subsurface/divelist.c

838 lines
19 KiB
C
Raw Normal View History

/* divelist.c */
/* core logic for the dive list -
* accessed through the following interfaces:
*
* dive_trip_t *dive_trip_list;
* unsigned int amount_selected;
* void dump_selection(void)
* dive_trip_t *find_trip_by_idx(int idx)
* int trip_has_selected_dives(dive_trip_t *trip)
* void get_dive_gas(struct dive *dive, int *o2_p, int *he_p, int *o2low_p)
* int total_weight(struct dive *dive)
* int get_divenr(struct dive *dive)
* double init_decompression(struct dive *dive)
* void update_cylinder_related_info(struct dive *dive)
* void get_location(struct dive *dive, char **str)
* void get_cylinder(struct dive *dive, char **str)
* void get_suit(struct dive *dive, char **str)
* void dump_trip_list(void)
* dive_trip_t *find_matching_trip(timestamp_t when)
* void insert_trip(dive_trip_t **dive_trip_p)
* void remove_dive_from_trip(struct dive *dive)
* void add_dive_to_trip(struct dive *dive, dive_trip_t *trip)
* dive_trip_t *create_and_hookup_trip_from_dive(struct dive *dive)
* void autogroup_dives(void)
* void clear_trip_indexes(void)
* void delete_single_dive(int idx)
* void add_single_dive(int idx, struct dive *dive)
* void merge_dive_index(int i, struct dive *a)
* void select_dive(int idx)
* void deselect_dive(int idx)
* void mark_divelist_changed(int changed)
* int unsaved_changes()
* void remove_autogen_trips()
*/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
#include <glib/gi18n.h>
2012-11-10 18:51:03 +00:00
#include <assert.h>
#ifdef LIBZIP
#include <zip.h>
#endif
#ifdef XSLT
#include <libxslt/transform.h>
#endif
#include "dive.h"
#include "divelist.h"
#include "display.h"
#include "webservice.h"
static short dive_list_changed = FALSE;
dive_trip_t *dive_trip_list;
unsigned int amount_selected;
#if DEBUG_SELECTION_TRACKING
void dump_selection(void)
{
int i;
struct dive *dive;
printf("currently selected are %u dives:", amount_selected);
for_each_dive(i, dive) {
if (dive->selected)
printf(" %d", i);
}
printf("\n");
}
#endif
dive_trip_t *find_trip_by_idx(int idx)
{
dive_trip_t *trip = dive_trip_list;
if (idx >= 0)
return NULL;
idx = -idx;
while (trip) {
if (trip->index == idx)
return trip;
trip = trip->next;
}
return NULL;
}
int dive_nr_sort(int idx_a, int idx_b, timestamp_t when_a, timestamp_t when_b)
{
struct dive *a, *b;
dive_trip_t *tripa = NULL, *tripb = NULL;
if (idx_a < 0) {
a = NULL;
tripa = find_trip_by_idx(idx_a);
} else {
a = get_dive(idx_a);
if (a)
tripa = a->divetrip;
}
if (idx_b < 0) {
b = NULL;
tripb = find_trip_by_idx(idx_b);
} else {
b = get_dive(idx_b);
if (b)
tripb = b->divetrip;
}
/*
* Compare dive dates within the same trip (or when there
* are no trips involved at all). But if we have two
* different trips use the trip dates for comparison
*/
if (tripa != tripb) {
if (tripa)
when_a = tripa->when;
if (tripb)
when_b = tripb->when;
}
return when_a - when_b;
}
int trip_has_selected_dives(dive_trip_t *trip)
{
struct dive *dive;
for (dive = trip->dives; dive; dive = dive->next) {
if (dive->selected)
return 1;
}
return 0;
}
/* Get the values as we want to show them. Whole feet. But meters with one decimal for
* values less than 20m, without decimals for larger values */
void get_depth_values(int depth, int *depth_int, int *depth_decimal, int *show_decimal)
{
int integer, frac;
*show_decimal = 1;
switch (prefs.units.length) {
case METERS:
/* To tenths of meters */
depth = (depth + 49) / 100;
integer = depth / 10;
frac = depth % 10;
if (integer < 20)
break;
if (frac >= 5)
integer++;
*show_decimal = 0;
break;
case FEET:
integer = mm_to_feet(depth) + 0.5;
*show_decimal = 0;
break;
default:
/* can't happen */
return;
}
*depth_int = integer;
if (*show_decimal)
*depth_decimal = frac;
}
/*
* Get "maximal" dive gas for a dive.
* Rules:
* - Trimix trumps nitrox (highest He wins, O2 breaks ties)
* - Nitrox trumps air (even if hypoxic)
* These are the same rules as the inter-dive sorting rules.
*/
void get_dive_gas(struct dive *dive, int *o2_p, int *he_p, int *o2low_p)
{
int i;
int maxo2 = -1, maxhe = -1, mino2 = 1000;
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder + i;
struct gasmix *mix = &cyl->gasmix;
int o2 = mix->o2.permille;
int he = mix->he.permille;
struct divecomputer *dc = &dive->dc;
int used = 0;
int first_gas_explicit = 0;
while (dc){
struct event *event = dc->events;
while(event){
if (event->value) {
if (event->name && !strcmp(event->name, "gaschange")) {
unsigned int event_he = event->value >> 16;
unsigned int event_o2 = event->value & 0xffff;
if (event->time.seconds < 30)
first_gas_explicit = 1;
if (is_air(o2, he)){
if (is_air(event_o2 * 10, event_he * 10))
used = 1;
}
else {
if (he == event_he*10 && o2 == event_o2*10)
used = 1;
}
}
}
event = event->next;
}
dc = dc->next;
}
/* Unless explicity set, the first gas to use has index 0 */
if (i == 0 && !first_gas_explicit)
used = 1;
if (!used)
continue;
if (cylinder_none(cyl))
continue;
if (!o2)
o2 = O2_IN_AIR;
if (o2 < mino2)
mino2 = o2;
if (he > maxhe)
goto newmax;
if (he < maxhe)
continue;
if (o2 <= maxo2)
continue;
newmax:
maxhe = he;
maxo2 = o2;
}
/* All air? Show/sort as "air"/zero */
if (!maxhe && maxo2 == O2_IN_AIR && mino2 == maxo2)
maxo2 = mino2 = 0;
*o2_p = maxo2;
*he_p = maxhe;
*o2low_p = mino2;
}
int total_weight(struct dive *dive)
{
int i, total_grams = 0;
if (dive)
for (i=0; i< MAX_WEIGHTSYSTEMS; i++)
total_grams += dive->weightsystem[i].weight.grams;
return total_grams;
}
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
static int active_o2(struct dive *dive, struct divecomputer *dc, duration_t time)
{
int o2permille = dive->cylinder[0].gasmix.o2.permille;
struct event *event = dc->events;
if (!o2permille)
o2permille = O2_IN_AIR;
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
for (event = dc->events; event; event = event->next) {
if (event->time.seconds > time.seconds)
break;
if (strcmp(event->name, "gaschange"))
continue;
o2permille = 10*(event->value & 0xffff);
}
return o2permille;
}
/* calculate OTU for a dive - this only takes the first diveomputer into account */
static int calculate_otu(struct dive *dive)
{
int i;
double otu = 0.0;
struct divecomputer *dc = &dive->dc;
for (i = 1; i < dc->samples; i++) {
int t;
int po2;
struct sample *sample = dc->sample + i;
struct sample *psample = sample - 1;
t = sample->time.seconds - psample->time.seconds;
if (sample->po2) {
po2 = sample->po2;
} else {
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
int o2 = active_o2(dive, dc, sample->time);
po2 = o2 / 1000.0 * depth_to_mbar(sample->depth.mm, dive);
}
if (po2 >= 500)
otu += pow((po2 - 500) / 1000.0, 0.83) * t / 30.0;
}
return otu + 0.5;
}
/*
* Return air usage (in liters).
*/
static double calculate_airuse(struct dive *dive)
{
int airuse = 0;
int i;
for (i = 0; i < MAX_CYLINDERS; i++) {
pressure_t start, end;
cylinder_t *cyl = dive->cylinder + i;
start = cyl->start.mbar ? cyl->start : cyl->sample_start;
end = cyl->end.mbar ? cyl->end : cyl->sample_end;
airuse += gas_volume(cyl, start) - gas_volume(cyl, end);
}
return airuse / 1000.0;
}
/* this only uses the first divecomputer to calculate the SAC rate */
static int calculate_sac(struct dive *dive)
{
struct divecomputer *dc = &dive->dc;
double airuse, pressure, sac;
int duration, meandepth;
airuse = calculate_airuse(dive);
if (!airuse)
return 0;
duration = dc->duration.seconds;
if (!duration)
return 0;
meandepth = dc->meandepth.mm;
if (!meandepth)
return 0;
Fix up SAC calculations for ATM/bar confusion We even documented that we did SAC in bar*l/min, but the "S" in SAC stands for "Surface". So we should normalize SAC rate to surface pressure, not one bar. It's a tiny 1% difference, and doesn't actually matter in practice, but it's noticeable when you want to explicitly test for SAC-rate by creating a test-dive that averages exactly 10m. Suddenly you don't get the round numbers you expect. [ Side note: 10m is not _exactly_ one extra atmosphere according to our calculations, but it's darn close in sea water: the standard salinity of 1.03 kg/l together with the standard acceleration of 9.81m/s^2 gives an additional pressure of 1.01 bar, which is within a fraction of a percent of one ATM. Of course, divers have likely chosen that value exactly for the math to come out that way, since the true average salinity of seawater is actually slightly lower ] So here's a few test-dives, along with the SAC rate fixup to make them look right. (There's also a one-liner to dive.c that makes the duration come out right if the last sample has a non-zero depth, and the previous sample did not: one of my original test-dives did the "average 10m depth" by starting at 0 and ending at 20m, and dive.c got a tiny bit confused about that ;) [ The rationale for me testing our SAC rate calculations in the first place was that on snorkkeli.net user "Poltsi" reported that our SAC rate calculations differ from the ones that Suunto DM4 reports. So I wanted to verify that we did things right. Note that Poltsi reported differences larger than the difference of BAR/ATM, so this is not the cause. I'll continue to look at this. ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-02-24 18:01:18 +00:00
/* Mean pressure in ATM (SAC calculations are in atm*l/min) */
pressure = (double) depth_to_mbar(meandepth, dive) / SURFACE_PRESSURE;
sac = airuse / pressure * 60 / duration;
/* milliliters per minute.. */
return sac * 1000;
}
/* for now we do this based on the first divecomputer */
static void add_dive_to_deco(struct dive *dive)
{
struct divecomputer *dc = &dive->dc;
int i;
if (!dc)
return;
for (i = 1; i < dc->samples; i++) {
struct sample *psample = dc->sample + i - 1;
struct sample *sample = dc->sample + i;
int t0 = psample->time.seconds;
int t1 = sample->time.seconds;
int j;
for (j = t0; j < t1; j++) {
int depth = interpolate(psample->depth.mm, sample->depth.mm, j - t0, t1 - t0);
(void) add_segment(depth_to_mbar(depth, dive) / 1000.0,
&dive->cylinder[sample->sensor].gasmix, 1, sample->po2, dive);
}
}
}
int get_divenr(struct dive *dive)
{
int divenr = -1;
while (++divenr < dive_table.nr && get_dive(divenr) != dive)
;
return divenr;
}
static struct gasmix air = { .o2.permille = O2_IN_AIR };
/* take into account previous dives until there is a 48h gap between dives */
First stab at simplistic dive planning This comes with absolutely no gui - so the plan literally needs to be compiled into Subsurface. Not exactly a feature, but this allowed me to focus on the planning part instead of spending time on tedious UI work. A new menu "Planner" with entry "Test Planner" calls into the hard-coded function in planner.c. There a simple dive plan can be constructed with calls to plan_add_segment(&diveplan, duration, depth at the end, fO2, pO2) Calling plan(&diveplan) does the deco calculations and creates deco stops that keep us below the ceiling (with the GFlow/high values currently configured). The stop levels used are defined at the top of planner.c in the stoplevels array - there is no need to do the traditional multiples of 3m or anything like that. The dive including the ascents and deco stops all the way to the surface is completed and then added as simulated dive to the end of the divelist (I guess we could automatically select it later) and can be viewed. This is crude but shows the direction we can go with this. Envision a nice UI that allows you to simply enter the segments and pick the desired stops. What is missing is the ability to give the algorithm additional gases that it can use during the deco phase - right now it simply keeps using the last gas used in the diveplan. All that said, there are clear bugs here - and sadly they seem to be in the deco calculations, as with the example given the ceiling that is calculated makes no sense. When displayed in smooth mode it has very strange jumps up and down that I wouldn't expect. For example with GF 35/75 (the default) the deco ceiling when looking at the simulated dive jumps from 16m back up to 13m around 14:10 into the dive. That seems very odd. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-05 07:11:42 +00:00
double init_decompression(struct dive *dive)
{
int i, divenr = -1;
unsigned int surface_time;
timestamp_t when, lasttime = 0;
gboolean deco_init = FALSE;
double tissue_tolerance, surface_pressure;
if (!dive)
First stab at simplistic dive planning This comes with absolutely no gui - so the plan literally needs to be compiled into Subsurface. Not exactly a feature, but this allowed me to focus on the planning part instead of spending time on tedious UI work. A new menu "Planner" with entry "Test Planner" calls into the hard-coded function in planner.c. There a simple dive plan can be constructed with calls to plan_add_segment(&diveplan, duration, depth at the end, fO2, pO2) Calling plan(&diveplan) does the deco calculations and creates deco stops that keep us below the ceiling (with the GFlow/high values currently configured). The stop levels used are defined at the top of planner.c in the stoplevels array - there is no need to do the traditional multiples of 3m or anything like that. The dive including the ascents and deco stops all the way to the surface is completed and then added as simulated dive to the end of the divelist (I guess we could automatically select it later) and can be viewed. This is crude but shows the direction we can go with this. Envision a nice UI that allows you to simply enter the segments and pick the desired stops. What is missing is the ability to give the algorithm additional gases that it can use during the deco phase - right now it simply keeps using the last gas used in the diveplan. All that said, there are clear bugs here - and sadly they seem to be in the deco calculations, as with the example given the ceiling that is calculated makes no sense. When displayed in smooth mode it has very strange jumps up and down that I wouldn't expect. For example with GF 35/75 (the default) the deco ceiling when looking at the simulated dive jumps from 16m back up to 13m around 14:10 into the dive. That seems very odd. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-05 07:11:42 +00:00
return 0.0;
divenr = get_divenr(dive);
when = dive->when;
i = divenr;
while (i && --i) {
struct dive* pdive = get_dive(i);
/* we don't want to mix dives from different trips as we keep looking
* for how far back we need to go */
if (dive->divetrip && pdive->divetrip != dive->divetrip)
continue;
if (!pdive || pdive->when > when || pdive->when + pdive->duration.seconds + 48 * 60 * 60 < when)
break;
when = pdive->when;
lasttime = when + pdive->duration.seconds;
}
while (++i < divenr) {
struct dive* pdive = get_dive(i);
/* again skip dives from different trips */
if (dive->divetrip && dive->divetrip != pdive->divetrip)
continue;
surface_pressure = get_surface_pressure_in_mbar(pdive, TRUE) / 1000.0;
if (!deco_init) {
clear_deco(surface_pressure);
deco_init = TRUE;
#if DECO_CALC_DEBUG & 2
dump_tissues();
#endif
}
add_dive_to_deco(pdive);
#if DECO_CALC_DEBUG & 2
printf("added dive #%d\n", pdive->number);
dump_tissues();
#endif
if (pdive->when > lasttime) {
surface_time = pdive->when - lasttime;
lasttime = pdive->when + pdive->duration.seconds;
tissue_tolerance = add_segment(surface_pressure, &air, surface_time, 0, dive);
#if DECO_CALC_DEBUG & 2
printf("after surface intervall of %d:%02u\n", FRACTION(surface_time,60));
dump_tissues();
#endif
}
}
/* add the final surface time */
if (lasttime && dive->when > lasttime) {
surface_time = dive->when - lasttime;
surface_pressure = get_surface_pressure_in_mbar(dive, TRUE) / 1000.0;
tissue_tolerance = add_segment(surface_pressure, &air, surface_time, 0, dive);
#if DECO_CALC_DEBUG & 2
printf("after surface intervall of %d:%02u\n", FRACTION(surface_time,60));
dump_tissues();
#endif
}
if (!deco_init) {
double surface_pressure = get_surface_pressure_in_mbar(dive, TRUE) / 1000.0;
clear_deco(surface_pressure);
#if DECO_CALC_DEBUG & 2
printf("no previous dive\n");
dump_tissues();
#endif
}
First stab at simplistic dive planning This comes with absolutely no gui - so the plan literally needs to be compiled into Subsurface. Not exactly a feature, but this allowed me to focus on the planning part instead of spending time on tedious UI work. A new menu "Planner" with entry "Test Planner" calls into the hard-coded function in planner.c. There a simple dive plan can be constructed with calls to plan_add_segment(&diveplan, duration, depth at the end, fO2, pO2) Calling plan(&diveplan) does the deco calculations and creates deco stops that keep us below the ceiling (with the GFlow/high values currently configured). The stop levels used are defined at the top of planner.c in the stoplevels array - there is no need to do the traditional multiples of 3m or anything like that. The dive including the ascents and deco stops all the way to the surface is completed and then added as simulated dive to the end of the divelist (I guess we could automatically select it later) and can be viewed. This is crude but shows the direction we can go with this. Envision a nice UI that allows you to simply enter the segments and pick the desired stops. What is missing is the ability to give the algorithm additional gases that it can use during the deco phase - right now it simply keeps using the last gas used in the diveplan. All that said, there are clear bugs here - and sadly they seem to be in the deco calculations, as with the example given the ceiling that is calculated makes no sense. When displayed in smooth mode it has very strange jumps up and down that I wouldn't expect. For example with GF 35/75 (the default) the deco ceiling when looking at the simulated dive jumps from 16m back up to 13m around 14:10 into the dive. That seems very odd. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-05 07:11:42 +00:00
return tissue_tolerance;
}
void update_cylinder_related_info(struct dive *dive)
{
if (dive != NULL) {
dive->sac = calculate_sac(dive);
dive->otu = calculate_otu(dive);
}
}
static void get_string(char **str, const char *s)
{
int len;
char *n;
if (!s)
s = "";
len = g_utf8_strlen(s, -1);
if (len > 60)
len = 60;
n = malloc(len * sizeof(gunichar) + 1);
g_utf8_strncpy(n, s, len);
*str = n;
}
void get_location(struct dive *dive, char **str)
{
get_string(str, dive->location);
}
void get_cylinder(struct dive *dive, char **str)
{
get_string(str, dive->cylinder[0].type.description);
}
void get_suit(struct dive *dive, char **str)
{
get_string(str, dive->suit);
}
/*
* helper functions for dive_trip handling
*/
#ifdef DEBUG_TRIP
void dump_trip_list(void)
{
dive_trip_t *trip;
int i=0;
timestamp_t last_time = 0;
for (trip = dive_trip_list; trip; trip = trip->next) {
struct tm tm;
utc_mkdate(trip->when, &tm);
if (trip->when < last_time)
printf("\n\ndive_trip_list OUT OF ORDER!!!\n\n\n");
2012-11-10 18:51:03 +00:00
printf("%s trip %d to \"%s\" on %04u-%02u-%02u %02u:%02u:%02u (%d dives - %p)\n",
trip->autogen ? "autogen " : "",
++i, trip->location,
2012-11-10 18:51:03 +00:00
tm.tm_year + 1900, tm.tm_mon+1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec,
trip->nrdives, trip);
last_time = trip->when;
}
printf("-----\n");
}
#endif
/* this finds the last trip that at or before the time given */
dive_trip_t *find_matching_trip(timestamp_t when)
{
dive_trip_t *trip = dive_trip_list;
if (!trip || trip->when > when) {
#ifdef DEBUG_TRIP
printf("no matching trip\n");
#endif
return NULL;
}
while (trip->next && trip->next->when <= when)
trip = trip->next;
#ifdef DEBUG_TRIP
{
struct tm tm;
utc_mkdate(trip->when, &tm);
2012-11-10 18:51:03 +00:00
printf("found trip %p @ %04d-%02d-%02d %02d:%02d:%02d\n",
trip,
tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
}
#endif
return trip;
}
/* insert the trip into the dive_trip_list - but ensure you don't have
* two trips for the same date; but if you have, make sure you don't
* keep the one with less information */
void insert_trip(dive_trip_t **dive_trip_p)
{
dive_trip_t *dive_trip = *dive_trip_p;
dive_trip_t **p = &dive_trip_list;
dive_trip_t *trip;
struct dive *divep;
/* Walk the dive trip list looking for the right location.. */
while ((trip = *p) != NULL && trip->when < dive_trip->when)
p = &trip->next;
if (trip && trip->when == dive_trip->when) {
if (! trip->location)
trip->location = dive_trip->location;
if (! trip->notes)
trip->notes = dive_trip->notes;
divep = dive_trip->dives;
while (divep) {
add_dive_to_trip(divep, trip);
divep = divep->next;
}
*dive_trip_p = trip;
} else {
dive_trip->next = trip;
*p = dive_trip;
}
#ifdef DEBUG_TRIP
dump_trip_list();
#endif
}
2012-11-10 18:51:03 +00:00
static void delete_trip(dive_trip_t *trip)
{
dive_trip_t **p, *tmp;
2012-11-10 18:51:03 +00:00
assert(!trip->dives);
/* Remove the trip from the list of trips */
p = &dive_trip_list;
while ((tmp = *p) != NULL) {
if (tmp == trip) {
*p = trip->next;
break;
}
p = &tmp->next;
}
/* .. and free it */
2012-11-10 18:51:03 +00:00
if (trip->location)
free(trip->location);
if (trip->notes)
free(trip->notes);
2012-11-10 18:51:03 +00:00
free(trip);
}
static void find_new_trip_start_time(dive_trip_t *trip)
{
struct dive *dive = trip->dives;
timestamp_t when = dive->when;
2012-11-10 18:51:03 +00:00
while ((dive = dive->next) != NULL) {
if (dive->when < when)
when = dive->when;
2012-11-10 18:51:03 +00:00
}
trip->when = when;
2012-11-10 18:51:03 +00:00
}
void remove_dive_from_trip(struct dive *dive)
2012-11-10 18:51:03 +00:00
{
struct dive *next, **pprev;
2012-11-10 18:51:03 +00:00
dive_trip_t *trip = dive->divetrip;
if (!trip)
return;
/* Remove the dive from the trip's list of dives */
next = dive->next;
pprev = dive->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
2012-11-10 18:51:03 +00:00
dive->divetrip = NULL;
dive->tripflag = NO_TRIP;
2012-11-10 18:51:03 +00:00
assert(trip->nrdives > 0);
if (!--trip->nrdives)
delete_trip(trip);
else if (trip->when == dive->when)
find_new_trip_start_time(trip);
}
void add_dive_to_trip(struct dive *dive, dive_trip_t *trip)
{
if (dive->divetrip == trip)
return;
assert(trip->when);
remove_dive_from_trip(dive);
trip->nrdives++;
dive->divetrip = trip;
dive->tripflag = ASSIGNED_TRIP;
/* Add it to the trip's list of dives*/
dive->next = trip->dives;
if (dive->next)
dive->next->pprev = &dive->next;
trip->dives = dive;
dive->pprev = &trip->dives;
2012-11-10 18:51:03 +00:00
if (dive->when && trip->when > dive->when)
trip->when = dive->when;
}
dive_trip_t *create_and_hookup_trip_from_dive(struct dive *dive)
{
dive_trip_t *dive_trip = calloc(sizeof(dive_trip_t),1);
dive_trip->when = dive->when;
if (dive->location)
dive_trip->location = strdup(dive->location);
insert_trip(&dive_trip);
2012-11-10 18:51:03 +00:00
dive->tripflag = IN_TRIP;
2012-11-10 18:51:03 +00:00
add_dive_to_trip(dive, dive_trip);
return dive_trip;
}
/*
* Walk the dives from the oldest dive, and see if we can autogroup them
*/
void autogroup_dives(void)
{
int i;
struct dive *dive, *lastdive = NULL;
for_each_dive(i, dive) {
dive_trip_t *trip;
if (dive->divetrip) {
lastdive = dive;
continue;
}
if (!DIVE_NEEDS_TRIP(dive)) {
lastdive = NULL;
continue;
}
/* Do we have a trip we can combine this into? */
if (lastdive && dive->when < lastdive->when + TRIP_THRESHOLD) {
dive_trip_t *trip = lastdive->divetrip;
add_dive_to_trip(dive, trip);
if (dive->location && !trip->location)
trip->location = strdup(dive->location);
lastdive = dive;
continue;
}
lastdive = dive;
trip = create_and_hookup_trip_from_dive(dive);
trip->autogen = 1;
}
#ifdef DEBUG_TRIP
dump_trip_list();
#endif
}
void clear_trip_indexes(void)
Allow overlapping (and disjoint) dive trips We used to have the rule that a dive trip has to have all dives in it in sequential order, even though our XML file really is much more flexible, and allows arbitrary nesting of dives within a dive trip. Put another way, the old model had fairly inflexible rules: - the dive array is sorted by time - a dive trip is always a contiguous slice of this sorted array which makes perfect sense when you think of the dive and trip list as a physical activity by one person, but leads to various very subtle issues in the general case when there are no guarantees that the user then uses subsurface that way. In particular, if you load the XML files of two divers that have overlapping dive trips, the end result is incredibly messy, and does not conform to the above model at all. There's two ways to enforce such conformance: - disallow that kind of behavior entirely. This is actually hard. Our XML files aren't date-based, they are based on XML nesting rules, and even a single XML file can have nesting that violates the date ordering. With multiple XML files, it's trivial to do in practice, and while we could just fail at loading, the failure would have to be a hard failure that leaves the user no way to use the data at all. - try to "fix it up" by sorting, splitting, and combining dive trips automatically. Dirk had a patch to do this, but it really does destroy the actual dive data: if you load both mine and Dirk's dive trips, you ended up with a result that followed the above two technical rules, but that didn't actually make any *sense*. So this patch doesn't try to enforce the rules, and instead just changes them to be more generic: - the dive array is still sorted by dive time - a dive trip is just an arbitrary collection of dives. The relaxed rules means that mixing dives and dive trips for two people is trivial, and we can easily handle any XML file. The dive trip is defined by the XML nesting level, and is totally independent of any date-based sorting. It does require a few things: - when we save our dive data, we have to do it hierarchically by dive trip, not just by walking the dive array linearly. - similarly, when we create the dive tree model, we can't just blindly walk the array of dives one by one, we have to look up the correct trip (parent) - when we try to merge two dives that are adjacent (by date sorting), we can't do it if they are in different trips. but apart from that, nothing else really changes. NOTE! Despite the new relaxed model, creating totally disjoing dive trips is not all that easy (nor is there any *reason* for it to be easty). Our GUI interfaces still are "add dive to trip above" etc, and the automatic adding of dives to dive trips is obviously still based on date. So this does not really change the expected normal usage, the relaxed data structure rules just mean that we don't need to worry about the odd cases as much, because we can just let them be. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
{
dive_trip_t *trip;
for (trip = dive_trip_list; trip != NULL; trip = trip->next)
trip->index = 0;
}
/* this implements the mechanics of removing the dive from the table,
* but doesn't deal with updating dive trips, etc */
void delete_single_dive(int idx)
{
int i;
struct dive *dive = get_dive(idx);
if (!dive)
return; /* this should never happen */
remove_dive_from_trip(dive);
for (i = idx; i < dive_table.nr - 1; i++)
dive_table.dives[i] = dive_table.dives[i+1];
dive_table.dives[--dive_table.nr] = NULL;
if (dive->selected)
amount_selected--;
/* free all allocations */
free(dive->dc.sample);
if (dive->location)
free((void *)dive->location);
if (dive->notes)
free((void *)dive->notes);
if (dive->divemaster)
free((void *)dive->divemaster);
if (dive->buddy)
free((void *)dive->buddy);
if (dive->suit)
free((void *)dive->suit);
free(dive);
}
void add_single_dive(int idx, struct dive *dive)
{
int i;
dive_table.nr++;
if (dive->selected)
amount_selected++;
for (i = idx; i < dive_table.nr ; i++) {
struct dive *tmp = dive_table.dives[i];
dive_table.dives[i] = dive;
dive = tmp;
}
}
void merge_dive_index(int i, struct dive *a)
{
struct dive *b = get_dive(i+1);
struct dive *res;
res = merge_dives(a, b, b->when - a->when, FALSE);
if (!res)
return;
add_single_dive(i, res);
delete_single_dive(i+1);
delete_single_dive(i+1);
dive_list_update_dives();
mark_divelist_changed(TRUE);
}
void select_dive(int idx)
{
struct dive *dive = get_dive(idx);
if (dive && !dive->selected) {
dive->selected = 1;
amount_selected++;
selected_dive = idx;
}
}
void deselect_dive(int idx)
Don't deselect all dives on all selection "change" events gtk sends the selection change events all the time, for pretty much any "divelist changed - so selection changed". The expansion of a trip, the switch to a new model, yadda yadda. But we actually want selections to be sticky across these events, so we can't just forget all of our old selection state and repopulate it. So we re-introduce the "am I allowed to change this row" callback, which we used to use to create a list of every actual selection that was changed. But instead of remembering the list (and having the stale entries issue with that remembered list that caused problems), we now just use that as a "that *particular* selection cleared" event. So this callback works as the "which part of the visible, currently selected state got cleared" notifier, and handles unselection. Then, when the selection is over, we use the new model of "let's just traverse the list of things gtk thinks are selected" and use that to handle new selections in the visible state that gtk actually tracks well. So that logic handles the new selections. This way, dives that aren't visible to gtk don't ever get modified: gtk won't ask about them being selected or not, and gtk won't track them in its selection logic, so with this model their state never changes for us. gtk selections are annoying. They are simple for the case gtk knows about (ie they are *visually* selected in the GUI), but since we very much want to track selection across events that change the visual state, we need to have this insane "impedance match". Reported-by: Dirk Hohdnel <dirk@hohndel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
{
struct dive *dive = get_dive(idx);
if (dive && dive->selected) {
dive->selected = 0;
amount_selected--;
if (selected_dive == idx && amount_selected > 0) {
/* pick a different dive as selected */
while (--selected_dive >= 0) {
dive = get_dive(selected_dive);
if (dive && dive->selected)
return;
}
selected_dive = idx;
while (++selected_dive < dive_table.nr) {
dive = get_dive(selected_dive);
if (dive && dive->selected)
return;
}
}
if (amount_selected == 0)
selected_dive = -1;
Don't deselect all dives on all selection "change" events gtk sends the selection change events all the time, for pretty much any "divelist changed - so selection changed". The expansion of a trip, the switch to a new model, yadda yadda. But we actually want selections to be sticky across these events, so we can't just forget all of our old selection state and repopulate it. So we re-introduce the "am I allowed to change this row" callback, which we used to use to create a list of every actual selection that was changed. But instead of remembering the list (and having the stale entries issue with that remembered list that caused problems), we now just use that as a "that *particular* selection cleared" event. So this callback works as the "which part of the visible, currently selected state got cleared" notifier, and handles unselection. Then, when the selection is over, we use the new model of "let's just traverse the list of things gtk thinks are selected" and use that to handle new selections in the visible state that gtk actually tracks well. So that logic handles the new selections. This way, dives that aren't visible to gtk don't ever get modified: gtk won't ask about them being selected or not, and gtk won't track them in its selection logic, so with this model their state never changes for us. gtk selections are annoying. They are simple for the case gtk knows about (ie they are *visually* selected in the GUI), but since we very much want to track selection across events that change the visual state, we need to have this insane "impedance match". Reported-by: Dirk Hohdnel <dirk@hohndel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
}
}
void mark_divelist_changed(int changed)
{
dive_list_changed = changed;
}
int unsaved_changes()
{
return dive_list_changed;
}
void remove_autogen_trips()
{
int i;
struct dive *dive;
for_each_dive(i, dive) {
dive_trip_t *trip = dive->divetrip;
if (trip && trip->autogen)
remove_dive_from_trip(dive);
}
}