while (b) {
|
||
b->time.seconds += offset;
|
||
b = b->next;
|
||
}
|
||
b = src2->events;
|
||
|
||
while (a || b) {
|
||
int s;
|
||
if (!b) {
|
||
*p = a;
|
||
break;
|
||
}
|
||
if (!a) {
|
||
*p = b;
|
||
break;
|
||
}
|
||
s = sort_event(a, b);
|
||
/* Pick b */
|
||
if (s > 0) {
|
||
*p = b;
|
||
p = &b->next;
|
||
b = b->next;
|
||
continue;
|
||
}
|
||
/* Pick 'a' or neither */
|
||
if (s < 0) {
|
||
*p = a;
|
||
p = &a->next;
|
||
}
|
||
a = a->next;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Pick whichever has any info (if either). Prefer 'a' */
|
||
static void merge_cylinder_type(cylinder_type_t *src, cylinder_type_t *dst)
|
||
{
|
||
if (!dst->size.mliter)
|
||
dst->size.mliter = src->size.mliter;
|
||
if (!dst->workingpressure.mbar)
|
||
dst->workingpressure.mbar = src->workingpressure.mbar;
|
||
if (!dst->description) {
|
||
dst->description = src->description;
|
||
src->description = NULL;
|
||
}
|
||
}
|
||
|
||
static void merge_cylinder_mix(struct gasmix *src, struct gasmix *dst)
|
||
{
|
||
if (!dst->o2.permille)
|
||
*dst = *src;
|
||
}
|
||
|
||
static void merge_cylinder_info(cylinder_t *src, cylinder_t *dst)
|
||
{
|
||
merge_cylinder_type(&src->type, &dst->type);
|
||
merge_cylinder_mix(&src->gasmix, &dst->gasmix);
|
||
MERGE_MAX(dst, dst, src, start.mbar);
|
||
MERGE_MIN(dst, dst, src, end.mbar);
|
||
}
|
||
|
||
static void merge_weightsystem_info(weightsystem_t *res, weightsystem_t *a, weightsystem_t *b)
|
||
{
|
||
if (!a->weight.grams)
|
||
a = b;
|
||
*res = *a;
|
||
}
|
||
|
||
int gasmix_distance(const struct gasmix *a, const struct gasmix *b)
|
||
{
|
||
int a_o2 = get_o2(a), b_o2 = get_o2(b);
|
||
int a_he = get_he(a), b_he = get_he(b);
|
||
int delta_o2 = a_o2 - b_o2, delta_he = a_he - b_he;
|
||
|
||
delta_he = delta_he * delta_he;
|
||
delta_o2 = delta_o2 * delta_o2;
|
||
return delta_he + delta_o2;
|
||
}
|
||
|
||
static int find_cylinder_match(cylinder_t *cyl, cylinder_t array[], unsigned int used)
|
||
{
|
||
int i;
|
||
int best = -1, score = INT_MAX;
|
||
|
||
if (cylinder_nodata(cyl))
|
||
return -1;
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
const cylinder_t *match;
|
||
int distance;
|
||
|
||
if (used & (1 << i))
|
||
continue;
|
||
match = array + i;
|
||
distance = gasmix_distance(&cyl->gasmix, &match->gasmix);
|
||
if (distance >= score)
|
||
continue;
|
||
best = i;
|
||
score = distance;
|
||
}
|
||
return best;
|
||
}
|
||
|
||
/* Force an initial gaschange event to the (old) gas #0 */
|
||
static void add_initial_gaschange(struct dive *dive, struct divecomputer *dc)
|
||
{
|
||
struct event *ev = get_next_event(dc->events, "gaschange");
|
||
|
||
if (ev && ev->time.seconds < 30)
|
||
return;
|
||
|
||
/* Old starting gas mix */
|
||
add_gas_switch_event(dive, dc, 0, 0);
|
||
}
|
||
|
||
static void dc_cylinder_renumber(struct dive *dive, struct divecomputer *dc, int mapping[])
|
||
{
|
||
int i;
|
||
|
||
/* Did the first gas get remapped? Add gas switch event */
|
||
if (mapping[0] > 0)
|
||
add_initial_gaschange(dive, dc);
|
||
|
||
/* Remap the sensor indexes */
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct sample *s = dc->sample + i;
|
||
int sensor;
|
||
|
||
if (!s->cylinderpressure.mbar)
|
||
continue;
|
||
sensor = mapping[s->sensor];
|
||
if (sensor >= 0)
|
||
s->sensor = sensor;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* If the cylinder indexes change (due to merging dives or deleting
|
||
* cylinders in the middle), we need to change the indexes in the
|
||
* dive computer data for this dive.
|
||
*
|
||
* Also note that we assume that the initial cylinder is cylinder 0,
|
||
* so if that got renamed, we need to create a fake gas change event
|
||
*/
|
||
static void cylinder_renumber(struct dive *dive, int mapping[])
|
||
{
|
||
struct divecomputer *dc;
|
||
for_each_dc(dive, dc)
|
||
dc_cylinder_renumber(dive, dc, mapping);
|
||
}
|
||
|
||
/*
|
||
* Merging cylinder information is non-trivial, because the two dive computers
|
||
* may have different ideas of what the different cylinder indexing is.
|
||
*
|
||
* Logic: take all the cylinder information from the preferred dive ('a'), and
|
||
* then try to match each of the cylinders in the other dive by the gasmix that
|
||
* is the best match and hasn't been used yet.
|
||
*/
|
||
static void merge_cylinders(struct dive *res, struct dive *a, struct dive *b)
|
||
{
|
||
int i, renumber = 0;
|
||
int mapping[MAX_CYLINDERS];
|
||
unsigned int used = 0;
|
||
|
||
/* Copy the cylinder info raw from 'a' */
|
||
memcpy(res->cylinder, a->cylinder, sizeof(res->cylinder));
|
||
memset(a->cylinder, 0, sizeof(a->cylinder));
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
int j;
|
||
cylinder_t *cyl = b->cylinder + i;
|
||
|
||
j = find_cylinder_match(cyl, res->cylinder, used);
|
||
mapping[i] = j;
|
||
if (j < 0)
|
||
continue;
|
||
used |= 1 << j;
|
||
merge_cylinder_info(cyl, res->cylinder + j);
|
||
|
||
/* If that renumbered the cylinders, fix it up! */
|
||
if (i != j)
|
||
renumber = 1;
|
||
}
|
||
if (renumber)
|
||
cylinder_renumber(b, mapping);
|
||
}
|
||
|
||
static void merge_equipment(struct dive *res, struct dive *a, struct dive *b)
|
||
{
|
||
int i;
|
||
|
||
merge_cylinders(res, a, b);
|
||
for (i = 0; i < MAX_WEIGHTSYSTEMS; i++)
|
||
merge_weightsystem_info(res->weightsystem + i, a->weightsystem + i, b->weightsystem + i);
|
||
}
|
||
|
||
static void merge_airtemps(struct dive *res, struct dive *a, struct dive *b)
|
||
{
|
||
un_fixup_airtemp(a);
|
||
un_fixup_airtemp(b);
|
||
MERGE_NONZERO(res, a, b, airtemp.mkelvin);
|
||
}
|
||
|
||
/*
|
||
* When merging two dives, this picks the trip from one, and removes it
|
||
* from the other.
|
||
*
|
||
* The 'next' dive is not involved in the dive merging, but is the dive
|
||
* that will be the next dive after the merged dive.
|
||
*/
|
||
static void pick_trip(struct dive *res, struct dive *pick)
|
||
{
|
||
tripflag_t tripflag = pick->tripflag;
|
||
dive_trip_t *trip = pick->divetrip;
|
||
|
||
res->tripflag = tripflag;
|
||
add_dive_to_trip(res, trip);
|
||
}
|
||
|
||
/*
|
||
* Pick a trip for a dive
|
||
*/
|
||
static void merge_trip(struct dive *res, struct dive *a, struct dive *b)
|
||
{
|
||
dive_trip_t *atrip, *btrip;
|
||
|
||
/*
|
||
* The larger tripflag is more relevant: we prefer
|
||
* take manually assigned trips over auto-generated
|
||
* ones.
|
||
*/
|
||
if (a->tripflag > b->tripflag)
|
||
goto pick_a;
|
||
|
||
if (a->tripflag < b->tripflag)
|
||
goto pick_b;
|
||
|
||
/* Otherwise, look at the trip data and pick the "better" one */
|
||
atrip = a->divetrip;
|
||
btrip = b->divetrip;
|
||
if (!atrip)
|
||
goto pick_b;
|
||
if (!btrip)
|
||
goto pick_a;
|
||
if (!atrip->location)
|
||
goto pick_b;
|
||
if (!btrip->location)
|
||
goto pick_a;
|
||
if (!atrip->notes)
|
||
goto pick_b;
|
||
if (!btrip->notes)
|
||
goto pick_a;
|
||
|
||
/*
|
||
* Ok, so both have location and notes.
|
||
* Pick the earlier one.
|
||
*/
|
||
if (a->when < b->when)
|
||
goto pick_a;
|
||
goto pick_b;
|
||
|
||
pick_a:
|
||
b = a;
|
||
pick_b:
|
||
pick_trip(res, b);
|
||
}
|
||
|
||
#if CURRENTLY_NOT_USED
|
||
/*
|
||
* Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'.
|
||
*
|
||
* If 's' and 'a' are at the same time, offset is 0, and b is NULL.
|
||
*/
|
||
static int compare_sample(struct sample *s, struct sample *a, struct sample *b, int offset)
|
||
{
|
||
unsigned int depth = a->depth.mm;
|
||
int diff;
|
||
|
||
if (offset) {
|
||
unsigned int interval = b->time.seconds - a->time.seconds;
|
||
unsigned int depth_a = a->depth.mm;
|
||
unsigned int depth_b = b->depth.mm;
|
||
|
||
if (offset > interval)
|
||
return -1;
|
||
|
||
/* pick the average depth, scaled by the offset from 'b' */
|
||
depth = (depth_a * offset) + (depth_b * (interval - offset));
|
||
depth /= interval;
|
||
}
|
||
diff = s->depth.mm - depth;
|
||
if (diff < 0)
|
||
diff = -diff;
|
||
/* cut off at one meter difference */
|
||
if (diff > 1000)
|
||
diff = 1000;
|
||
return diff * diff;
|
||
}
|
||
|
||
/*
|
||
* Calculate a "difference" in samples between the two dives, given
|
||
* the offset in seconds between them. Use this to find the best
|
||
* match of samples between two different dive computers.
|
||
*/
|
||
static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset)
|
||
{
|
||
int asamples = a->samples;
|
||
int bsamples = b->samples;
|
||
struct sample *as = a->sample;
|
||
struct sample *bs = b->sample;
|
||
unsigned long error = 0;
|
||
int start = -1;
|
||
|
||
if (!asamples || !bsamples)
|
||
return 0;
|
||
|
||
/*
|
||
* skip the first sample - this way we know can always look at
|
||
* as/bs[-1] to look at the samples around it in the loop.
|
||
*/
|
||
as++;
|
||
bs++;
|
||
asamples--;
|
||
bsamples--;
|
||
|
||
for (;;) {
|
||
int at, bt, diff;
|
||
|
||
|
||
/* If we run out of samples, punt */
|
||
if (!asamples)
|
||
return INT_MAX;
|
||
if (!bsamples)
|
||
return INT_MAX;
|
||
|
||
at = as->time.seconds;
|
||
bt = bs->time.seconds + offset;
|
||
|
||
/* b hasn't started yet? Ignore it */
|
||
if (bt < 0) {
|
||
bs++;
|
||
bsamples--;
|
||
continue;
|
||
}
|
||
|
||
if (at < bt) {
|
||
diff = compare_sample(as, bs - 1, bs, bt - at);
|
||
as++;
|
||
asamples--;
|
||
} else if (at > bt) {
|
||
diff = compare_sample(bs, as - 1, as, at - bt);
|
||
bs++;
|
||
bsamples--;
|
||
} else {
|
||
diff = compare_sample(as, bs, NULL, 0);
|
||
as++;
|
||
bs++;
|
||
asamples--;
|
||
bsamples--;
|
||
}
|
||
|
||
/* Invalid comparison point? */
|
||
if (diff < 0)
|
||
continue;
|
||
|
||
if (start < 0)
|
||
start = at;
|
||
|
||
error += diff;
|
||
|
||
if (at - start > 120)
|
||
break;
|
||
}
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
* Dive 'a' is 'offset' seconds before dive 'b'
|
||
*
|
||
* This is *not* because the dive computers clocks aren't in sync,
|
||
* it is because the dive computers may "start" the dive at different
|
||
* points in the dive, so the sample at time X in dive 'a' is the
|
||
* same as the sample at time X+offset in dive 'b'.
|
||
*
|
||
* For example, some dive computers take longer to "wake up" when
|
||
* they sense that you are under water (ie Uemis Zurich if it was off
|
||
* when the dive started). And other dive computers have different
|
||
* depths that they activate at, etc etc.
|
||
*
|
||
* If we cannot find a shared offset, don't try to merge.
|
||
*/
|
||
static int find_sample_offset(struct divecomputer *a, struct divecomputer *b)
|
||
{
|
||
int offset, best;
|
||
unsigned long max;
|
||
|
||
/* No samples? Merge at any time (0 offset) */
|
||
if (!a->samples)
|
||
return 0;
|
||
if (!b->samples)
|
||
return 0;
|
||
|
||
/*
|
||
* Common special-case: merging a dive that came from
|
||
* the same dive computer, so the samples are identical.
|
||
* Check this first, without wasting time trying to find
|
||
* some minimal offset case.
|
||
*/
|
||
best = 0;
|
||
max = sample_difference(a, b, 0);
|
||
if (!max)
|
||
return 0;
|
||
|
||
/*
|
||
* Otherwise, look if we can find anything better within
|
||
* a thirty second window..
|
||
*/
|
||
for (offset = -30; offset <= 30; offset++) {
|
||
unsigned long diff;
|
||
|
||
diff = sample_difference(a, b, offset);
|
||
if (diff > max)
|
||
continue;
|
||
best = offset;
|
||
max = diff;
|
||
}
|
||
|
||
return best;
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* Are a and b "similar" values, when given a reasonable lower end expected
|
||
* difference?
|
||
*
|
||
* So for example, we'd expect different dive computers to give different
|
||
* max depth readings. You might have them on different arms, and they
|
||
* have different pressure sensors and possibly different ideas about
|
||
* water salinity etc.
|
||
*
|
||
* So have an expected minimum difference, but also allow a larger relative
|
||
* error value.
|
||
*/
|
||
static int similar(unsigned long a, unsigned long b, unsigned long expected)
|
||
{
|
||
if (a && b) {
|
||
unsigned long min, max, diff;
|
||
|
||
min = a;
|
||
max = b;
|
||
if (a > b) {
|
||
min = b;
|
||
max = a;
|
||
}
|
||
diff = max - min;
|
||
|
||
/* Smaller than expected difference? */
|
||
if (diff < expected)
|
||
return 1;
|
||
/* Error less than 10% or the maximum */
|
||
if (diff * 10 < max)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Match two dive computer entries against each other, and
|
||
* tell if it's the same dive. Return 0 if "don't know",
|
||
* positive for "same dive" and negative for "definitely
|
||
* not the same dive"
|
||
*/
|
||
int match_one_dc(struct divecomputer *a, struct divecomputer *b)
|
||
{
|
||
/* Not same model? Don't know if matching.. */
|
||
if (!a->model || !b->model)
|
||
return 0;
|
||
if (strcasecmp(a->model, b->model))
|
||
return 0;
|
||
|
||
/* Different device ID's? Don't know */
|
||
if (a->deviceid != b->deviceid)
|
||
return 0;
|
||
|
||
/* Do we have dive IDs? */
|
||
if (!a->diveid || !b->diveid)
|
||
return 0;
|
||
|
||
/*
|
||
* If they have different dive ID's on the same
|
||
* dive computer, that's a definite "same or not"
|
||
*/
|
||
return a->diveid == b->diveid ? 1 : -1;
|
||
}
|
||
|
||
/*
|
||
* Match every dive computer against each other to see if
|
||
* we have a matching dive.
|
||
*
|
||
* Return values:
|
||
* -1 for "is definitely *NOT* the same dive"
|
||
* 0 for "don't know"
|
||
* 1 for "is definitely the same dive"
|
||
*/
|
||
static int match_dc_dive(struct divecomputer *a, struct divecomputer *b)
|
||
{
|
||
do {
|
||
struct divecomputer *tmp = b;
|
||
do {
|
||
int match = match_one_dc(a, tmp);
|
||
if (match)
|
||
return match;
|
||
tmp = tmp->next;
|
||
} while (tmp);
|
||
a = a->next;
|
||
} while (a);
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Do we want to automatically try to merge two dives that
|
||
* look like they are the same dive?
|
||
*
|
||
* This happens quite commonly because you download a dive
|
||
* that you already had, or perhaps because you maintained
|
||
* multiple dive logs and want to load them all together
|
||
* (possibly one of them was imported from another dive log
|
||
* application entirely).
|
||
*
|
||
* NOTE! We mainly look at the dive time, but it can differ
|
||
* between two dives due to a few issues:
|
||
*
|
||
* - rounding the dive date to the nearest minute in other dive
|
||
* applications
|
||
*
|
||
* - dive computers with "relative datestamps" (ie the dive
|
||
* computer doesn't actually record an absolute date at all,
|
||
* but instead at download-time syncronizes its internal
|
||
* time with real-time on the downloading computer)
|
||
*
|
||
* - using multiple dive computers with different real time on
|
||
* the same dive
|
||
*
|
||
* We do not merge dives that look radically different, and if
|
||
* the dates are *too* far off the user will have to join two
|
||
* dives together manually. But this tries to handle the sane
|
||
* cases.
|
||
*/
|
||
static int likely_same_dive(struct dive *a, struct dive *b)
|
||
{
|
||
int match, fuzz = 20 * 60;
|
||
|
||
/* Don't try to merge dives in different trips */
|
||
if (a->divetrip && b->divetrip && a->divetrip != b->divetrip)
|
||
return 0;
|
||
|
||
/*
|
||
* Do some basic sanity testing of the values we
|
||
* have filled in during 'fixup_dive()'
|
||
*/
|
||
if (!similar(a->maxdepth.mm, b->maxdepth.mm, 1000) ||
|
||
(a->meandepth.mm && b->meandepth.mm && !similar(a->meandepth.mm, b->meandepth.mm, 1000)) ||
|
||
!similar(a->duration.seconds, b->duration.seconds, 5 * 60))
|
||
return 0;
|
||
|
||
/* See if we can get an exact match on the dive computer */
|
||
match = match_dc_dive(&a->dc, &b->dc);
|
||
if (match)
|
||
return match > 0;
|
||
|
||
/*
|
||
* Allow a time difference due to dive computer time
|
||
* setting etc. Check if they overlap.
|
||
*/
|
||
fuzz = MAX(a->duration.seconds, b->duration.seconds) / 2;
|
||
if (fuzz < 60)
|
||
fuzz = 60;
|
||
|
||
return ((a->when <= b->when + fuzz) && (a->when >= b->when - fuzz));
|
||
}
|
||
|
||
/*
|
||
* This could do a lot more merging. Right now it really only
|
||
* merges almost exact duplicates - something that happens easily
|
||
* with overlapping dive downloads.
|
||
*/
|
||
struct dive *try_to_merge(struct dive *a, struct dive *b, bool prefer_downloaded)
|
||
{
|
||
if (likely_same_dive(a, b))
|
||
return merge_dives(a, b, 0, prefer_downloaded);
|
||
return NULL;
|
||
}
|
||
|
||
static void free_events(struct event *ev)
|
||
{
|
||
while (ev) {
|
||
struct event *next = ev->next;
|
||
free(ev);
|
||
ev = next;
|
||
}
|
||
}
|
||
|
||
static void free_dc(struct divecomputer *dc)
|
||
{
|
||
free(dc->sample);
|
||
free((void *)dc->model);
|
||
free_events(dc->events);
|
||
free(dc);
|
||
}
|
||
|
||
static void free_pic(struct picture *picture)
|
||
{
|
||
if (picture) {
|
||
free(picture->filename);
|
||
free(picture);
|
||
}
|
||
}
|
||
|
||
static int same_sample(struct sample *a, struct sample *b)
|
||
{
|
||
if (a->time.seconds != b->time.seconds)
|
||
return 0;
|
||
if (a->depth.mm != b->depth.mm)
|
||
return 0;
|
||
if (a->temperature.mkelvin != b->temperature.mkelvin)
|
||
return 0;
|
||
if (a->cylinderpressure.mbar != b->cylinderpressure.mbar)
|
||
return 0;
|
||
return a->sensor == b->sensor;
|
||
}
|
||
|
||
static int same_dc(struct divecomputer *a, struct divecomputer *b)
|
||
{
|
||
int i;
|
||
struct event *eva, *evb;
|
||
|
||
i = match_one_dc(a, b);
|
||
if (i)
|
||
return i > 0;
|
||
|
||
if (a->when && b->when && a->when != b->when)
|
||
return 0;
|
||
if (a->samples != b->samples)
|
||
return 0;
|
||
for (i = 0; i < a->samples; i++)
|
||
if (!same_sample(a->sample + i, b->sample + i))
|
||
return 0;
|
||
eva = a->events;
|
||
evb = b->events;
|
||
while (eva && evb) {
|
||
if (!same_event(eva, evb))
|
||
return 0;
|
||
eva = eva->next;
|
||
evb = evb->next;
|
||
}
|
||
return eva == evb;
|
||
}
|
||
|
||
static int might_be_same_device(struct divecomputer *a, struct divecomputer *b)
|
||
{
|
||
/* No dive computer model? That matches anything */
|
||
if (!a->model || !b->model)
|
||
return 1;
|
||
|
||
/* Otherwise at least the model names have to match */
|
||
if (strcasecmp(a->model, b->model))
|
||
return 0;
|
||
|
||
/* No device ID? Match */
|
||
if (!a->deviceid || !b->deviceid)
|
||
return 1;
|
||
|
||
return a->deviceid == b->deviceid;
|
||
}
|
||
|
||
static void remove_redundant_dc(struct divecomputer *dc, int prefer_downloaded)
|
||
{
|
||
do {
|
||
struct divecomputer **p = &dc->next;
|
||
|
||
/* Check this dc against all the following ones.. */
|
||
while (*p) {
|
||
struct divecomputer *check = *p;
|
||
if (same_dc(dc, check) || (prefer_downloaded && might_be_same_device(dc, check))) {
|
||
*p = check->next;
|
||
check->next = NULL;
|
||
free_dc(check);
|
||
continue;
|
||
}
|
||
p = &check->next;
|
||
}
|
||
|
||
/* .. and then continue down the chain, but we */
|
||
prefer_downloaded = 0;
|
||
dc = dc->next;
|
||
} while (dc);
|
||
}
|
||
|
||
static void clear_dc(struct divecomputer *dc)
|
||
{
|
||
memset(dc, 0, sizeof(*dc));
|
||
}
|
||
|
||
static struct divecomputer *find_matching_computer(struct divecomputer *match, struct divecomputer *list)
|
||
{
|
||
struct divecomputer *p;
|
||
|
||
while ((p = list) != NULL) {
|
||
list = list->next;
|
||
|
||
if (might_be_same_device(match, p))
|
||
break;
|
||
}
|
||
return p;
|
||
}
|
||
|
||
|
||
static void copy_dive_computer(struct divecomputer *res, struct divecomputer *a)
|
||
{
|
||
*res = *a;
|
||
res->model = copy_string(a->model);
|
||
res->samples = res->alloc_samples = 0;
|
||
res->sample = NULL;
|
||
res->events = NULL;
|
||
res->next = NULL;
|
||
}
|
||
|
||
/*
|
||
* Join dive computers with a specific time offset between
|
||
* them.
|
||
*
|
||
* Use the dive computer ID's (or names, if ID's are missing)
|
||
* to match them up. If we find a matching dive computer, we
|
||
* merge them. If not, we just take the data from 'a'.
|
||
*/
|
||
static void interleave_dive_computers(struct divecomputer *res,
|
||
struct divecomputer *a, struct divecomputer *b, int offset)
|
||
{
|
||
do {
|
||
struct divecomputer *match;
|
||
|
||
copy_dive_computer(res, a);
|
||
|
||
match = find_matching_computer(a, b);
|
||
if (match) {
|
||
merge_events(res, a, match, offset);
|
||
merge_samples(res, a, match, offset);
|
||
/* Use the diveid of the later dive! */
|
||
if (offset > 0)
|
||
res->diveid = match->diveid;
|
||
} else {
|
||
res->sample = a->sample;
|
||
res->samples = a->samples;
|
||
res->events = a->events;
|
||
a->sample = NULL;
|
||
a->samples = 0;
|
||
a->events = NULL;
|
||
}
|
||
a = a->next;
|
||
if (!a)
|
||
break;
|
||
res->next = calloc(1, sizeof(struct divecomputer));
|
||
res = res->next;
|
||
} while (res);
|
||
}
|
||
|
||
|
||
/*
|
||
* Join dive computer information.
|
||
*
|
||
* If we have old-style dive computer information (no model
|
||
* name etc), we will prefer a new-style one and just throw
|
||
* away the old. We're assuming it's a re-download.
|
||
*
|
||
* Otherwise, we'll just try to keep all the information,
|
||
* unless the user has specified that they prefer the
|
||
* downloaded computer, in which case we'll aggressively
|
||
* try to throw out old information that *might* be from
|
||
* that one.
|
||
*/
|
||
static void join_dive_computers(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int prefer_downloaded)
|
||
{
|
||
struct divecomputer *tmp;
|
||
|
||
if (a->model && !b->model) {
|
||
*res = *a;
|
||
clear_dc(a);
|
||
return;
|
||
}
|
||
if (b->model && !a->model) {
|
||
*res = *b;
|
||
clear_dc(b);
|
||
return;
|
||
}
|
||
|
||
*res = *a;
|
||
clear_dc(a);
|
||
tmp = res;
|
||
while (tmp->next)
|
||
tmp = tmp->next;
|
||
|
||
tmp->next = calloc(1, sizeof(*tmp));
|
||
*tmp->next = *b;
|
||
clear_dc(b);
|
||
|
||
remove_redundant_dc(res, prefer_downloaded);
|
||
}
|
||
|
||
static bool tag_seen_before(struct tag_entry *start, struct tag_entry *before)
|
||
{
|
||
while(start && start != before) {
|
||
if (same_string(start->tag->name, before->tag->name))
|
||
return true;
|
||
start = start->next;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* remove duplicates and empty nodes */
|
||
void taglist_cleanup(struct tag_entry **tag_list)
|
||
{
|
||
struct tag_entry **tl = tag_list;
|
||
while (*tl) {
|
||
/* skip tags that are empty or that we have seen before */
|
||
if (same_string((*tl)->tag->name, "") || tag_seen_before(*tag_list, *tl)) {
|
||
*tl = (*tl)->next;
|
||
continue;
|
||
}
|
||
tl = &(*tl)->next;
|
||
}
|
||
}
|
||
|
||
int taglist_get_tagstring(struct tag_entry *tag_list, char *buffer, int len)
|
||
{
|
||
int i = 0;
|
||
struct tag_entry *tmp;
|
||
tmp = tag_list;
|
||
memset(buffer, 0, len);
|
||
while (tmp != NULL) {
|
||
int newlength = strlen(tmp->tag->name);
|
||
if (i > 0)
|
||
newlength += 2;
|
||
if ((i + newlength) < len) {
|
||
if (i > 0) {
|
||
strcpy(buffer + i, ", ");
|
||
strcpy(buffer + i + 2, tmp->tag->name);
|
||
} else {
|
||
strcpy(buffer, tmp->tag->name);
|
||
}
|
||
} else {
|
||
return i;
|
||
}
|
||
i += newlength;
|
||
tmp = tmp->next;
|
||
}
|
||
return i;
|
||
}
|
||
|
||
static inline void taglist_free_divetag(struct divetag *tag)
|
||
{
|
||
if (tag->name != NULL)
|
||
free(tag->name);
|
||
if (tag->source != NULL)
|
||
free(tag->source);
|
||
free(tag);
|
||
}
|
||
|
||
/* Add a tag to the tag_list, keep the list sorted */
|
||
static struct divetag *taglist_add_divetag(struct tag_entry **tag_list, struct divetag *tag)
|
||
{
|
||
struct tag_entry *next, *entry;
|
||
|
||
while ((next = *tag_list) != NULL) {
|
||
int cmp = strcmp(next->tag->name, tag->name);
|
||
|
||
/* Already have it? */
|
||
if (!cmp)
|
||
return next->tag;
|
||
/* Is the entry larger? If so, insert here */
|
||
if (cmp > 0)
|
||
break;
|
||
/* Continue traversing the list */
|
||
tag_list = &next->next;
|
||
}
|
||
|
||
/* Insert in front of it */
|
||
entry = malloc(sizeof(struct tag_entry));
|
||
entry->next = next;
|
||
entry->tag = tag;
|
||
*tag_list = entry;
|
||
return tag;
|
||
}
|
||
|
||
struct divetag *taglist_add_tag(struct tag_entry **tag_list, const char *tag)
|
||
{
|
||
int i = 0, is_default_tag = 0;
|
||
struct divetag *ret_tag, *new_tag;
|
||
const char *translation;
|
||
new_tag = malloc(sizeof(struct divetag));
|
||
|
||
for (i = 0; i < sizeof(default_tags) / sizeof(char *); i++) {
|
||
if (strcmp(default_tags[i], tag) == 0) {
|
||
is_default_tag = 1;
|
||
break;
|
||
}
|
||
}
|
||
/* Only translate default tags */
|
||
if (is_default_tag) {
|
||
translation = translate("gettextFromC", tag);
|
||
new_tag->name = malloc(strlen(translation) + 1);
|
||
memcpy(new_tag->name, translation, strlen(translation) + 1);
|
||
new_tag->source = malloc(strlen(tag) + 1);
|
||
memcpy(new_tag->source, tag, strlen(tag) + 1);
|
||
} else {
|
||
new_tag->source = NULL;
|
||
new_tag->name = malloc(strlen(tag) + 1);
|
||
memcpy(new_tag->name, tag, strlen(tag) + 1);
|
||
}
|
||
/* Try to insert new_tag into g_tag_list if we are not operating on it */
|
||
if (tag_list != &g_tag_list) {
|
||
ret_tag = taglist_add_divetag(&g_tag_list, new_tag);
|
||
/* g_tag_list already contains new_tag, free the duplicate */
|
||
if (ret_tag != new_tag)
|
||
taglist_free_divetag(new_tag);
|
||
ret_tag = taglist_add_divetag(tag_list, ret_tag);
|
||
} else {
|
||
ret_tag = taglist_add_divetag(tag_list, new_tag);
|
||
if (ret_tag != new_tag)
|
||
taglist_free_divetag(new_tag);
|
||
}
|
||
return ret_tag;
|
||
}
|
||
|
||
void taglist_free(struct tag_entry *entry)
|
||
{
|
||
STRUCTURED_LIST_FREE(struct tag_entry, entry, free)
|
||
}
|
||
|
||
/* Merge src1 and src2, write to *dst */
|
||
static void taglist_merge(struct tag_entry **dst, struct tag_entry *src1, struct tag_entry *src2)
|
||
{
|
||
struct tag_entry *entry;
|
||
|
||
for (entry = src1; entry; entry = entry->next)
|
||
taglist_add_divetag(dst, entry->tag);
|
||
for (entry = src2; entry; entry = entry->next)
|
||
taglist_add_divetag(dst, entry->tag);
|
||
}
|
||
|
||
void taglist_init_global()
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < sizeof(default_tags) / sizeof(char *); i++)
|
||
taglist_add_tag(&g_tag_list, default_tags[i]);
|
||
}
|
||
|
||
struct dive *merge_dives(struct dive *a, struct dive *b, int offset, bool prefer_downloaded)
|
||
{
|
||
struct dive *res = alloc_dive();
|
||
struct dive *dl = NULL;
|
||
|
||
/* Aim for newly downloaded dives to be 'b' (keep old dive data first) */
|
||
if (a->downloaded && !b->downloaded) {
|
||
struct dive *tmp = a;
|
||
a = b;
|
||
b = tmp;
|
||
}
|
||
if (prefer_downloaded && b->downloaded)
|
||
dl = b;
|
||
|
||
/*
|
||
* Did the user ask us to merge dives in the dive list?
|
||
* We may want to just join the dive computers, not try to
|
||
* interleave them at some offset.
|
||
*/
|
||
if (offset && likely_same_dive(a, b))
|
||
offset = 0;
|
||
|
||
res->when = dl ? dl->when : a->when;
|
||
res->selected = a->selected || b->selected;
|
||
merge_trip(res, a, b);
|
||
MERGE_NONZERO(res, a, b, latitude.udeg);
|
||
MERGE_NONZERO(res, a, b, longitude.udeg);
|
||
MERGE_TXT(res, a, b, location);
|
||
MERGE_TXT(res, a, b, notes);
|
||
MERGE_TXT(res, a, b, buddy);
|
||
MERGE_TXT(res, a, b, divemaster);
|
||
MERGE_MAX(res, a, b, rating);
|
||
MERGE_TXT(res, a, b, suit);
|
||
MERGE_MAX(res, a, b, number);
|
||
MERGE_NONZERO(res, a, b, cns);
|
||
MERGE_NONZERO(res, a, b, visibility);
|
||
taglist_merge(&res->tag_list, a->tag_list, b->tag_list);
|
||
merge_equipment(res, a, b);
|
||
merge_airtemps(res, a, b);
|
||
if (dl) {
|
||
/* If we prefer downloaded, do those first, and get rid of "might be same" computers */
|
||
join_dive_computers(&res->dc, &dl->dc, &a->dc, 1);
|
||
} else if (offset && might_be_same_device(&a->dc, &b->dc))
|
||
interleave_dive_computers(&res->dc, &a->dc, &b->dc, offset);
|
||
else
|
||
join_dive_computers(&res->dc, &a->dc, &b->dc, 0);
|
||
|
||
fixup_dive(res);
|
||
return res;
|
||
}
|
||
|
||
struct dive *find_dive_including(timestamp_t when)
|
||
{
|
||
int i;
|
||
struct dive *dive;
|
||
|
||
/* binary search, anyone? Too lazy for now;
|
||
* also we always use the duration from the first divecomputer
|
||
* could this ever be a problem? */
|
||
for_each_dive(i, dive) {
|
||
if (dive->when <= when && when <= dive->when + dive->duration.seconds)
|
||
return dive;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
bool dive_within_time_range(struct dive *dive, timestamp_t when, timestamp_t offset)
|
||
{
|
||
return when - offset <= dive->when && dive->when + dive->duration.seconds <= when + offset;
|
||
}
|
||
|
||
/* find the n-th dive that is part of a group of dives within the offset around 'when'.
|
||
* How is that for a vague definition of what this function should do... */
|
||
struct dive *find_dive_n_near(timestamp_t when, int n, timestamp_t offset)
|
||
{
|
||
int i, j = 0;
|
||
struct dive *dive;
|
||
|
||
for_each_dive(i, dive) {
|
||
if (dive_within_time_range(dive, when, offset))
|
||
if (++j == n)
|
||
return dive;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
void shift_times(const timestamp_t amount)
|
||
{
|
||
int i;
|
||
struct dive *dive;
|
||
|
||
for_each_dive(i, dive) {
|
||
if (!dive->selected)
|
||
continue;
|
||
dive->when += amount;
|
||
}
|
||
}
|
||
|
||
timestamp_t get_times()
|
||
{
|
||
int i;
|
||
struct dive *dive;
|
||
|
||
for_each_dive(i, dive) {
|
||
if (dive->selected)
|
||
break;
|
||
}
|
||
return dive->when;
|
||
}
|
||
|
||
#define MAX_USERID_SIZE 32
|
||
void set_save_userid_local(short value)
|
||
{
|
||
prefs.save_userid_local = value;
|
||
}
|
||
|
||
void set_userid(char *rUserId)
|
||
{
|
||
prefs.userid = (char *) malloc(MAX_USERID_SIZE);
|
||
if (prefs.userid && rUserId)
|
||
strcpy(prefs.userid, rUserId);
|
||
}
|
||
#undef MAX_USERID_SIZE
|
||
|
||
int average_depth(struct diveplan *dive)
|
||
{
|
||
int integral = 0;
|
||
int last_time = 0;
|
||
int last_depth = 0;
|
||
struct divedatapoint *dp = dive->dp;
|
||
|
||
if (!dp)
|
||
return 0;
|
||
|
||
while (dp) {
|
||
if (dp->time) {
|
||
/* Ignore gas indication samples */
|
||
integral += (dp->depth + last_depth) * (dp->time - last_time) / 2;
|
||
last_time = dp->time;
|
||
last_depth = dp->depth;
|
||
}
|
||
dp = dp->next;
|
||
}
|
||
if (last_time)
|
||
return integral / last_time;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
struct picture *alloc_picture()
|
||
{
|
||
struct picture *pic = malloc(sizeof(struct picture));
|
||
if (!pic)
|
||
exit(1);
|
||
memset(pic, 0, sizeof(struct picture));
|
||
return pic;
|
||
}
|
||
|
||
static bool new_picture_for_dive(struct dive *d, char *filename)
|
||
{
|
||
FOR_EACH_PICTURE(d) {
|
||
if (same_string(picture->filename, filename))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// only add pictures that have timestamps between 30 minutes before the dive and
|
||
// 30 minutes after the dive ends
|
||
#define D30MIN (30 * 60)
|
||
void dive_create_picture(struct dive *d, char *filename, int shift_time)
|
||
{
|
||
timestamp_t timestamp;
|
||
if (!new_picture_for_dive(d, filename))
|
||
return;
|
||
struct picture *p = alloc_picture();
|
||
p->filename = filename;
|
||
picture_load_exif_data(p, ×tamp);
|
||
if (timestamp) {
|
||
p->offset.seconds = timestamp - d->when + shift_time;
|
||
if (p->offset.seconds < -D30MIN || p->offset.seconds > (int)d->duration.seconds + D30MIN) {
|
||
// this picture doesn't belong to this dive
|
||
free(p);
|
||
return;
|
||
}
|
||
}
|
||
dive_add_picture(d, p);
|
||
dive_set_geodata_from_picture(d, p);
|
||
}
|
||
|
||
void dive_add_picture(struct dive *d, struct picture *newpic)
|
||
{
|
||
struct picture **pic_ptr = &d->picture_list;
|
||
/* let's keep the list sorted by time */
|
||
while( *pic_ptr && (*pic_ptr)->offset.seconds < newpic->offset.seconds )
|
||
pic_ptr = &(*pic_ptr)->next;
|
||
newpic->next = *pic_ptr;
|
||
*pic_ptr = newpic;
|
||
return;
|
||
}
|
||
|
||
unsigned int dive_get_picture_count(struct dive *d)
|
||
{
|
||
unsigned int i = 0;
|
||
FOR_EACH_PICTURE( d )
|
||
i++;
|
||
return i;
|
||
}
|
||
|
||
void dive_set_geodata_from_picture(struct dive *d, struct picture *pic)
|
||
{
|
||
if (!d->latitude.udeg && pic->latitude.udeg) {
|
||
d->latitude = pic->latitude;
|
||
d->longitude = pic->longitude;
|
||
}
|
||
}
|
||
|
||
void dive_remove_picture(struct dive *d, struct picture *p)
|
||
{
|
||
|
||
}
|
||
|
||
/* this always acts on the current divecomputer of the current dive */
|
||
void make_first_dc()
|
||
{
|
||
struct divecomputer *dc = ¤t_dive->dc;
|
||
struct divecomputer *newdc = malloc(sizeof(*newdc));
|
||
struct divecomputer *cur_dc = current_dc; /* needs to be in a local variable so the macro isn't re-executed */
|
||
|
||
/* skip the current DC in the linked list */
|
||
while (dc && dc->next != cur_dc)
|
||
dc = dc->next;
|
||
if (!dc) {
|
||
free(newdc);
|
||
fprintf(stderr, "data inconsistent: can't find the current DC");
|
||
return;
|
||
}
|
||
dc->next = cur_dc->next;
|
||
*newdc = current_dive->dc;
|
||
current_dive->dc = *cur_dc;
|
||
current_dive->dc.next = newdc;
|
||
free(cur_dc);
|
||
}
|
||
|
||
/* always acts on the current dive */
|
||
int count_divecomputers(void)
|
||
{
|
||
int ret = 1;
|
||
struct divecomputer *dc = current_dive->dc.next;
|
||
while (dc) {
|
||
ret++;
|
||
dc = dc->next;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* always acts on the current dive */
|
||
void delete_current_divecomputer(void)
|
||
{
|
||
struct divecomputer *dc = current_dc;
|
||
|
||
if (dc == ¤t_dive->dc) {
|
||
/* remove the first one, so copy the second one in place of the first and free the second one
|
||
* be careful about freeing the no longer needed structures - since we copy things around we can't use free_dc()*/
|
||
struct divecomputer *fdc = dc->next;
|
||
free(dc->sample);
|
||
free((void *)dc->model);
|
||
free_events(dc->events);
|
||
memcpy(dc, fdc, sizeof(struct divecomputer));
|
||
free(fdc);
|
||
} else {
|
||
struct divecomputer *pdc = ¤t_dive->dc;
|
||
while (pdc->next != dc && pdc->next)
|
||
pdc = pdc->next;
|
||
if (pdc->next == dc) {
|
||
pdc->next = dc->next;
|
||
free_dc(dc);
|
||
}
|
||
}
|
||
if (dc_number == count_divecomputers())
|
||
dc_number--;
|
||
}
|