subsurface/divelist.c

2950 lines
84 KiB
C
Raw Normal View History

/* divelist.c */
/* this creates the UI for the dive list -
* controlled through the following interfaces:
*
* void flush_divelist(struct dive *dive)
* GtkWidget dive_list_create(void)
* void dive_list_update_dives(void)
* void update_dive_list_units(void)
* void set_divelist_font(const char *font)
* void mark_divelist_changed(int changed)
* int unsaved_changes()
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
#include <glib/gi18n.h>
2012-11-10 18:51:03 +00:00
#include <assert.h>
#include "divelist.h"
#include "dive.h"
#include "display.h"
#include "display-gtk.h"
#include <gdk-pixbuf/gdk-pixdata.h>
#include "satellite.h"
struct DiveList {
GtkWidget *tree_view;
GtkWidget *container_widget;
GtkTreeStore *model, *listmodel, *treemodel;
GtkTreeViewColumn *nr, *date, *stars, *depth, *duration, *location;
GtkTreeViewColumn *temperature, *cylinder, *totalweight, *suit, *nitrox, *sac, *otu, *maxcns;
int changed;
};
static struct DiveList dive_list;
#define MODEL(_dl) GTK_TREE_MODEL((_dl).model)
#define TREEMODEL(_dl) GTK_TREE_MODEL((_dl).treemodel)
#define LISTMODEL(_dl) GTK_TREE_MODEL((_dl).listmodel)
#define STORE(_dl) GTK_TREE_STORE((_dl).model)
#define TREESTORE(_dl) GTK_TREE_STORE((_dl).treemodel)
#define LISTSTORE(_dl) GTK_TREE_STORE((_dl).listmodel)
dive_trip_t *dive_trip_list;
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
gboolean autogroup = FALSE;
/*
* The dive list has the dive data in both string format (for showing)
* and in "raw" format (for sorting purposes)
*/
enum {
DIVE_INDEX = 0,
DIVE_NR, /* int: dive->nr */
DIVE_DATE, /* timestamp_t: dive->when */
DIVE_RATING, /* int: 0-5 stars */
DIVE_DEPTH, /* int: dive->dc.maxdepth in mm */
DIVE_DURATION, /* int: in seconds */
DIVE_TEMPERATURE, /* int: in mkelvin */
DIVE_TOTALWEIGHT, /* int: in grams */
DIVE_SUIT, /* "wet, 3mm" */
DIVE_CYLINDER,
DIVE_NITROX, /* int: dummy */
DIVE_SAC, /* int: in ml/min */
DIVE_OTU, /* int: in OTUs */
DIVE_MAXCNS, /* int: in % */
DIVE_LOCATION, /* "2nd Cathedral, Lanai" */
DIVE_LOC_ICON, /* pixbuf for gps icon */
DIVELIST_COLUMNS
};
static void turn_dive_into_trip(GtkTreePath *path);
static void merge_dive_into_trip_above_cb(GtkWidget *menuitem, GtkTreePath *path);
#ifdef DEBUG_MODEL
static gboolean dump_model_entry(GtkTreeModel *model, GtkTreePath *path,
GtkTreeIter *iter, gpointer data)
{
char *location;
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
int idx, nr, duration;
struct dive *dive;
timestamp_t when;
struct tm tm;
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_NR, &nr, DIVE_DATE, &when,
DIVE_DURATION, &duration, DIVE_LOCATION, &location, -1);
utc_mkdate(when, &tm);
printf("iter %x:%x entry #%d : nr %d @ %04d-%02d-%02d %02d:%02d:%02d duration %d location %s ",
iter->stamp, iter->user_data, idx, nr,
tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec,
duration, location);
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
dive = get_dive(idx);
if (dive)
printf("tripflag %d\n", dive->tripflag);
else
printf("without matching dive\n");
free(location);
return FALSE;
}
static void dump_model(GtkListStore *store)
{
gtk_tree_model_foreach(GTK_TREE_MODEL(store), dump_model_entry, NULL);
printf("\n---\n\n");
}
#endif
#if DEBUG_SELECTION_TRACKING
void dump_selection(void)
{
int i;
struct dive *dive;
printf("currently selected are %u dives:", amount_selected);
for_each_dive(i, dive) {
if (dive->selected)
printf(" %d", i);
}
printf("\n");
}
#endif
/* when subsurface starts we want to have the last dive selected. So we simply
walk to the first leaf (and skip the summary entries - which have negative
DIVE_INDEX) */
static void first_leaf(GtkTreeModel *model, GtkTreeIter *iter, int *diveidx)
{
GtkTreeIter parent;
GtkTreePath *tpath;
while (*diveidx < 0) {
memcpy(&parent, iter, sizeof(parent));
tpath = gtk_tree_model_get_path(model, &parent);
if (!gtk_tree_model_iter_children(model, iter, &parent)) {
/* we should never have a parent without child */
gtk_tree_path_free(tpath);
return;
}
if(!gtk_tree_view_row_expanded(GTK_TREE_VIEW(dive_list.tree_view), tpath))
gtk_tree_view_expand_row(GTK_TREE_VIEW(dive_list.tree_view), tpath, FALSE);
gtk_tree_path_free(tpath);
gtk_tree_model_get(model, iter, DIVE_INDEX, diveidx, -1);
}
}
static struct dive *dive_from_path(GtkTreePath *path)
{
GtkTreeIter iter;
int idx;
if (gtk_tree_model_get_iter(MODEL(dive_list), &iter, path)) {
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
return get_dive(idx);
} else {
return NULL;
}
}
/* make sure that if we expand a summary row that is selected, the children show
up as selected, too */
void row_expanded_cb(GtkTreeView *tree_view, GtkTreeIter *iter, GtkTreePath *path, gpointer data)
{
GtkTreeIter child;
GtkTreeModel *model = MODEL(dive_list);
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
if (!gtk_tree_model_iter_children(model, &child, iter))
return;
do {
int idx;
struct dive *dive;
gtk_tree_model_get(model, &child, DIVE_INDEX, &idx, -1);
dive = get_dive(idx);
if (dive->selected)
gtk_tree_selection_select_iter(selection, &child);
else
gtk_tree_selection_unselect_iter(selection, &child);
} while (gtk_tree_model_iter_next(model, &child));
}
static int selected_children(GtkTreeModel *model, GtkTreeIter *iter)
{
GtkTreeIter child;
if (!gtk_tree_model_iter_children(model, &child, iter))
return FALSE;
do {
int idx;
struct dive *dive;
gtk_tree_model_get(model, &child, DIVE_INDEX, &idx, -1);
dive = get_dive(idx);
if (dive->selected)
return TRUE;
} while (gtk_tree_model_iter_next(model, &child));
return FALSE;
}
/* Make sure that if we collapse a summary row with any selected children, the row
shows up as selected too */
void row_collapsed_cb(GtkTreeView *tree_view, GtkTreeIter *iter, GtkTreePath *path, gpointer data)
{
GtkTreeModel *model = MODEL(dive_list);
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
if (selected_children(model, iter))
gtk_tree_selection_select_iter(selection, iter);
}
const char *star_strings[] = {
ZERO_STARS,
ONE_STARS,
TWO_STARS,
THREE_STARS,
FOUR_STARS,
FIVE_STARS
};
static void star_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int nr_stars, idx;
char buffer[40];
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_RATING, &nr_stars, -1);
if (idx < 0) {
*buffer = '\0';
} else {
if (nr_stars < 0 || nr_stars > 5)
nr_stars = 0;
snprintf(buffer, sizeof(buffer), "%s", star_strings[nr_stars]);
}
g_object_set(renderer, "text", buffer, NULL);
}
static void date_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int idx, nr;
struct tm tm;
timestamp_t when;
/* this should be enought for most languages. if not increase the value. */
char buffer[256];
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_DATE, &when, -1);
nr = gtk_tree_model_iter_n_children(model, iter);
utc_mkdate(when, &tm);
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
if (idx < 0) {
snprintf(buffer, sizeof(buffer),
/*++GETTEXT 60 char buffer weekday, monthname, day of month, year, nr dives */
ngettext("Trip %1$s, %2$s %3$d, %4$d (%5$d dive)",
"Trip %1$s, %2$s %3$d, %4$d (%5$d dives)", nr),
weekday(tm.tm_wday),
monthname(tm.tm_mon),
tm.tm_mday, tm.tm_year + 1900,
nr);
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
} else {
snprintf(buffer, sizeof(buffer),
/*++GETTEXT 60 char buffer weekday, monthname, day of month, year, hour:min */
_("%1$s, %2$s %3$d, %4$d %5$02d:%6$02d"),
weekday(tm.tm_wday),
monthname(tm.tm_mon),
tm.tm_mday, tm.tm_year + 1900,
tm.tm_hour, tm.tm_min);
}
g_object_set(renderer, "text", buffer, NULL);
}
static void depth_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int depth, integer, frac, len, idx;
char buffer[40];
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_DEPTH, &depth, -1);
if (idx < 0) {
*buffer = '\0';
} else {
switch (prefs.units.length) {
case METERS:
/* To tenths of meters */
depth = (depth + 49) / 100;
integer = depth / 10;
frac = depth % 10;
if (integer < 20)
break;
if (frac >= 5)
integer++;
frac = -1;
break;
case FEET:
integer = mm_to_feet(depth) + 0.5;
frac = -1;
break;
default:
return;
}
len = snprintf(buffer, sizeof(buffer), "%d", integer);
if (frac >= 0)
len += snprintf(buffer+len, sizeof(buffer)-len, ".%d", frac);
}
g_object_set(renderer, "text", buffer, NULL);
}
static void duration_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
unsigned int sec;
int idx;
char buffer[16];
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_DURATION, &sec, -1);
if (idx < 0)
*buffer = '\0';
else
snprintf(buffer, sizeof(buffer), "%d:%02d", sec / 60, sec % 60);
g_object_set(renderer, "text", buffer, NULL);
}
static void temperature_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int value, idx;
char buffer[80];
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_TEMPERATURE, &value, -1);
*buffer = 0;
if (idx >= 0 && value) {
double deg;
switch (prefs.units.temperature) {
case CELSIUS:
deg = mkelvin_to_C(value);
break;
case FAHRENHEIT:
deg = mkelvin_to_F(value);
break;
default:
return;
}
snprintf(buffer, sizeof(buffer), "%.1f", deg);
}
g_object_set(renderer, "text", buffer, NULL);
}
static void gpsicon_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int idx;
GdkPixbuf *icon;
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_LOC_ICON, &icon, -1);
g_object_set(renderer, "pixbuf", icon, NULL);
}
static void nr_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int idx, nr;
char buffer[40];
struct dive *dive;
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_NR, &nr, -1);
if (idx < 0) {
*buffer = '\0';
} else {
/* make dives that are not in trips stand out */
dive = get_dive(idx);
if (!DIVE_IN_TRIP(dive))
snprintf(buffer, sizeof(buffer), "<b>%d</b>", nr);
else
snprintf(buffer, sizeof(buffer), "%d", nr);
}
g_object_set(renderer, "markup", buffer, NULL);
}
/*
* Get "maximal" dive gas for a dive.
* Rules:
* - Trimix trumps nitrox (highest He wins, O2 breaks ties)
* - Nitrox trumps air (even if hypoxic)
* These are the same rules as the inter-dive sorting rules.
*/
static void get_dive_gas(struct dive *dive, int *o2_p, int *he_p, int *o2low_p)
{
int i;
int maxo2 = -1, maxhe = -1, mino2 = 1000;
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder + i;
struct gasmix *mix = &cyl->gasmix;
int o2 = mix->o2.permille;
int he = mix->he.permille;
if (cylinder_none(cyl))
continue;
if (!o2)
o2 = O2_IN_AIR;
if (o2 < mino2)
mino2 = o2;
if (he > maxhe)
goto newmax;
if (he < maxhe)
continue;
if (o2 <= maxo2)
continue;
newmax:
maxhe = he;
maxo2 = o2;
}
/* All air? Show/sort as "air"/zero */
if (!maxhe && maxo2 == O2_IN_AIR && mino2 == maxo2)
maxo2 = mino2 = 0;
*o2_p = maxo2;
*he_p = maxhe;
*o2low_p = mino2;
}
int total_weight(struct dive *dive)
{
int i, total_grams = 0;
if (dive)
for (i=0; i< MAX_WEIGHTSYSTEMS; i++)
total_grams += dive->weightsystem[i].weight.grams;
return total_grams;
}
static void weight_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int indx, decimals;
double value;
char buffer[80];
struct dive *dive;
gtk_tree_model_get(model, iter, DIVE_INDEX, &indx, -1);
dive = get_dive(indx);
value = get_weight_units(total_weight(dive), &decimals, NULL);
if (value == 0.0)
*buffer = '\0';
else
snprintf(buffer, sizeof(buffer), "%.*f", decimals, value);
g_object_set(renderer, "text", buffer, NULL);
}
static gint nitrox_sort_func(GtkTreeModel *model,
GtkTreeIter *iter_a,
GtkTreeIter *iter_b,
gpointer user_data)
{
int index_a, index_b;
struct dive *a, *b;
int a_o2, b_o2;
int a_he, b_he;
int a_o2low, b_o2low;
gtk_tree_model_get(model, iter_a, DIVE_INDEX, &index_a, -1);
gtk_tree_model_get(model, iter_b, DIVE_INDEX, &index_b, -1);
a = get_dive(index_a);
b = get_dive(index_b);
get_dive_gas(a, &a_o2, &a_he, &a_o2low);
get_dive_gas(b, &b_o2, &b_he, &b_o2low);
/* Sort by Helium first, O2 second */
if (a_he == b_he) {
if (a_o2 == b_o2)
return a_o2low - b_o2low;
return a_o2 - b_o2;
}
return a_he - b_he;
}
#define UTF8_ELLIPSIS "\xE2\x80\xA6"
static void nitrox_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int idx, o2, he, o2low;
char buffer[80];
struct dive *dive;
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
if (idx < 0) {
*buffer = '\0';
goto exit;
}
dive = get_dive(idx);
get_dive_gas(dive, &o2, &he, &o2low);
o2 = (o2 + 5) / 10;
he = (he + 5) / 10;
o2low = (o2low + 5) / 10;
if (he)
snprintf(buffer, sizeof(buffer), "%d/%d", o2, he);
else if (o2)
if (o2 == o2low)
snprintf(buffer, sizeof(buffer), "%d", o2);
else
snprintf(buffer, sizeof(buffer), "%d" UTF8_ELLIPSIS "%d", o2low, o2);
else
strcpy(buffer, _("air"));
exit:
g_object_set(renderer, "text", buffer, NULL);
}
/* Render the SAC data (integer value of "ml / min") */
static void sac_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int value, idx;
const char *fmt;
char buffer[16];
double sac;
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_SAC, &value, -1);
if (idx < 0 || !value) {
*buffer = '\0';
goto exit;
}
sac = value / 1000.0;
switch (prefs.units.volume) {
case LITER:
fmt = "%4.1f";
break;
case CUFT:
fmt = "%4.2f";
sac = ml_to_cuft(sac * 1000);
break;
}
snprintf(buffer, sizeof(buffer), fmt, sac);
exit:
g_object_set(renderer, "text", buffer, NULL);
}
/* Render the OTU data (integer value of "OTU") */
static void otu_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int value, idx;
char buffer[16];
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_OTU, &value, -1);
if (idx < 0 || !value)
*buffer = '\0';
else
snprintf(buffer, sizeof(buffer), "%d", value);
g_object_set(renderer, "text", buffer, NULL);
}
/* Render the CNS data (in full %) */
static void cns_data_func(GtkTreeViewColumn *col,
GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer data)
{
int value, idx;
char buffer[16];
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_MAXCNS, &value, -1);
if (idx < 0 || !value)
*buffer = '\0';
else
snprintf(buffer, sizeof(buffer), "%d%%", value);
g_object_set(renderer, "text", buffer, NULL);
}
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
static int active_o2(struct dive *dive, struct divecomputer *dc, duration_t time)
{
int o2permille = dive->cylinder[0].gasmix.o2.permille;
struct event *event = dc->events;
if (!o2permille)
o2permille = O2_IN_AIR;
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
for (event = dc->events; event; event = event->next) {
if (event->time.seconds > time.seconds)
break;
if (strcmp(event->name, "gaschange"))
continue;
o2permille = 10*(event->value & 0xffff);
}
return o2permille;
}
/* calculate OTU for a dive */
static int calculate_otu(struct dive *dive, struct divecomputer *dc)
{
int i;
double otu = 0.0;
for (i = 1; i < dc->samples; i++) {
int t;
double po2;
struct sample *sample = dc->sample + i;
struct sample *psample = sample - 1;
t = sample->time.seconds - psample->time.seconds;
if (sample->po2) {
po2 = sample->po2 / 1000.0;
} else {
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
int o2 = active_o2(dive, dc, sample->time);
po2 = o2 / 1000.0 * depth_to_mbar(sample->depth.mm, dive) / 1000.0;
}
if (po2 >= 0.5)
otu += pow(po2 - 0.5, 0.83) * t / 30.0;
}
return otu + 0.5;
}
/*
* Return air usage (in liters).
*/
static double calculate_airuse(struct dive *dive)
{
double airuse = 0;
int i;
for (i = 0; i < MAX_CYLINDERS; i++) {
pressure_t start, end;
cylinder_t *cyl = dive->cylinder + i;
int size = cyl->type.size.mliter;
double kilo_atm;
if (!size)
continue;
start = cyl->start.mbar ? cyl->start : cyl->sample_start;
end = cyl->end.mbar ? cyl->end : cyl->sample_end;
kilo_atm = (to_ATM(start) - to_ATM(end)) / 1000.0;
/* Liters of air at 1 atm == milliliters at 1k atm*/
airuse += kilo_atm * size;
}
return airuse;
}
static int calculate_sac(struct dive *dive, struct divecomputer *dc)
{
double airuse, pressure, sac;
int duration, i;
airuse = calculate_airuse(dive);
if (!airuse)
return 0;
if (!dive->dc.duration.seconds)
return 0;
/* find and eliminate long surface intervals */
duration = dive->dc.duration.seconds;
for (i = 0; i < dc->samples; i++) {
if (dc->sample[i].depth.mm < 100) { /* less than 10cm */
int end = i + 1;
while (end < dc->samples && dc->sample[end].depth.mm < 100)
end++;
/* we only want the actual surface time during a dive */
if (end < dc->samples) {
end--;
duration -= dc->sample[end].time.seconds -
dc->sample[i].time.seconds;
i = end + 1;
}
}
}
/* Mean pressure in bar (SAC calculations are in bar*l/min) */
pressure = depth_to_mbar(dive->dc.meandepth.mm, dive) / 1000.0;
sac = airuse / pressure * 60 / duration;
/* milliliters per minute.. */
return sac * 1000;
}
/* for now we do this based on the first divecomputer */
static void add_dive_to_deco(struct dive *dive)
{
struct divecomputer *dc = &dive->dc;
int i;
if (!dc)
return;
for (i = 1; i < dive->dc.samples; i++) {
struct sample *psample = dc->sample + i - 1;
struct sample *sample = dc->sample + i;
int t0 = psample->time.seconds;
int t1 = sample->time.seconds;
int j;
for (j = t0; j < t1; j++) {
int depth = interpolate(psample->depth.mm, sample->depth.mm, j - t0, t1 - t0);
(void) add_segment(depth_to_mbar(depth, dive) / 1000.0,
Rewrite of the deco code o) Instead of using gradient factors as means of comparison, I now use pressure (as in: maximal ambient pressure). o) tissue_tolerance_calc() now computes the maximal ambient pressure now respecting gradient factors. For this, it needs to know about the surface pressure (as refernce for GF_high), thus gets *dive as an argument. It is called from add_segment() which this also needs *dive as an additional argument. o) This implies deco_allowed_depth is now mainly a ambient-pressure to depth conversion with decorations to avoid negative depth (i.e. no deco obliation), implementation of quantization (!smooth => multiples of 3m) and explicit setting of last deco depth (e.g. 6m for O2 deco). o) gf_low_pressure_this_dive (slight change of name), the max depth in pressure units is updated in add_segment. I set the minimal value in buehlmann_config to the equivalent of 20m as otherwise good values of GF_low add a lot of deco to shallow dives which do not need deep stops in the first place. o) The bogus loop is gone as well as actual_gradient_limit() and gradient_factor_calculation() and large parts of deco_allowed_depth() although I did not delete the code but put it in comments. o) The meat is in the formula in lines 147-154 of deco.c. Here is the rationale: Without gradient factors, the M-value (i.e the maximal tissue pressure) at a given depth is given by ambient_pressure / buehlmann_b + a. According to "Clearing Up The Confusion About "Deep Stops" by Erik C. Baker (as found via google) the effect of the gradient factors is no replace this by a reduced affine relation (i.e. another line) such that at the surface the difference between M-value and ambient pressure is reduced by a factor GF_high and at the maximal depth by a factor GF_low. That is, we are looking for parameters alpha and beta such that alpha surface + beta = surface + gf_high * (surface/b + a - surface) and alpha max_p + beta = max_p + gf_low * (max_p/b + a - max_p) This can be solved for alpha and beta and then inverted to obtain the max ambient pressure given tissue loadings. The result is the above mentioned formula. Signed-off-by: Robert C. Helling <helling@atdotde.de> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-08 14:37:41 +00:00
&dive->cylinder[sample->sensor].gasmix, 1, sample->po2 / 1000.0, dive);
}
}
}
static int get_divenr(struct dive *dive)
{
int divenr = -1;
while (++divenr < dive_table.nr && get_dive(divenr) != dive)
;
return divenr;
}
static struct gasmix air = { .o2.permille = O2_IN_AIR };
/* take into account previous dives until there is a 48h gap between dives */
First stab at simplistic dive planning This comes with absolutely no gui - so the plan literally needs to be compiled into Subsurface. Not exactly a feature, but this allowed me to focus on the planning part instead of spending time on tedious UI work. A new menu "Planner" with entry "Test Planner" calls into the hard-coded function in planner.c. There a simple dive plan can be constructed with calls to plan_add_segment(&diveplan, duration, depth at the end, fO2, pO2) Calling plan(&diveplan) does the deco calculations and creates deco stops that keep us below the ceiling (with the GFlow/high values currently configured). The stop levels used are defined at the top of planner.c in the stoplevels array - there is no need to do the traditional multiples of 3m or anything like that. The dive including the ascents and deco stops all the way to the surface is completed and then added as simulated dive to the end of the divelist (I guess we could automatically select it later) and can be viewed. This is crude but shows the direction we can go with this. Envision a nice UI that allows you to simply enter the segments and pick the desired stops. What is missing is the ability to give the algorithm additional gases that it can use during the deco phase - right now it simply keeps using the last gas used in the diveplan. All that said, there are clear bugs here - and sadly they seem to be in the deco calculations, as with the example given the ceiling that is calculated makes no sense. When displayed in smooth mode it has very strange jumps up and down that I wouldn't expect. For example with GF 35/75 (the default) the deco ceiling when looking at the simulated dive jumps from 16m back up to 13m around 14:10 into the dive. That seems very odd. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-05 07:11:42 +00:00
double init_decompression(struct dive *dive)
{
int i, divenr = -1;
unsigned int surface_time;
timestamp_t when, lasttime = 0;
gboolean deco_init = FALSE;
double tissue_tolerance, surface_pressure;
if (!dive)
First stab at simplistic dive planning This comes with absolutely no gui - so the plan literally needs to be compiled into Subsurface. Not exactly a feature, but this allowed me to focus on the planning part instead of spending time on tedious UI work. A new menu "Planner" with entry "Test Planner" calls into the hard-coded function in planner.c. There a simple dive plan can be constructed with calls to plan_add_segment(&diveplan, duration, depth at the end, fO2, pO2) Calling plan(&diveplan) does the deco calculations and creates deco stops that keep us below the ceiling (with the GFlow/high values currently configured). The stop levels used are defined at the top of planner.c in the stoplevels array - there is no need to do the traditional multiples of 3m or anything like that. The dive including the ascents and deco stops all the way to the surface is completed and then added as simulated dive to the end of the divelist (I guess we could automatically select it later) and can be viewed. This is crude but shows the direction we can go with this. Envision a nice UI that allows you to simply enter the segments and pick the desired stops. What is missing is the ability to give the algorithm additional gases that it can use during the deco phase - right now it simply keeps using the last gas used in the diveplan. All that said, there are clear bugs here - and sadly they seem to be in the deco calculations, as with the example given the ceiling that is calculated makes no sense. When displayed in smooth mode it has very strange jumps up and down that I wouldn't expect. For example with GF 35/75 (the default) the deco ceiling when looking at the simulated dive jumps from 16m back up to 13m around 14:10 into the dive. That seems very odd. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-05 07:11:42 +00:00
return 0.0;
divenr = get_divenr(dive);
when = dive->when;
i = divenr;
while (i && --i) {
struct dive* pdive = get_dive(i);
/* we don't want to mix dives from different trips as we keep looking
* for how far back we need to go */
if (dive->divetrip && pdive->divetrip != dive->divetrip)
continue;
if (!pdive || pdive->when > when || pdive->when + pdive->dc.duration.seconds + 48 * 60 * 60 < when)
break;
when = pdive->when;
lasttime = when + pdive->dc.duration.seconds;
}
while (++i < divenr) {
struct dive* pdive = get_dive(i);
/* again skip dives from different trips */
if (dive->divetrip && dive->divetrip != pdive->divetrip)
continue;
surface_pressure = (pdive->dc.surface_pressure.mbar ? pdive->dc.surface_pressure.mbar : SURFACE_PRESSURE) / 1000;
if (!deco_init) {
clear_deco(surface_pressure);
deco_init = TRUE;
#if DECO_CALC_DEBUG & 2
dump_tissues();
#endif
}
add_dive_to_deco(pdive);
#if DECO_CALC_DEBUG & 2
printf("added dive #%d\n", pdive->number);
dump_tissues();
#endif
if (pdive->when > lasttime) {
surface_time = pdive->when - lasttime;
lasttime = pdive->when + pdive->dc.duration.seconds;
tissue_tolerance = add_segment(surface_pressure, &air, surface_time, 0.0, dive);
#if DECO_CALC_DEBUG & 2
printf("after surface intervall of %d:%02u\n", FRACTION(surface_time,60));
dump_tissues();
#endif
}
}
/* add the final surface time */
if (lasttime && dive->when > lasttime) {
surface_time = dive->when - lasttime;
surface_pressure = (dive->dc.surface_pressure.mbar ? dive->dc.surface_pressure.mbar : SURFACE_PRESSURE) / 1000;
Rewrite of the deco code o) Instead of using gradient factors as means of comparison, I now use pressure (as in: maximal ambient pressure). o) tissue_tolerance_calc() now computes the maximal ambient pressure now respecting gradient factors. For this, it needs to know about the surface pressure (as refernce for GF_high), thus gets *dive as an argument. It is called from add_segment() which this also needs *dive as an additional argument. o) This implies deco_allowed_depth is now mainly a ambient-pressure to depth conversion with decorations to avoid negative depth (i.e. no deco obliation), implementation of quantization (!smooth => multiples of 3m) and explicit setting of last deco depth (e.g. 6m for O2 deco). o) gf_low_pressure_this_dive (slight change of name), the max depth in pressure units is updated in add_segment. I set the minimal value in buehlmann_config to the equivalent of 20m as otherwise good values of GF_low add a lot of deco to shallow dives which do not need deep stops in the first place. o) The bogus loop is gone as well as actual_gradient_limit() and gradient_factor_calculation() and large parts of deco_allowed_depth() although I did not delete the code but put it in comments. o) The meat is in the formula in lines 147-154 of deco.c. Here is the rationale: Without gradient factors, the M-value (i.e the maximal tissue pressure) at a given depth is given by ambient_pressure / buehlmann_b + a. According to "Clearing Up The Confusion About "Deep Stops" by Erik C. Baker (as found via google) the effect of the gradient factors is no replace this by a reduced affine relation (i.e. another line) such that at the surface the difference between M-value and ambient pressure is reduced by a factor GF_high and at the maximal depth by a factor GF_low. That is, we are looking for parameters alpha and beta such that alpha surface + beta = surface + gf_high * (surface/b + a - surface) and alpha max_p + beta = max_p + gf_low * (max_p/b + a - max_p) This can be solved for alpha and beta and then inverted to obtain the max ambient pressure given tissue loadings. The result is the above mentioned formula. Signed-off-by: Robert C. Helling <helling@atdotde.de> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-08 14:37:41 +00:00
tissue_tolerance = add_segment(surface_pressure, &air, surface_time, 0.0, dive);
#if DECO_CALC_DEBUG & 2
printf("after surface intervall of %d:%02u\n", FRACTION(surface_time,60));
dump_tissues();
#endif
}
if (!deco_init) {
double surface_pressure = (dive->dc.surface_pressure.mbar ? dive->dc.surface_pressure.mbar : SURFACE_PRESSURE) / 1000;
clear_deco(surface_pressure);
#if DECO_CALC_DEBUG & 2
printf("no previous dive\n");
dump_tissues();
#endif
}
First stab at simplistic dive planning This comes with absolutely no gui - so the plan literally needs to be compiled into Subsurface. Not exactly a feature, but this allowed me to focus on the planning part instead of spending time on tedious UI work. A new menu "Planner" with entry "Test Planner" calls into the hard-coded function in planner.c. There a simple dive plan can be constructed with calls to plan_add_segment(&diveplan, duration, depth at the end, fO2, pO2) Calling plan(&diveplan) does the deco calculations and creates deco stops that keep us below the ceiling (with the GFlow/high values currently configured). The stop levels used are defined at the top of planner.c in the stoplevels array - there is no need to do the traditional multiples of 3m or anything like that. The dive including the ascents and deco stops all the way to the surface is completed and then added as simulated dive to the end of the divelist (I guess we could automatically select it later) and can be viewed. This is crude but shows the direction we can go with this. Envision a nice UI that allows you to simply enter the segments and pick the desired stops. What is missing is the ability to give the algorithm additional gases that it can use during the deco phase - right now it simply keeps using the last gas used in the diveplan. All that said, there are clear bugs here - and sadly they seem to be in the deco calculations, as with the example given the ceiling that is calculated makes no sense. When displayed in smooth mode it has very strange jumps up and down that I wouldn't expect. For example with GF 35/75 (the default) the deco ceiling when looking at the simulated dive jumps from 16m back up to 13m around 14:10 into the dive. That seems very odd. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-05 07:11:42 +00:00
return tissue_tolerance;
}
void update_cylinder_related_info(struct dive *dive)
{
if (dive != NULL) {
dive->sac = calculate_sac(dive, &dive->dc);
dive->otu = calculate_otu(dive, &dive->dc);
}
}
static void get_string(char **str, const char *s)
{
int len;
char *n;
if (!s)
s = "";
len = g_utf8_strlen(s, -1);
if (len > 60)
len = 60;
n = malloc(len * sizeof(gunichar) + 1);
g_utf8_strncpy(n, s, len);
*str = n;
}
static void get_location(struct dive *dive, char **str)
{
get_string(str, dive->location);
}
static void get_cylinder(struct dive *dive, char **str)
{
get_string(str, dive->cylinder[0].type.description);
}
static void get_suit(struct dive *dive, char **str)
{
get_string(str, dive->suit);
}
GdkPixbuf *get_gps_icon(void)
{
return gdk_pixbuf_from_pixdata(&my_pixbuf, TRUE, NULL);
}
GdkPixbuf *get_gps_icon_for_dive(struct dive *dive)
{
if (dive_has_location(dive))
return get_gps_icon();
else
return NULL;
}
/*
* Set up anything that could have changed due to editing
* of dive information; we need to do this for both models,
* so we simply call set_one_dive again with the non-current model
*/
/* forward declaration for recursion */
static gboolean set_one_dive(GtkTreeModel *model,
GtkTreePath *path,
GtkTreeIter *iter,
gpointer data);
static void fill_one_dive(struct dive *dive,
GtkTreeModel *model,
GtkTreeIter *iter)
{
char *location, *cylinder, *suit;
GtkTreeModel *othermodel;
GdkPixbuf *icon;
get_cylinder(dive, &cylinder);
get_location(dive, &location);
get_suit(dive, &suit);
icon = get_gps_icon_for_dive(dive);
gtk_tree_store_set(GTK_TREE_STORE(model), iter,
DIVE_NR, dive->number,
DIVE_LOCATION, location,
DIVE_LOC_ICON, icon,
DIVE_CYLINDER, cylinder,
DIVE_RATING, dive->rating,
DIVE_SAC, dive->sac,
DIVE_OTU, dive->otu,
DIVE_MAXCNS, dive->maxcns,
DIVE_TOTALWEIGHT, total_weight(dive),
DIVE_SUIT, suit,
-1);
free(location);
free(cylinder);
free(suit);
if (model == TREEMODEL(dive_list))
othermodel = LISTMODEL(dive_list);
else
othermodel = TREEMODEL(dive_list);
if (othermodel != MODEL(dive_list))
/* recursive call */
gtk_tree_model_foreach(othermodel, set_one_dive, dive);
}
static gboolean set_one_dive(GtkTreeModel *model,
GtkTreePath *path,
GtkTreeIter *iter,
gpointer data)
{
int idx;
struct dive *dive;
/* Get the dive number */
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
if (idx < 0)
return FALSE;
dive = get_dive(idx);
if (!dive)
return TRUE;
if (data && dive != data)
return FALSE;
fill_one_dive(dive, model, iter);
return dive == data;
}
void flush_divelist(struct dive *dive)
{
GtkTreeModel *model = MODEL(dive_list);
gtk_tree_model_foreach(model, set_one_dive, dive);
}
void set_divelist_font(const char *font)
{
PangoFontDescription *font_desc = pango_font_description_from_string(font);
gtk_widget_modify_font(dive_list.tree_view, font_desc);
pango_font_description_free(font_desc);
}
void update_dive_list_units(void)
{
const char *unit;
GtkTreeModel *model = MODEL(dive_list);
(void) get_depth_units(0, NULL, &unit);
gtk_tree_view_column_set_title(dive_list.depth, unit);
(void) get_temp_units(0, &unit);
gtk_tree_view_column_set_title(dive_list.temperature, unit);
(void) get_weight_units(0, NULL, &unit);
gtk_tree_view_column_set_title(dive_list.totalweight, unit);
gtk_tree_model_foreach(model, set_one_dive, NULL);
}
void update_dive_list_col_visibility(void)
{
gtk_tree_view_column_set_visible(dive_list.cylinder, prefs.visible_cols.cylinder);
gtk_tree_view_column_set_visible(dive_list.temperature, prefs.visible_cols.temperature);
gtk_tree_view_column_set_visible(dive_list.totalweight, prefs.visible_cols.totalweight);
gtk_tree_view_column_set_visible(dive_list.suit, prefs.visible_cols.suit);
gtk_tree_view_column_set_visible(dive_list.nitrox, prefs.visible_cols.nitrox);
gtk_tree_view_column_set_visible(dive_list.sac, prefs.visible_cols.sac);
gtk_tree_view_column_set_visible(dive_list.otu, prefs.visible_cols.otu);
gtk_tree_view_column_set_visible(dive_list.maxcns, prefs.visible_cols.maxcns);
return;
}
/*
* helper functions for dive_trip handling
*/
#ifdef DEBUG_TRIP
static void dump_trip_list(void)
{
dive_trip_t *trip;
int i=0;
timestamp_t last_time = 0;
for (trip = dive_trip_list; trip; trip = trip->next) {
struct tm tm;
utc_mkdate(trip->when, &tm);
if (trip->when < last_time)
printf("\n\ndive_trip_list OUT OF ORDER!!!\n\n\n");
2012-11-10 18:51:03 +00:00
printf("%s trip %d to \"%s\" on %04u-%02u-%02u %02u:%02u:%02u (%d dives - %p)\n",
trip->autogen ? "autogen " : "",
++i, trip->location,
2012-11-10 18:51:03 +00:00
tm.tm_year + 1900, tm.tm_mon+1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec,
trip->nrdives, trip);
last_time = trip->when;
}
printf("-----\n");
}
#endif
/* this finds a trip that starts at precisely the time given */
static dive_trip_t *find_trip_by_time(timestamp_t when)
{
dive_trip_t *trip = dive_trip_list;
while (trip && trip->when < when)
trip = trip->next;
if (trip && trip->when == when) {
#ifdef DEBUG_TRIP
struct tm tm;
utc_mkdate(trip->when, &tm);
2012-11-10 18:51:03 +00:00
printf("found trip %p @ %04d-%02d-%02d %02d:%02d:%02d\n",
trip,
tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
#endif
return trip;
}
#ifdef DEBUG_TRIP
printf("no matching trip\n");
#endif
return NULL;
}
/* this finds the last trip that at or before the time given */
static dive_trip_t *find_matching_trip(timestamp_t when)
{
dive_trip_t *trip = dive_trip_list;
if (!trip || trip->when > when) {
#ifdef DEBUG_TRIP
printf("no matching trip\n");
#endif
return NULL;
}
while (trip->next && trip->next->when <= when)
trip = trip->next;
#ifdef DEBUG_TRIP
{
struct tm tm;
utc_mkdate(trip->when, &tm);
2012-11-10 18:51:03 +00:00
printf("found trip %p @ %04d-%02d-%02d %02d:%02d:%02d\n",
trip,
tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
}
#endif
return trip;
}
/* insert the trip into the dive_trip_list - but ensure you don't have
* two trips for the same date; but if you have, make sure you don't
* keep the one with less information */
void insert_trip(dive_trip_t **dive_trip_p)
{
dive_trip_t *dive_trip = *dive_trip_p;
dive_trip_t **p = &dive_trip_list;
dive_trip_t *trip;
struct dive *divep;
/* Walk the dive trip list looking for the right location.. */
while ((trip = *p) != NULL && trip->when < dive_trip->when)
p = &trip->next;
if (trip && trip->when == dive_trip->when) {
if (! trip->location)
trip->location = dive_trip->location;
if (! trip->notes)
trip->notes = dive_trip->notes;
divep = dive_trip->dives;
while (divep) {
add_dive_to_trip(divep, trip);
divep = divep->next;
}
*dive_trip_p = trip;
} else {
dive_trip->next = trip;
*p = dive_trip;
}
#ifdef DEBUG_TRIP
dump_trip_list();
#endif
}
2012-11-10 18:51:03 +00:00
static void delete_trip(dive_trip_t *trip)
{
dive_trip_t **p, *tmp;
2012-11-10 18:51:03 +00:00
assert(!trip->dives);
/* Remove the trip from the list of trips */
p = &dive_trip_list;
while ((tmp = *p) != NULL) {
if (tmp == trip) {
*p = trip->next;
break;
}
p = &tmp->next;
}
/* .. and free it */
2012-11-10 18:51:03 +00:00
if (trip->location)
free(trip->location);
if (trip->notes)
free(trip->notes);
2012-11-10 18:51:03 +00:00
free(trip);
}
static void find_new_trip_start_time(dive_trip_t *trip)
{
struct dive *dive = trip->dives;
timestamp_t when = dive->when;
2012-11-10 18:51:03 +00:00
while ((dive = dive->next) != NULL) {
if (dive->when < when)
when = dive->when;
2012-11-10 18:51:03 +00:00
}
trip->when = when;
2012-11-10 18:51:03 +00:00
}
void remove_dive_from_trip(struct dive *dive)
{
struct dive *next, **pprev;
2012-11-10 18:51:03 +00:00
dive_trip_t *trip = dive->divetrip;
if (!trip)
return;
/* Remove the dive from the trip's list of dives */
next = dive->next;
pprev = dive->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
2012-11-10 18:51:03 +00:00
dive->divetrip = NULL;
dive->tripflag = TF_NONE;
2012-11-10 18:51:03 +00:00
assert(trip->nrdives > 0);
if (!--trip->nrdives)
delete_trip(trip);
else if (trip->when == dive->when)
find_new_trip_start_time(trip);
}
void add_dive_to_trip(struct dive *dive, dive_trip_t *trip)
{
if (dive->divetrip == trip)
return;
assert(trip->when);
remove_dive_from_trip(dive);
trip->nrdives++;
dive->divetrip = trip;
dive->tripflag = ASSIGNED_TRIP;
/* Add it to the trip's list of dives*/
dive->next = trip->dives;
if (dive->next)
dive->next->pprev = &dive->next;
trip->dives = dive;
dive->pprev = &trip->dives;
2012-11-10 18:51:03 +00:00
if (dive->when && trip->when > dive->when)
trip->when = dive->when;
}
static dive_trip_t *create_and_hookup_trip_from_dive(struct dive *dive)
{
dive_trip_t *dive_trip = calloc(sizeof(dive_trip_t),1);
dive_trip->when = dive->when;
if (dive->location)
dive_trip->location = strdup(dive->location);
insert_trip(&dive_trip);
2012-11-10 18:51:03 +00:00
dive->tripflag = IN_TRIP;
2012-11-10 18:51:03 +00:00
add_dive_to_trip(dive, dive_trip);
return dive_trip;
}
/*
* Walk the dives from the oldest dive, and see if we can autogroup them
*/
static void autogroup_dives(void)
{
int i;
struct dive *dive, *lastdive = NULL;
for_each_dive(i, dive) {
dive_trip_t *trip;
if (dive->divetrip) {
lastdive = dive;
continue;
}
if (!DIVE_NEEDS_TRIP(dive)) {
lastdive = NULL;
continue;
}
/* Do we have a trip we can combine this into? */
if (lastdive && dive->when < lastdive->when + TRIP_THRESHOLD) {
dive_trip_t *trip = lastdive->divetrip;
add_dive_to_trip(dive, trip);
if (dive->location && !trip->location)
trip->location = strdup(dive->location);
lastdive = dive;
continue;
}
lastdive = dive;
trip = create_and_hookup_trip_from_dive(dive);
trip->autogen = 1;
}
#ifdef DEBUG_TRIP
dump_trip_list();
#endif
}
Allow overlapping (and disjoint) dive trips We used to have the rule that a dive trip has to have all dives in it in sequential order, even though our XML file really is much more flexible, and allows arbitrary nesting of dives within a dive trip. Put another way, the old model had fairly inflexible rules: - the dive array is sorted by time - a dive trip is always a contiguous slice of this sorted array which makes perfect sense when you think of the dive and trip list as a physical activity by one person, but leads to various very subtle issues in the general case when there are no guarantees that the user then uses subsurface that way. In particular, if you load the XML files of two divers that have overlapping dive trips, the end result is incredibly messy, and does not conform to the above model at all. There's two ways to enforce such conformance: - disallow that kind of behavior entirely. This is actually hard. Our XML files aren't date-based, they are based on XML nesting rules, and even a single XML file can have nesting that violates the date ordering. With multiple XML files, it's trivial to do in practice, and while we could just fail at loading, the failure would have to be a hard failure that leaves the user no way to use the data at all. - try to "fix it up" by sorting, splitting, and combining dive trips automatically. Dirk had a patch to do this, but it really does destroy the actual dive data: if you load both mine and Dirk's dive trips, you ended up with a result that followed the above two technical rules, but that didn't actually make any *sense*. So this patch doesn't try to enforce the rules, and instead just changes them to be more generic: - the dive array is still sorted by dive time - a dive trip is just an arbitrary collection of dives. The relaxed rules means that mixing dives and dive trips for two people is trivial, and we can easily handle any XML file. The dive trip is defined by the XML nesting level, and is totally independent of any date-based sorting. It does require a few things: - when we save our dive data, we have to do it hierarchically by dive trip, not just by walking the dive array linearly. - similarly, when we create the dive tree model, we can't just blindly walk the array of dives one by one, we have to look up the correct trip (parent) - when we try to merge two dives that are adjacent (by date sorting), we can't do it if they are in different trips. but apart from that, nothing else really changes. NOTE! Despite the new relaxed model, creating totally disjoing dive trips is not all that easy (nor is there any *reason* for it to be easty). Our GUI interfaces still are "add dive to trip above" etc, and the automatic adding of dives to dive trips is obviously still based on date. So this does not really change the expected normal usage, the relaxed data structure rules just mean that we don't need to worry about the odd cases as much, because we can just let them be. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
static void clear_trip_indexes(void)
{
dive_trip_t *trip;
for (trip = dive_trip_list; trip != NULL; trip = trip->next)
trip->index = 0;
}
static void fill_dive_list(void)
{
Allow overlapping (and disjoint) dive trips We used to have the rule that a dive trip has to have all dives in it in sequential order, even though our XML file really is much more flexible, and allows arbitrary nesting of dives within a dive trip. Put another way, the old model had fairly inflexible rules: - the dive array is sorted by time - a dive trip is always a contiguous slice of this sorted array which makes perfect sense when you think of the dive and trip list as a physical activity by one person, but leads to various very subtle issues in the general case when there are no guarantees that the user then uses subsurface that way. In particular, if you load the XML files of two divers that have overlapping dive trips, the end result is incredibly messy, and does not conform to the above model at all. There's two ways to enforce such conformance: - disallow that kind of behavior entirely. This is actually hard. Our XML files aren't date-based, they are based on XML nesting rules, and even a single XML file can have nesting that violates the date ordering. With multiple XML files, it's trivial to do in practice, and while we could just fail at loading, the failure would have to be a hard failure that leaves the user no way to use the data at all. - try to "fix it up" by sorting, splitting, and combining dive trips automatically. Dirk had a patch to do this, but it really does destroy the actual dive data: if you load both mine and Dirk's dive trips, you ended up with a result that followed the above two technical rules, but that didn't actually make any *sense*. So this patch doesn't try to enforce the rules, and instead just changes them to be more generic: - the dive array is still sorted by dive time - a dive trip is just an arbitrary collection of dives. The relaxed rules means that mixing dives and dive trips for two people is trivial, and we can easily handle any XML file. The dive trip is defined by the XML nesting level, and is totally independent of any date-based sorting. It does require a few things: - when we save our dive data, we have to do it hierarchically by dive trip, not just by walking the dive array linearly. - similarly, when we create the dive tree model, we can't just blindly walk the array of dives one by one, we have to look up the correct trip (parent) - when we try to merge two dives that are adjacent (by date sorting), we can't do it if they are in different trips. but apart from that, nothing else really changes. NOTE! Despite the new relaxed model, creating totally disjoing dive trips is not all that easy (nor is there any *reason* for it to be easty). Our GUI interfaces still are "add dive to trip above" etc, and the automatic adding of dives to dive trips is obviously still based on date. So this does not really change the expected normal usage, the relaxed data structure rules just mean that we don't need to worry about the odd cases as much, because we can just let them be. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
int i, trip_index = 0;
GtkTreeIter iter, parent_iter, lookup, *parent_ptr = NULL;
GtkTreeStore *liststore, *treestore;
GdkPixbuf *icon;
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
/* Do we need to create any dive groups automatically? */
if (autogroup)
autogroup_dives();
treestore = TREESTORE(dive_list);
liststore = LISTSTORE(dive_list);
Allow overlapping (and disjoint) dive trips We used to have the rule that a dive trip has to have all dives in it in sequential order, even though our XML file really is much more flexible, and allows arbitrary nesting of dives within a dive trip. Put another way, the old model had fairly inflexible rules: - the dive array is sorted by time - a dive trip is always a contiguous slice of this sorted array which makes perfect sense when you think of the dive and trip list as a physical activity by one person, but leads to various very subtle issues in the general case when there are no guarantees that the user then uses subsurface that way. In particular, if you load the XML files of two divers that have overlapping dive trips, the end result is incredibly messy, and does not conform to the above model at all. There's two ways to enforce such conformance: - disallow that kind of behavior entirely. This is actually hard. Our XML files aren't date-based, they are based on XML nesting rules, and even a single XML file can have nesting that violates the date ordering. With multiple XML files, it's trivial to do in practice, and while we could just fail at loading, the failure would have to be a hard failure that leaves the user no way to use the data at all. - try to "fix it up" by sorting, splitting, and combining dive trips automatically. Dirk had a patch to do this, but it really does destroy the actual dive data: if you load both mine and Dirk's dive trips, you ended up with a result that followed the above two technical rules, but that didn't actually make any *sense*. So this patch doesn't try to enforce the rules, and instead just changes them to be more generic: - the dive array is still sorted by dive time - a dive trip is just an arbitrary collection of dives. The relaxed rules means that mixing dives and dive trips for two people is trivial, and we can easily handle any XML file. The dive trip is defined by the XML nesting level, and is totally independent of any date-based sorting. It does require a few things: - when we save our dive data, we have to do it hierarchically by dive trip, not just by walking the dive array linearly. - similarly, when we create the dive tree model, we can't just blindly walk the array of dives one by one, we have to look up the correct trip (parent) - when we try to merge two dives that are adjacent (by date sorting), we can't do it if they are in different trips. but apart from that, nothing else really changes. NOTE! Despite the new relaxed model, creating totally disjoing dive trips is not all that easy (nor is there any *reason* for it to be easty). Our GUI interfaces still are "add dive to trip above" etc, and the automatic adding of dives to dive trips is obviously still based on date. So this does not really change the expected normal usage, the relaxed data structure rules just mean that we don't need to worry about the odd cases as much, because we can just let them be. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
clear_trip_indexes();
i = dive_table.nr;
while (--i >= 0) {
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
struct dive *dive = get_dive(i);
dive_trip_t *trip = dive->divetrip;
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
Allow overlapping (and disjoint) dive trips We used to have the rule that a dive trip has to have all dives in it in sequential order, even though our XML file really is much more flexible, and allows arbitrary nesting of dives within a dive trip. Put another way, the old model had fairly inflexible rules: - the dive array is sorted by time - a dive trip is always a contiguous slice of this sorted array which makes perfect sense when you think of the dive and trip list as a physical activity by one person, but leads to various very subtle issues in the general case when there are no guarantees that the user then uses subsurface that way. In particular, if you load the XML files of two divers that have overlapping dive trips, the end result is incredibly messy, and does not conform to the above model at all. There's two ways to enforce such conformance: - disallow that kind of behavior entirely. This is actually hard. Our XML files aren't date-based, they are based on XML nesting rules, and even a single XML file can have nesting that violates the date ordering. With multiple XML files, it's trivial to do in practice, and while we could just fail at loading, the failure would have to be a hard failure that leaves the user no way to use the data at all. - try to "fix it up" by sorting, splitting, and combining dive trips automatically. Dirk had a patch to do this, but it really does destroy the actual dive data: if you load both mine and Dirk's dive trips, you ended up with a result that followed the above two technical rules, but that didn't actually make any *sense*. So this patch doesn't try to enforce the rules, and instead just changes them to be more generic: - the dive array is still sorted by dive time - a dive trip is just an arbitrary collection of dives. The relaxed rules means that mixing dives and dive trips for two people is trivial, and we can easily handle any XML file. The dive trip is defined by the XML nesting level, and is totally independent of any date-based sorting. It does require a few things: - when we save our dive data, we have to do it hierarchically by dive trip, not just by walking the dive array linearly. - similarly, when we create the dive tree model, we can't just blindly walk the array of dives one by one, we have to look up the correct trip (parent) - when we try to merge two dives that are adjacent (by date sorting), we can't do it if they are in different trips. but apart from that, nothing else really changes. NOTE! Despite the new relaxed model, creating totally disjoing dive trips is not all that easy (nor is there any *reason* for it to be easty). Our GUI interfaces still are "add dive to trip above" etc, and the automatic adding of dives to dive trips is obviously still based on date. So this does not really change the expected normal usage, the relaxed data structure rules just mean that we don't need to worry about the odd cases as much, because we can just let them be. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
if (!trip) {
parent_ptr = NULL;
} else if (!trip->index) {
trip->index = ++trip_index;
/* Create new trip entry */
gtk_tree_store_append(treestore, &parent_iter, NULL);
parent_ptr = &parent_iter;
/* a duration of 0 (and negative index) identifies a group */
gtk_tree_store_set(treestore, parent_ptr,
DIVE_INDEX, -trip_index,
DIVE_DATE, trip->when,
DIVE_LOCATION, trip->location,
DIVE_DURATION, 0,
-1);
} else {
int idx, ok;
Allow overlapping (and disjoint) dive trips We used to have the rule that a dive trip has to have all dives in it in sequential order, even though our XML file really is much more flexible, and allows arbitrary nesting of dives within a dive trip. Put another way, the old model had fairly inflexible rules: - the dive array is sorted by time - a dive trip is always a contiguous slice of this sorted array which makes perfect sense when you think of the dive and trip list as a physical activity by one person, but leads to various very subtle issues in the general case when there are no guarantees that the user then uses subsurface that way. In particular, if you load the XML files of two divers that have overlapping dive trips, the end result is incredibly messy, and does not conform to the above model at all. There's two ways to enforce such conformance: - disallow that kind of behavior entirely. This is actually hard. Our XML files aren't date-based, they are based on XML nesting rules, and even a single XML file can have nesting that violates the date ordering. With multiple XML files, it's trivial to do in practice, and while we could just fail at loading, the failure would have to be a hard failure that leaves the user no way to use the data at all. - try to "fix it up" by sorting, splitting, and combining dive trips automatically. Dirk had a patch to do this, but it really does destroy the actual dive data: if you load both mine and Dirk's dive trips, you ended up with a result that followed the above two technical rules, but that didn't actually make any *sense*. So this patch doesn't try to enforce the rules, and instead just changes them to be more generic: - the dive array is still sorted by dive time - a dive trip is just an arbitrary collection of dives. The relaxed rules means that mixing dives and dive trips for two people is trivial, and we can easily handle any XML file. The dive trip is defined by the XML nesting level, and is totally independent of any date-based sorting. It does require a few things: - when we save our dive data, we have to do it hierarchically by dive trip, not just by walking the dive array linearly. - similarly, when we create the dive tree model, we can't just blindly walk the array of dives one by one, we have to look up the correct trip (parent) - when we try to merge two dives that are adjacent (by date sorting), we can't do it if they are in different trips. but apart from that, nothing else really changes. NOTE! Despite the new relaxed model, creating totally disjoing dive trips is not all that easy (nor is there any *reason* for it to be easty). Our GUI interfaces still are "add dive to trip above" etc, and the automatic adding of dives to dive trips is obviously still based on date. So this does not really change the expected normal usage, the relaxed data structure rules just mean that we don't need to worry about the odd cases as much, because we can just let them be. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
GtkTreeModel *model = TREEMODEL(dive_list);
parent_ptr = NULL;
ok = gtk_tree_model_get_iter_first(model, &lookup);
while (ok) {
gtk_tree_model_get(model, &lookup, DIVE_INDEX, &idx, -1);
if (idx == -trip->index) {
parent_ptr = &lookup;
break;
}
ok = gtk_tree_model_iter_next(model, &lookup);
}
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
}
/* store dive */
update_cylinder_related_info(dive);
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
gtk_tree_store_append(treestore, &iter, parent_ptr);
icon = get_gps_icon_for_dive(dive);
gtk_tree_store_set(treestore, &iter,
DIVE_INDEX, i,
DIVE_NR, dive->number,
DIVE_DATE, dive->when,
DIVE_DEPTH, dive->dc.maxdepth,
DIVE_DURATION, dive->dc.duration.seconds,
DIVE_LOCATION, dive->location,
DIVE_LOC_ICON, icon,
DIVE_RATING, dive->rating,
DIVE_TEMPERATURE, dive->dc.watertemp.mkelvin,
DIVE_SAC, 0,
-1);
gtk_tree_store_append(liststore, &iter, NULL);
gtk_tree_store_set(liststore, &iter,
DIVE_INDEX, i,
DIVE_NR, dive->number,
DIVE_DATE, dive->when,
DIVE_DEPTH, dive->dc.maxdepth,
DIVE_DURATION, dive->dc.duration.seconds,
DIVE_LOCATION, dive->location,
DIVE_LOC_ICON, icon,
DIVE_RATING, dive->rating,
DIVE_TEMPERATURE, dive->dc.watertemp.mkelvin,
DIVE_TOTALWEIGHT, 0,
DIVE_SUIT, dive->suit,
DIVE_SAC, 0,
-1);
}
update_dive_list_units();
if (amount_selected == 0 && gtk_tree_model_get_iter_first(MODEL(dive_list), &iter)) {
GtkTreeSelection *selection;
/* select the last dive (and make sure it's an actual dive that is selected) */
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &selected_dive, -1);
first_leaf(MODEL(dive_list), &iter, &selected_dive);
selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
gtk_tree_selection_select_iter(selection, &iter);
}
}
void dive_list_update_dives(void)
{
dive_table.preexisting = dive_table.nr;
gtk_tree_store_clear(TREESTORE(dive_list));
gtk_tree_store_clear(LISTSTORE(dive_list));
fill_dive_list();
repaint_dive();
}
static gint dive_nr_sort(GtkTreeModel *model,
GtkTreeIter *iter_a,
GtkTreeIter *iter_b,
gpointer user_data)
{
int idx_a, idx_b;
timestamp_t when_a, when_b;
struct dive *a, *b;
dive_trip_t *tripa = NULL, *tripb = NULL;
gtk_tree_model_get(model, iter_a, DIVE_INDEX, &idx_a, DIVE_DATE, &when_a, -1);
gtk_tree_model_get(model, iter_b, DIVE_INDEX, &idx_b, DIVE_DATE, &when_b, -1);
if (idx_a < 0) {
a = NULL;
tripa = find_trip_by_time(when_a);
} else {
a = get_dive(idx_a);
if (a)
tripa = a->divetrip;
}
if (idx_b < 0) {
b = NULL;
tripb = find_trip_by_time(when_b);
} else {
b = get_dive(idx_b);
if (b)
tripb = b->divetrip;
}
/*
* Compare dive dates within the same trip (or when there
* are no trips involved at all). But if we have two
* different trips use the trip dates for comparison
*/
if (tripa != tripb) {
if (tripa)
when_a = tripa->when;
if (tripb)
when_b = tripb->when;
}
return when_a - when_b;
}
static struct divelist_column {
const char *header;
data_func_t data;
sort_func_t sort;
unsigned int flags;
int *visible;
} dl_column[] = {
[DIVE_NR] = { "#", nr_data_func, dive_nr_sort, ALIGN_RIGHT },
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
[DIVE_DATE] = { N_("Date"), date_data_func, NULL, ALIGN_LEFT },
[DIVE_RATING] = { UTF8_BLACKSTAR, star_data_func, NULL, ALIGN_LEFT },
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
[DIVE_DEPTH] = { N_("ft"), depth_data_func, NULL, ALIGN_RIGHT },
[DIVE_DURATION] = { N_("min"), duration_data_func, NULL, ALIGN_RIGHT },
[DIVE_TEMPERATURE] = { UTF8_DEGREE "F", temperature_data_func, NULL, ALIGN_RIGHT, &prefs.visible_cols.temperature },
[DIVE_TOTALWEIGHT] = { N_("lbs"), weight_data_func, NULL, ALIGN_RIGHT, &prefs.visible_cols.totalweight },
[DIVE_SUIT] = { N_("Suit"), NULL, NULL, ALIGN_LEFT, &prefs.visible_cols.suit },
[DIVE_CYLINDER] = { N_("Cyl"), NULL, NULL, 0, &prefs.visible_cols.cylinder },
[DIVE_NITROX] = { "O" UTF8_SUBSCRIPT_2 "%", nitrox_data_func, nitrox_sort_func, 0, &prefs.visible_cols.nitrox },
[DIVE_SAC] = { N_("SAC"), sac_data_func, NULL, 0, &prefs.visible_cols.sac },
[DIVE_OTU] = { N_("OTU"), otu_data_func, NULL, 0, &prefs.visible_cols.otu },
[DIVE_MAXCNS] = { N_("maxCNS"), cns_data_func, NULL, 0, &prefs.visible_cols.maxcns },
[DIVE_LOCATION] = { N_("Location"), NULL, NULL, ALIGN_LEFT },
};
static GtkTreeViewColumn *divelist_column(struct DiveList *dl, struct divelist_column *col)
{
int index = col - &dl_column[0];
const char *title = _(col->header);
data_func_t data_func = col->data;
sort_func_t sort_func = col->sort;
unsigned int flags = col->flags;
int *visible = col->visible;
GtkWidget *tree_view = dl->tree_view;
GtkTreeStore *treemodel = dl->treemodel;
GtkTreeStore *listmodel = dl->listmodel;
GtkTreeViewColumn *ret;
if (visible && !*visible)
flags |= INVISIBLE;
ret = tree_view_column(tree_view, index, title, data_func, flags);
if (sort_func) {
/* the sort functions are needed in the corresponding models */
if (index == DIVE_NR)
gtk_tree_sortable_set_sort_func(GTK_TREE_SORTABLE(treemodel), index, sort_func, NULL, NULL);
else
gtk_tree_sortable_set_sort_func(GTK_TREE_SORTABLE(listmodel), index, sort_func, NULL, NULL);
}
return ret;
}
/*
* This is some crazy crap. The only way to get default focus seems
* to be to grab focus as the widget is being shown the first time.
*/
static void realize_cb(GtkWidget *tree_view, gpointer userdata)
{
gtk_widget_grab_focus(tree_view);
}
/*
* Double-clicking on a group entry will expand a collapsed group
* and vice versa.
*/
static void collapse_expand(GtkTreeView *tree_view, GtkTreePath *path)
{
if (!gtk_tree_view_row_expanded(tree_view, path))
gtk_tree_view_expand_row(tree_view, path, FALSE);
else
gtk_tree_view_collapse_row(tree_view, path);
}
/* Double-click on a dive list */
static void row_activated_cb(GtkTreeView *tree_view,
GtkTreePath *path,
GtkTreeViewColumn *column,
gpointer userdata)
{
int index;
GtkTreeIter iter;
if (!gtk_tree_model_get_iter(MODEL(dive_list), &iter, path))
return;
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &index, -1);
/* a negative index is special for the "group by date" entries */
if (index < 0) {
collapse_expand(tree_view, path);
return;
}
edit_dive_info(get_dive(index), FALSE);
}
void add_dive_cb(GtkWidget *menuitem, gpointer data)
{
struct dive *dive;
dive = alloc_dive();
if (add_new_dive(dive)) {
record_dive(dive);
report_dives(TRUE, FALSE);
return;
}
free(dive);
}
void edit_trip_cb(GtkWidget *menuitem, GtkTreePath *path)
{
GtkTreeIter iter;
timestamp_t when;
dive_trip_t *dive_trip;
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_DATE, &when, -1);
dive_trip = find_trip_by_time(when);
if (edit_trip(dive_trip))
gtk_tree_store_set(STORE(dive_list), &iter, DIVE_LOCATION, dive_trip->location, -1);
}
void edit_selected_dives_cb(GtkWidget *menuitem, gpointer data)
{
edit_multi_dive_info(NULL);
}
void edit_dive_from_path_cb(GtkWidget *menuitem, GtkTreePath *path)
{
struct dive *dive = dive_from_path(path);
edit_multi_dive_info(dive);
}
void edit_dive_when_cb(GtkWidget *menuitem, struct dive *dive)
{
GtkWidget *dialog, *cal, *h, *m;
timestamp_t when;
guint yval, mval, dval;
int success;
struct tm tm;
if (!dive)
return;
when = dive->when;
utc_mkdate(when, &tm);
dialog = create_date_time_widget(&tm, &cal, &h, &m);
gtk_widget_show_all(dialog);
success = gtk_dialog_run(GTK_DIALOG(dialog)) == GTK_RESPONSE_ACCEPT;
if (!success) {
gtk_widget_destroy(dialog);
return;
}
memset(&tm, 0, sizeof(tm));
gtk_calendar_get_date(GTK_CALENDAR(cal), &yval, &mval, &dval);
tm.tm_year = yval;
tm.tm_mon = mval;
tm.tm_mday = dval;
tm.tm_hour = gtk_spin_button_get_value(GTK_SPIN_BUTTON(h));
tm.tm_min = gtk_spin_button_get_value(GTK_SPIN_BUTTON(m));
gtk_widget_destroy(dialog);
when = utc_mktime(&tm);
if (dive->when != when) {
/* if this is the only dive in the trip, just change the trip time */
if (dive->divetrip && dive->divetrip->nrdives == 1)
dive->divetrip->when = when;
/* if this is suddenly before the start of the trip, remove it from the trip */
else if (dive->divetrip && dive->divetrip->when > when)
remove_dive_from_trip(dive);
else if (find_matching_trip(when) != dive->divetrip)
remove_dive_from_trip(dive);
dive->when = when;
mark_divelist_changed(TRUE);
remember_tree_state();
report_dives(FALSE, FALSE);
dive_list_update_dives();
restore_tree_state();
}
}
#if HAVE_OSM_GPS_MAP
static void show_gps_location_cb(GtkWidget *menuitem, struct dive *dive)
{
show_gps_location(dive, NULL);
}
#endif
gboolean icon_click_cb(GtkWidget *w, GdkEventButton *event, gpointer data)
{
#if HAVE_OSM_GPS_MAP
GtkTreePath *path = NULL;
GtkTreeIter iter;
GtkTreeViewColumn *col;
int idx;
struct dive *dive;
/* left click ? */
if (event->button == 1 &&
gtk_tree_view_get_path_at_pos(GTK_TREE_VIEW(dive_list.tree_view), event->x, event->y, &path, &col, NULL, NULL)) {
/* is it the icon column ? (we passed the correct column in when registering the callback) */
if (col == data) {
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
dive = get_dive(idx);
if (dive && dive_has_location(dive))
show_gps_location(dive, NULL);
}
if (path)
gtk_tree_path_free(path);
}
#endif
/* keep processing the click */
return FALSE;
}
static void expand_all_cb(GtkWidget *menuitem, GtkTreeView *tree_view)
{
gtk_tree_view_expand_all(tree_view);
}
static void collapse_all_cb(GtkWidget *menuitem, GtkTreeView *tree_view)
{
gtk_tree_view_collapse_all(tree_view);
}
/* copy the node and return the index */
static int copy_tree_node(GtkTreeIter *a, GtkTreeIter *b)
{
struct dive store_dive;
int totalweight, idx;
char *cylinder_text;
GdkPixbuf *icon;
gtk_tree_model_get(MODEL(dive_list), a,
DIVE_INDEX, &idx,
DIVE_NR, &store_dive.number,
DIVE_DATE, &store_dive.when,
DIVE_RATING, &store_dive.rating,
DIVE_DEPTH, &store_dive.dc.maxdepth,
DIVE_DURATION, &store_dive.dc.duration,
DIVE_TEMPERATURE, &store_dive.dc.watertemp.mkelvin,
DIVE_TOTALWEIGHT, &totalweight,
DIVE_SUIT, &store_dive.suit,
DIVE_CYLINDER, &cylinder_text,
DIVE_SAC, &store_dive.sac,
DIVE_OTU, &store_dive.otu,
DIVE_MAXCNS, &store_dive.maxcns,
DIVE_LOCATION, &store_dive.location,
DIVE_LOC_ICON, &icon,
-1);
gtk_tree_store_set(STORE(dive_list), b,
DIVE_INDEX, idx,
DIVE_NR, store_dive.number,
DIVE_DATE, store_dive.when,
DIVE_RATING, store_dive.rating,
DIVE_DEPTH, store_dive.dc.maxdepth,
DIVE_DURATION, store_dive.dc.duration,
DIVE_TEMPERATURE, store_dive.dc.watertemp.mkelvin,
DIVE_TOTALWEIGHT, totalweight,
DIVE_SUIT, store_dive.suit,
DIVE_CYLINDER, cylinder_text,
DIVE_SAC, store_dive.sac,
DIVE_OTU, store_dive.otu,
DIVE_MAXCNS, store_dive.maxcns,
DIVE_LOCATION, store_dive.location,
DIVE_LOC_ICON, icon,
-1);
free(cylinder_text);
free(store_dive.location);
free(store_dive.suit);
return idx;
}
/* to avoid complicated special cases based on ordering or number of children,
we always take the first and last child and pick the smaller timestamp_t (which
works regardless of ordering and also with just one child) */
static void update_trip_timestamp(GtkTreeIter *parent, dive_trip_t *divetrip)
{
GtkTreeIter first_child, last_child;
int nr;
timestamp_t t1, t2, tnew;
if (gtk_tree_store_iter_depth(STORE(dive_list), parent) != 0 ||
gtk_tree_model_iter_n_children(MODEL(dive_list), parent) == 0)
return;
nr = gtk_tree_model_iter_n_children(MODEL(dive_list), parent);
gtk_tree_model_iter_nth_child(MODEL(dive_list), &first_child, parent, 0);
gtk_tree_model_get(MODEL(dive_list), &first_child, DIVE_DATE, &t1, -1);
gtk_tree_model_iter_nth_child(MODEL(dive_list), &last_child, parent, nr - 1);
gtk_tree_model_get(MODEL(dive_list), &last_child, DIVE_DATE, &t2, -1);
tnew = MIN(t1, t2);
gtk_tree_store_set(STORE(dive_list), parent, DIVE_DATE, tnew, -1);
if (divetrip)
divetrip->when = tnew;
}
/* move dive_iter, which is a child of old_trip (could be NULL) to new_trip (could be NULL);
* either of the trips being NULL means that this was (or will be) a dive without a trip;
* update the dive trips (especially the starting times) accordingly
* maintain the selected status of the dive
* IMPORTANT - the move needs to keep the tree consistant - so no out of order moving... */
static GtkTreeIter *move_dive_between_trips(GtkTreeIter *dive_iter, GtkTreeIter *old_trip, GtkTreeIter *new_trip,
GtkTreeIter *sibling, gboolean before)
{
int idx;
timestamp_t old_when, new_when;
struct dive *dive;
dive_trip_t *old_divetrip, *new_divetrip;
GtkTreeIter *new_iter = malloc(sizeof(GtkTreeIter));
if (before)
gtk_tree_store_insert_before(STORE(dive_list), new_iter, new_trip, sibling);
else
gtk_tree_store_insert_after(STORE(dive_list), new_iter, new_trip, sibling);
idx = copy_tree_node(dive_iter, new_iter);
gtk_tree_model_get(MODEL(dive_list), new_iter, DIVE_INDEX, &idx, -1);
dive = get_dive(idx);
gtk_tree_store_remove(STORE(dive_list), dive_iter);
if (old_trip) {
gtk_tree_model_get(MODEL(dive_list), old_trip, DIVE_DATE, &old_when, -1);
old_divetrip = find_matching_trip(old_when);
update_trip_timestamp(old_trip, old_divetrip);
}
if (new_trip) {
gtk_tree_model_get(MODEL(dive_list), new_trip, DIVE_DATE, &new_when, -1);
new_divetrip = dive->divetrip;
update_trip_timestamp(new_trip, new_divetrip);
}
if (dive->selected) {
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
gtk_tree_selection_select_iter(selection, new_iter);
}
return new_iter;
}
/* this gets called when we are on a top level dive and we know that the previous
* top level node is a trip; if multiple consecutive dives are selected, they are
* all merged into the previous trip*/
static void merge_dive_into_trip_above_cb(GtkWidget *menuitem, GtkTreePath *path)
{
int idx;
GtkTreeIter dive_iter, trip_iter, prev_iter;
GtkTreePath *trip_path;
struct dive *dive, *prev_dive;
/* get the path and iter for the trip and the last dive of that trip */
trip_path = gtk_tree_path_copy(path);
(void)gtk_tree_path_prev(trip_path);
gtk_tree_model_get_iter(MODEL(dive_list), &trip_iter, trip_path);
gtk_tree_model_get_iter(MODEL(dive_list), &dive_iter, path);
gtk_tree_model_iter_nth_child(MODEL(dive_list), &prev_iter, &trip_iter,
gtk_tree_model_iter_n_children(MODEL(dive_list), &trip_iter) - 1);
gtk_tree_model_get(MODEL(dive_list), &dive_iter, DIVE_INDEX, &idx, -1);
dive = get_dive(idx);
gtk_tree_model_get(MODEL(dive_list), &prev_iter, DIVE_INDEX, &idx, -1);
prev_dive = get_dive(idx);
/* add the dive to the trip */
for (;;) {
2012-11-10 18:51:03 +00:00
add_dive_to_trip(dive, prev_dive->divetrip);
/* we intentionally changed the dive_trip, so update the time
* stamp that we fall back to when toggling autogroup */
dive->tripflag = IN_TRIP;
free(move_dive_between_trips(&dive_iter, NULL, &trip_iter, NULL, TRUE));
prev_dive = dive;
/* by merging the dive into the trip above the path now points to the next
top level entry. If that iter exists, it's also a dive and both this dive
and that next dive are selected, continue merging dives into the trip */
if (!gtk_tree_model_get_iter(MODEL(dive_list), &dive_iter, path))
break;
gtk_tree_model_get(MODEL(dive_list), &dive_iter, DIVE_INDEX, &idx, -1);
if (idx < 0)
break;
dive = get_dive(idx);
if (!dive->selected || !prev_dive->selected)
break;
}
mark_divelist_changed(TRUE);
}
static void turn_dive_into_trip(GtkTreePath *path)
{
GtkTreeIter iter, *newiter, newparent;
GtkTreePath *treepath;
timestamp_t when;
char *location;
int idx;
struct dive *dive;
/* this is a dive on the top level, insert trip AFTER it, populate its date / location, and
* then move the dive below that trip */
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
gtk_tree_store_insert_after(STORE(dive_list), &newparent, NULL, &iter);
gtk_tree_model_get(MODEL(dive_list), &iter,
DIVE_INDEX, &idx, DIVE_DATE, &when, DIVE_LOCATION, &location, -1);
gtk_tree_store_set(STORE(dive_list), &newparent,
DIVE_INDEX, -1, DIVE_DATE, when, DIVE_LOCATION, location, -1);
free(location);
newiter = move_dive_between_trips(&iter, NULL, &newparent, NULL, FALSE);
treepath = gtk_tree_model_get_path(MODEL(dive_list), newiter);
gtk_tree_view_expand_to_path(GTK_TREE_VIEW(dive_list.tree_view), treepath);
gtk_tree_path_free(treepath);
dive = get_dive(idx);
create_and_hookup_trip_from_dive(dive);
free(newiter);
}
/* we know that path is pointing at a dive in a trip and are asked to split this trip into two */
static void insert_trip_before(GtkTreePath *path)
{
GtkTreeIter iter, prev_iter, parent, newparent, nextsibling;
GtkTreePath *treepath, *prev_path;
struct dive *dive, *prev_dive;
dive_trip_t *new_divetrip;
int idx, nr, i;
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
prev_path = gtk_tree_path_copy(path);
if (!gtk_tree_path_prev(prev_path) ||
!gtk_tree_model_iter_parent(MODEL(dive_list), &parent, &iter))
return;
gtk_tree_model_get_iter(MODEL(dive_list), &prev_iter, prev_path);
gtk_tree_model_get(MODEL(dive_list), &prev_iter, DIVE_INDEX, &idx, -1);
prev_dive = get_dive(idx);
gtk_tree_store_insert_after(STORE(dive_list), &newparent, NULL, &parent);
copy_tree_node(&parent, &newparent);
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
dive = get_dive(idx);
/* make sure that the timestamp_t of the previous divetrip is correct before
* inserting a new one */
if (dive->when < prev_dive->when)
if (prev_dive->divetrip && prev_dive->divetrip->when < prev_dive->when)
prev_dive->divetrip->when = prev_dive->when;
new_divetrip = create_and_hookup_trip_from_dive(dive);
/* in order for the data structures to stay consistent we need to walk from
* the last child backwards to this one. The easiest way seems to be to do
* this with the nth iterator API */
nr = gtk_tree_model_iter_n_children(MODEL(dive_list), &parent);
for (i = nr - 1; i >= 0; i--) {
gtk_tree_model_iter_nth_child(MODEL(dive_list), &nextsibling, &parent, i);
treepath = gtk_tree_model_get_path(MODEL(dive_list), &nextsibling);
gtk_tree_model_get(MODEL(dive_list), &nextsibling, DIVE_INDEX, &idx, -1);
dive = get_dive(idx);
2012-11-10 18:51:03 +00:00
add_dive_to_trip(dive, new_divetrip);
free(move_dive_between_trips(&nextsibling, &parent, &newparent, NULL, FALSE));
if (gtk_tree_path_compare(path, treepath) == 0) {
/* we copied the dive we were called with; we are done */
gtk_tree_path_free(treepath);
break;
}
gtk_tree_path_free(treepath);
}
/* treat this divetrip as if it had been read from a file */
treepath = gtk_tree_model_get_path(MODEL(dive_list), &newparent);
gtk_tree_view_expand_to_path(GTK_TREE_VIEW(dive_list.tree_view), treepath);
gtk_tree_path_free(treepath);
#ifdef DEBUG_TRIP
dump_trip_list();
#endif
}
static void insert_trip_before_cb(GtkWidget *menuitem, GtkTreePath *path)
{
/* is this splitting a trip or turning a dive into a trip? */
if (gtk_tree_path_get_depth(path) == 2) {
insert_trip_before(path);
} else { /* this is a top level dive */
struct dive *dive, *next_dive;
GtkTreePath *next_path;
dive = dive_from_path(path);
if (dive->selected) {
next_path = gtk_tree_path_copy(path);
for (;;) {
/* let's find the first dive in a block of selected dives */
if (gtk_tree_path_prev(next_path)) {
next_dive = dive_from_path(next_path);
if (next_dive && next_dive->selected) {
path = gtk_tree_path_copy(next_path);
continue;
}
}
break;
}
}
/* now path points at the first selected dive in a consecutive block */
turn_dive_into_trip(path);
/* if the dive was selected and the next dive was selected, too,
* then all of them should be part of the new trip */
if (dive->selected) {
next_path = gtk_tree_path_copy(path);
gtk_tree_path_next(next_path);
next_dive = dive_from_path(next_path);
if (next_dive && next_dive->selected)
merge_dive_into_trip_above_cb(menuitem, next_path);
}
}
mark_divelist_changed(TRUE);
}
static void remove_from_trip(GtkTreePath *path)
{
GtkTreeIter iter, nextiter, *newiter, parent;
GtkTreePath *nextpath;
struct dive *dive;
int idx;
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
if (!gtk_tree_model_iter_parent(MODEL(dive_list), &parent, &iter))
return;
/* if this isn't the last dive in a trip we simply split the trip
in two right after this dive */
nextpath = gtk_tree_path_copy(path);
gtk_tree_path_next(nextpath);
if (gtk_tree_model_get_iter(MODEL(dive_list), &nextiter, nextpath))
insert_trip_before(nextpath);
/* now move the dive to the top level, as sibling after its former parent */
newiter = move_dive_between_trips(&iter, &parent, NULL, &parent, FALSE);
gtk_tree_model_get(MODEL(dive_list), newiter, DIVE_INDEX, &idx, -1);
dive = get_dive(idx);
if (dive->selected) {
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
gtk_tree_selection_select_iter(selection, newiter);
}
/* if this was the last dive on the trip, remove the trip */
if (! gtk_tree_model_iter_has_child(MODEL(dive_list), &parent)) {
gtk_tree_store_remove(STORE(dive_list), &parent);
}
/* mark the dive as intentionally at the top level */
dive->tripflag = NO_TRIP;
2012-11-10 18:51:03 +00:00
remove_dive_from_trip(dive);
#ifdef DEBUG_TRIP
dump_trip_list();
#endif
free(newiter);
}
static void remove_rowref_from_trip(gpointer data, gpointer user_data)
{
GtkTreeRowReference *rowref = data;
GtkTreePath *path = gtk_tree_row_reference_get_path(rowref);
if (path)
remove_from_trip(path);
}
static gboolean add_rowref_if_selected(GtkTreeModel *model, GtkTreePath *path,
GtkTreeIter *iter, gpointer data)
{
GList **rowref_list = data;
int idx;
struct dive *dive;
gtk_tree_model_get(MODEL(dive_list), iter, DIVE_INDEX, &idx, -1);
if (idx >=0 ) {
dive = get_dive(idx);
if (dive->selected) {
/* we need to store the Row References as those
stay valid across modifications of the model */
GtkTreeRowReference *rowref;
rowref = gtk_tree_row_reference_new(TREEMODEL(dive_list), path);
*rowref_list = g_list_append(*rowref_list, rowref);
}
}
return FALSE; /* continue foreach loop */
}
static void remove_from_trip_cb(GtkWidget *menuitem, GtkTreePath *path)
{
GtkTreeIter iter, parent;
struct dive *dive;
int idx;
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
if (!gtk_tree_model_iter_parent(MODEL(dive_list), &parent, &iter))
return;
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
if (idx < 0 )
return;
dive = get_dive(idx);
if (dive->selected) {
/* remove all the selected dives
since removing the dives from trips changes the model we need to
take the extra step of acquiring rowrefs before actually moving dives */
GList *rowref_list = NULL;
gtk_tree_model_foreach(MODEL(dive_list), add_rowref_if_selected, &rowref_list);
/* We need to walk that list backwards as otherwise
the newly insered trips below dives that were
removed also mess with the validity */
rowref_list = g_list_reverse(rowref_list);
g_list_foreach(rowref_list, remove_rowref_from_trip, NULL);
} else {
/* just remove the dive the mouse pointer is on */
remove_from_trip(path);
}
mark_divelist_changed(TRUE);
}
void remove_trip(GtkTreePath *trippath, gboolean force_no_trip)
{
GtkTreeIter newiter, parent, child, *lastiter = &parent;
struct dive *dive;
int idx;
GtkTreePath *childpath;
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
/* what a pain - we can't just move the nodes, we have to
* create new ones and delete the existing ones instead */
gtk_tree_model_get_iter(MODEL(dive_list), &parent, trippath);
childpath = gtk_tree_path_copy(trippath);
gtk_tree_path_down(childpath);
for (;;) {
if( ! gtk_tree_model_get_iter(MODEL(dive_list), &child, childpath))
break;
gtk_tree_store_insert_after(STORE(dive_list), &newiter, NULL, lastiter);
copy_tree_node(&child, &newiter);
/* we need to track what was selected */
gtk_tree_model_get(MODEL(dive_list), &child, DIVE_INDEX, &idx, -1);
dive = get_dive(idx);
if (dive->selected)
gtk_tree_selection_select_iter(selection, &newiter);
if (force_no_trip)
dive->tripflag = NO_TRIP;
else
dive->tripflag = TF_NONE;
2012-11-10 18:51:03 +00:00
remove_dive_from_trip(dive);
/* this removes the child - now childpath points to the next child */
gtk_tree_store_remove(STORE(dive_list), &child);
lastiter = &newiter;
}
/* finally, remove the trip */
gtk_tree_store_remove(STORE(dive_list), &parent);
#ifdef DEBUG_TRIP
dump_trip_list();
#endif
}
void remove_trip_cb(GtkWidget *menuitem, GtkTreePath *trippath)
{
int success;
GtkWidget *dialog;
dialog = gtk_dialog_new_with_buttons(_("Remove Trip"),
GTK_WINDOW(main_window),
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL, GTK_RESPONSE_REJECT,
NULL);
gtk_widget_show_all(dialog);
success = gtk_dialog_run(GTK_DIALOG(dialog)) == GTK_RESPONSE_ACCEPT;
gtk_widget_destroy(dialog);
if (!success)
return;
remove_trip(trippath, TRUE);
mark_divelist_changed(TRUE);
}
void merge_trips_cb(GtkWidget *menuitem, GtkTreePath *trippath)
{
GtkTreePath *prevpath;
GtkTreeIter thistripiter, prevtripiter;
GtkTreeModel *tm = MODEL(dive_list);
dive_trip_t *thistrip, *prevtrip;
timestamp_t when;
/* this only gets called when we are on a trip and there is another trip right before */
prevpath = gtk_tree_path_copy(trippath);
gtk_tree_path_prev(prevpath);
gtk_tree_model_get_iter(tm, &thistripiter, trippath);
gtk_tree_model_get(tm, &thistripiter, DIVE_DATE, &when, -1);
thistrip = find_matching_trip(when);
gtk_tree_model_get_iter(tm, &prevtripiter, prevpath);
gtk_tree_model_get(tm, &prevtripiter, DIVE_DATE, &when, -1);
prevtrip = find_matching_trip(when);
remember_tree_state();
/* move dives from trip */
assert(thistrip != prevtrip);
while (thistrip->dives)
add_dive_to_trip(thistrip->dives, prevtrip);
dive_list_update_dives();
restore_tree_state();
mark_divelist_changed(TRUE);
}
/* this implements the mechanics of removing the dive from the table,
* but doesn't deal with updating dive trips, etc */
void delete_single_dive(int idx)
{
int i;
struct dive *dive = get_dive(idx);
if (!dive)
return; /* this should never happen */
2012-11-10 18:51:03 +00:00
remove_dive_from_trip(dive);
for (i = idx; i < dive_table.nr - 1; i++)
dive_table.dives[i] = dive_table.dives[i+1];
dive_table.dives[--dive_table.nr] = NULL;
if (dive->selected)
amount_selected--;
/* free all allocations */
free(dive->dc.sample);
if (dive->location)
free((void *)dive->location);
if (dive->notes)
free((void *)dive->notes);
if (dive->divemaster)
free((void *)dive->divemaster);
if (dive->buddy)
free((void *)dive->buddy);
if (dive->suit)
free((void *)dive->suit);
free(dive);
}
void add_single_dive(int idx, struct dive *dive)
{
int i;
dive_table.nr++;
if (dive->selected)
amount_selected++;
for (i = idx; i < dive_table.nr ; i++) {
struct dive *tmp = dive_table.dives[i];
dive_table.dives[i] = dive;
dive = tmp;
}
}
/* remember expanded state */
void remember_tree_state()
{
dive_trip_t *trip;
GtkTreeIter iter;
if (!gtk_tree_model_get_iter_first(TREEMODEL(dive_list), &iter))
return;
do {
int idx;
timestamp_t when;
GtkTreePath *path;
gtk_tree_model_get(TREEMODEL(dive_list), &iter,
DIVE_INDEX, &idx, DIVE_DATE, &when, -1);
if (idx >= 0)
continue;
path = gtk_tree_model_get_path(TREEMODEL(dive_list), &iter);
if (gtk_tree_view_row_expanded(GTK_TREE_VIEW(dive_list.tree_view), path)) {
trip = find_trip_by_time(when);
if (trip)
trip->expanded = TRUE;
}
gtk_tree_path_free(path);
} while (gtk_tree_model_iter_next(TREEMODEL(dive_list), &iter));
}
static gboolean restore_node_state(GtkTreeModel *model, GtkTreePath *path, GtkTreeIter *iter, gpointer data)
{
int idx;
timestamp_t when;
struct dive *dive;
dive_trip_t *trip;
GtkTreeView *tree_view = GTK_TREE_VIEW(dive_list.tree_view);
GtkTreeSelection *selection = gtk_tree_view_get_selection(tree_view);
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_DATE, &when, -1);
if (idx < 0) {
trip = find_trip_by_time(when);
if (trip && trip->expanded)
gtk_tree_view_expand_row(tree_view, path, FALSE);
if (trip && trip->selected)
gtk_tree_selection_select_iter(selection, iter);
} else {
dive = get_dive(idx);
if (dive && dive->selected)
gtk_tree_selection_select_iter(selection, iter);
}
/* continue foreach */
return FALSE;
}
/* restore expanded and selected state */
void restore_tree_state()
{
gtk_tree_model_foreach(MODEL(dive_list), restore_node_state, NULL);
}
/* called when multiple dives are selected and one of these is right-clicked for delete */
static void delete_selected_dives_cb(GtkWidget *menuitem, GtkTreePath *path)
{
int i;
struct dive *dive;
int success;
GtkWidget *dialog;
char *dialog_title;
if (!amount_selected)
return;
if (amount_selected == 1)
dialog_title = _("Delete dive");
else
dialog_title = _("Delete dives");
dialog = gtk_dialog_new_with_buttons(dialog_title,
GTK_WINDOW(main_window),
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL, GTK_RESPONSE_REJECT,
NULL);
gtk_widget_show_all(dialog);
success = gtk_dialog_run(GTK_DIALOG(dialog)) == GTK_RESPONSE_ACCEPT;
gtk_widget_destroy(dialog);
if (!success)
return;
remember_tree_state();
/* walk the dive list in chronological order */
for (i = 0; i < dive_table.nr; i++) {
dive = get_dive(i);
if (!dive)
continue;
if (!dive->selected)
continue;
/* now remove the dive from the table and free it. also move the iterator back,
* so that we don't skip a dive */
delete_single_dive(i);
i--;
}
dive_list_update_dives();
restore_tree_state();
/* if no dives are selected at this point clear the display widgets */
if (!amount_selected) {
selected_dive = 0;
process_selected_dives();
clear_stats_widgets();
clear_equipment_widgets();
show_dive_info(NULL);
}
mark_divelist_changed(TRUE);
}
/* this gets called with path pointing to a dive, either in the top level
* or as part of a trip */
static void delete_dive_cb(GtkWidget *menuitem, GtkTreePath *path)
{
int idx;
GtkTreeIter iter;
int success;
GtkWidget *dialog;
dialog = gtk_dialog_new_with_buttons(_("Delete dive"),
GTK_WINDOW(main_window),
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL, GTK_RESPONSE_REJECT,
NULL);
gtk_widget_show_all(dialog);
success = gtk_dialog_run(GTK_DIALOG(dialog)) == GTK_RESPONSE_ACCEPT;
gtk_widget_destroy(dialog);
if (!success)
return;
remember_tree_state();
if (!gtk_tree_model_get_iter(MODEL(dive_list), &iter, path))
return;
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
delete_single_dive(idx);
dive_list_update_dives();
restore_tree_state();
mark_divelist_changed(TRUE);
}
static void merge_dive_index(int i, struct dive *a)
{
struct dive *b = get_dive(i+1);
struct dive *res;
res = merge_dives(a, b, b->when - a->when, FALSE);
if (!res)
return;
remember_tree_state();
add_single_dive(i, res);
delete_single_dive(i+1);
delete_single_dive(i+1);
dive_list_update_dives();
restore_tree_state();
mark_divelist_changed(TRUE);
}
static void merge_dives_cb(GtkWidget *menuitem, void *unused)
{
int i;
struct dive *dive;
for_each_dive(i, dive) {
if (dive->selected) {
merge_dive_index(i, dive);
return;
}
}
}
/* Called if there are exactly two selected dives and the dive at idx is one of them */
static void add_dive_merge_label(int idx, GtkMenuShell *menu)
{
struct dive *a, *b;
GtkWidget *menuitem;
/* The other selected dive must be next to it.. */
a = get_dive(idx);
b = get_dive(idx+1);
if (!b || !b->selected) {
b = a;
a = get_dive(idx-1);
if (!a || !a->selected)
return;
}
/* .. and they had better be in the same dive trip */
if (a->divetrip != b->divetrip)
return;
/* .. and if the surface interval is excessive, you must be kidding us */
if (b->when > a->when + a->dc.duration.seconds + 30*60)
return;
/* If so, we can add a "merge dive" menu entry */
menuitem = gtk_menu_item_new_with_label(_("Merge dives"));
g_signal_connect(menuitem, "activate", G_CALLBACK(merge_dives_cb), NULL);
gtk_menu_shell_append(menu, menuitem);
}
static void popup_divelist_menu(GtkTreeView *tree_view, GtkTreeModel *model, int button, GdkEventButton *event)
{
GtkWidget *menu, *menuitem, *image;
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
char editplurallabel[] = N_("Edit dives");
char editsinglelabel[] = N_("Edit dive");
char *editlabel;
char deleteplurallabel[] = N_("Delete dives");
char deletesinglelabel[] = N_("Delete dive");
char *deletelabel;
GtkTreePath *path, *prevpath, *nextpath;
GtkTreeIter iter, previter, nextiter;
int idx, previdx, nextidx;
struct dive *dive;
if (!gtk_tree_view_get_path_at_pos(tree_view, event->x, event->y, &path, NULL, NULL, NULL))
return;
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
menu = gtk_menu_new();
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_image_menu_item_new_with_label(_("Add dive"));
image = gtk_image_new_from_stock(GTK_STOCK_ADD, GTK_ICON_SIZE_MENU);
gtk_image_menu_item_set_image(GTK_IMAGE_MENU_ITEM(menuitem), image);
g_signal_connect(menuitem, "activate", G_CALLBACK(add_dive_cb), NULL);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
if (idx < 0) {
/* mouse pointer is on a trip summary entry */
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Edit Trip Summary"));
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_trip_cb), path);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
prevpath = gtk_tree_path_copy(path);
if (gtk_tree_path_prev(prevpath) &&
gtk_tree_model_get_iter(MODEL(dive_list), &previter, prevpath)) {
gtk_tree_model_get(MODEL(dive_list), &previter, DIVE_INDEX, &previdx, -1);
if (previdx < 0) {
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Merge trip with trip above"));
g_signal_connect(menuitem, "activate", G_CALLBACK(merge_trips_cb), path);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
}
}
nextpath = gtk_tree_path_copy(path);
gtk_tree_path_next(nextpath);
if (gtk_tree_model_get_iter(MODEL(dive_list), &nextiter, nextpath)) {
gtk_tree_model_get(MODEL(dive_list), &nextiter, DIVE_INDEX, &nextidx, -1);
if (nextidx < 0) {
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Merge trip with trip below"));
g_signal_connect(menuitem, "activate", G_CALLBACK(merge_trips_cb), nextpath);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
}
}
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Remove Trip"));
g_signal_connect(menuitem, "activate", G_CALLBACK(remove_trip_cb), path);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
} else {
dive = get_dive(idx);
/* if we right click on selected dive(s), edit or delete those */
if (dive->selected) {
if (amount_selected == 1) {
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
deletelabel = _(deletesinglelabel);
editlabel = _(editsinglelabel);
menuitem = gtk_menu_item_new_with_label(_("Edit dive date/time"));
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_dive_when_cb), dive);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
} else {
deletelabel = _(deleteplurallabel);
editlabel = _(editplurallabel);
}
menuitem = gtk_menu_item_new_with_label(deletelabel);
g_signal_connect(menuitem, "activate", G_CALLBACK(delete_selected_dives_cb), path);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
menuitem = gtk_menu_item_new_with_label(editlabel);
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_selected_dives_cb), NULL);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
/* Two contiguous selected dives? */
if (amount_selected == 2)
add_dive_merge_label(idx, GTK_MENU_SHELL(menu));
} else {
menuitem = gtk_menu_item_new_with_label(_("Edit dive date/time"));
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_dive_when_cb), dive);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
deletelabel = _(deletesinglelabel);
menuitem = gtk_menu_item_new_with_label(deletelabel);
g_signal_connect(menuitem, "activate", G_CALLBACK(delete_dive_cb), path);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
editlabel = _(editsinglelabel);
menuitem = gtk_menu_item_new_with_label(editlabel);
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_dive_from_path_cb), path);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
}
#if HAVE_OSM_GPS_MAP
/* Only offer to show on map if it has a location. */
if (dive_has_location(dive)) {
menuitem = gtk_menu_item_new_with_label(_("Show in map"));
g_signal_connect(menuitem, "activate", G_CALLBACK(show_gps_location_cb), dive);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
}
#endif
/* only offer trip editing options when we are displaying the tree model */
if (dive_list.model == dive_list.treemodel) {
int depth = gtk_tree_path_get_depth(path);
int *indices = gtk_tree_path_get_indices(path);
/* top level dive or child dive that is not the first child */
if (depth == 1 || indices[1] > 0) {
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Create new trip above"));
g_signal_connect(menuitem, "activate", G_CALLBACK(insert_trip_before_cb), path);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
}
prevpath = gtk_tree_path_copy(path);
/* top level dive with a trip right before it */
if (depth == 1 &&
gtk_tree_path_prev(prevpath) &&
gtk_tree_model_get_iter(MODEL(dive_list), &previter, prevpath) &&
gtk_tree_model_iter_n_children(model, &previter)) {
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Add to trip above"));
g_signal_connect(menuitem, "activate", G_CALLBACK(merge_dive_into_trip_above_cb), path);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
}
if (DIVE_IN_TRIP(dive)) {
if (dive->selected && amount_selected > 1)
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Remove selected dives from trip"));
else
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Remove dive from trip"));
g_signal_connect(menuitem, "activate", G_CALLBACK(remove_from_trip_cb), path);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
}
}
}
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Expand all"));
g_signal_connect(menuitem, "activate", G_CALLBACK(expand_all_cb), tree_view);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
menuitem = gtk_menu_item_new_with_label(_("Collapse all"));
g_signal_connect(menuitem, "activate", G_CALLBACK(collapse_all_cb), tree_view);
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
gtk_widget_show_all(menu);
gtk_menu_popup(GTK_MENU(menu), NULL, NULL, NULL, NULL,
button, gtk_get_current_event_time());
}
static void popup_menu_cb(GtkTreeView *tree_view, gpointer userdata)
{
popup_divelist_menu(tree_view, MODEL(dive_list), 0, NULL);
}
static gboolean button_press_cb(GtkWidget *treeview, GdkEventButton *event, gpointer userdata)
{
/* Right-click? Bring up the menu */
if (event->type == GDK_BUTTON_PRESS && event->button == 3) {
popup_divelist_menu(GTK_TREE_VIEW(treeview), MODEL(dive_list), 3, event);
return TRUE;
}
return FALSE;
}
/* we need to have a temporary copy of the selected dives while
switching model as the selection_cb function keeps getting called
when gtk_tree_selection_select_path is called. We also need to
keep copies of the sort order so we can restore that as well after
switching models. */
static gboolean second_call = FALSE;
static GtkSortType sortorder[] = { [0 ... DIVELIST_COLUMNS - 1] = GTK_SORT_DESCENDING, };
static int lastcol = DIVE_NR;
/* Check if this dive was selected previously and select it again in the new model;
* This is used after we switch models to maintain consistent selections.
* We always return FALSE to iterate through all dives */
static gboolean set_selected(GtkTreeModel *model, GtkTreePath *path,
GtkTreeIter *iter, gpointer data)
{
GtkTreeSelection *selection = GTK_TREE_SELECTION(data);
int idx, selected;
struct dive *dive;
gtk_tree_model_get(model, iter,
DIVE_INDEX, &idx,
-1);
if (idx < 0) {
GtkTreeIter child;
if (gtk_tree_model_iter_children(model, &child, iter))
gtk_tree_model_get(model, &child, DIVE_INDEX, &idx, -1);
}
dive = get_dive(idx);
selected = dive && dive->selected;
if (selected) {
gtk_tree_view_expand_to_path(GTK_TREE_VIEW(dive_list.tree_view), path);
gtk_tree_selection_select_path(selection, path);
}
return FALSE;
}
static void update_column_and_order(int colid)
{
/* Careful: the index into treecolumns is off by one as we don't have a
tree_view column for DIVE_INDEX */
GtkTreeViewColumn **treecolumns = &dive_list.nr;
/* this will trigger a second call into sort_column_change_cb,
so make sure we don't start an infinite recursion... */
second_call = TRUE;
gtk_tree_sortable_set_sort_column_id(GTK_TREE_SORTABLE(dive_list.model), colid, sortorder[colid]);
gtk_tree_view_column_set_sort_order(treecolumns[colid - 1], sortorder[colid]);
second_call = FALSE;
}
/* If the sort column is nr (default), show the tree model.
For every other sort column only show the list model.
If the model changed, inform the new model of the chosen sort column and make
sure the same dives are still selected.
The challenge with this function is that once we change the model
we also need to change the sort column again (as it was changed in
the other model) and that causes this function to be called
recursively - so we need to catch that.
*/
static void sort_column_change_cb(GtkTreeSortable *treeview, gpointer data)
{
int colid;
GtkSortType order;
GtkTreeStore *currentmodel = dive_list.model;
if (second_call)
return;
gtk_tree_sortable_get_sort_column_id(treeview, &colid, &order);
if(colid == lastcol) {
/* we just changed sort order */
sortorder[colid] = order;
return;
} else {
lastcol = colid;
}
if(colid == DIVE_NR)
dive_list.model = dive_list.treemodel;
else
dive_list.model = dive_list.listmodel;
if (dive_list.model != currentmodel) {
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
gtk_tree_view_set_model(GTK_TREE_VIEW(dive_list.tree_view), MODEL(dive_list));
update_column_and_order(colid);
gtk_tree_model_foreach(MODEL(dive_list), set_selected, selection);
} else {
if (order != sortorder[colid]) {
update_column_and_order(colid);
}
}
}
static void select_dive(int idx)
{
struct dive *dive = get_dive(idx);
if (dive && !dive->selected) {
dive->selected = 1;
amount_selected++;
selected_dive = idx;
}
}
Don't deselect all dives on all selection "change" events gtk sends the selection change events all the time, for pretty much any "divelist changed - so selection changed". The expansion of a trip, the switch to a new model, yadda yadda. But we actually want selections to be sticky across these events, so we can't just forget all of our old selection state and repopulate it. So we re-introduce the "am I allowed to change this row" callback, which we used to use to create a list of every actual selection that was changed. But instead of remembering the list (and having the stale entries issue with that remembered list that caused problems), we now just use that as a "that *particular* selection cleared" event. So this callback works as the "which part of the visible, currently selected state got cleared" notifier, and handles unselection. Then, when the selection is over, we use the new model of "let's just traverse the list of things gtk thinks are selected" and use that to handle new selections in the visible state that gtk actually tracks well. So that logic handles the new selections. This way, dives that aren't visible to gtk don't ever get modified: gtk won't ask about them being selected or not, and gtk won't track them in its selection logic, so with this model their state never changes for us. gtk selections are annoying. They are simple for the case gtk knows about (ie they are *visually* selected in the GUI), but since we very much want to track selection across events that change the visual state, we need to have this insane "impedance match". Reported-by: Dirk Hohdnel <dirk@hohndel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
static void deselect_dive(int idx)
{
struct dive *dive = get_dive(idx);
if (dive && dive->selected) {
dive->selected = 0;
amount_selected--;
if (selected_dive == idx && amount_selected > 0) {
/* pick a different dive as selected */
while(--selected_dive >= 0) {
dive = get_dive(selected_dive);
if (dive && dive->selected)
return;
}
selected_dive = idx;
while(++selected_dive < dive_table.nr) {
dive = get_dive(selected_dive);
if (dive && dive->selected)
return;
}
}
if (amount_selected == 0)
selected_dive = -1;
Don't deselect all dives on all selection "change" events gtk sends the selection change events all the time, for pretty much any "divelist changed - so selection changed". The expansion of a trip, the switch to a new model, yadda yadda. But we actually want selections to be sticky across these events, so we can't just forget all of our old selection state and repopulate it. So we re-introduce the "am I allowed to change this row" callback, which we used to use to create a list of every actual selection that was changed. But instead of remembering the list (and having the stale entries issue with that remembered list that caused problems), we now just use that as a "that *particular* selection cleared" event. So this callback works as the "which part of the visible, currently selected state got cleared" notifier, and handles unselection. Then, when the selection is over, we use the new model of "let's just traverse the list of things gtk thinks are selected" and use that to handle new selections in the visible state that gtk actually tracks well. So that logic handles the new selections. This way, dives that aren't visible to gtk don't ever get modified: gtk won't ask about them being selected or not, and gtk won't track them in its selection logic, so with this model their state never changes for us. gtk selections are annoying. They are simple for the case gtk knows about (ie they are *visually* selected in the GUI), but since we very much want to track selection across events that change the visual state, we need to have this insane "impedance match". Reported-by: Dirk Hohdnel <dirk@hohndel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
}
}
gboolean modify_selection_cb(GtkTreeSelection *selection, GtkTreeModel *model,
GtkTreePath *path, gboolean was_selected, gpointer userdata)
{
int idx;
timestamp_t when;
GtkTreeIter iter;
if (!was_selected)
return TRUE;
gtk_tree_model_get_iter(model, &iter, path);
gtk_tree_model_get(model, &iter, DIVE_INDEX, &idx, DIVE_DATE, &when, -1);
if (idx < 0) {
dive_trip_t *trip = find_trip_by_time(when);
if (trip)
trip->selected = 0;
} else {
deselect_dive(idx);
}
return TRUE;
}
/* This gets called for each selected entry after a selection has changed */
static void entry_selected(GtkTreeModel *model, GtkTreePath *path, GtkTreeIter *iter, gpointer data)
{
int idx;
timestamp_t when;
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_DATE, &when, -1);
if (idx < 0) {
int i;
struct dive *dive;
dive_trip_t *trip = find_trip_by_time(when);
if (!trip)
return;
trip->selected = 1;
/* If this is expanded, let the gtk selection happen for each dive under it */
if (gtk_tree_view_row_expanded(GTK_TREE_VIEW(dive_list.tree_view), path))
return;
/* Otherwise, consider each dive under it selected */
for_each_dive(i, dive) {
if (dive->divetrip == trip)
select_dive(i);
}
} else {
select_dive(idx);
}
}
/* this is called when gtk thinks that the selection has changed */
static void selection_cb(GtkTreeSelection *selection, GtkTreeModel *model)
{
gtk_tree_selection_selected_foreach(selection, entry_selected, model);
#if DEBUG_SELECTION_TRACKING
dump_selection();
#endif
process_selected_dives();
repaint_dive();
}
GtkWidget *dive_list_create(void)
{
GtkTreeSelection *selection;
dive_list.listmodel = gtk_tree_store_new(DIVELIST_COLUMNS,
G_TYPE_INT, /* index */
G_TYPE_INT, /* nr */
G_TYPE_INT64, /* Date */
G_TYPE_INT, /* Star rating */
G_TYPE_INT, /* Depth */
G_TYPE_INT, /* Duration */
G_TYPE_INT, /* Temperature */
G_TYPE_INT, /* Total weight */
G_TYPE_STRING, /* Suit */
G_TYPE_STRING, /* Cylinder */
G_TYPE_INT, /* Nitrox */
G_TYPE_INT, /* SAC */
G_TYPE_INT, /* OTU */
G_TYPE_INT, /* MAXCNS */
G_TYPE_STRING, /* Location */
GDK_TYPE_PIXBUF /* GPS icon */
);
dive_list.treemodel = gtk_tree_store_new(DIVELIST_COLUMNS,
G_TYPE_INT, /* index */
G_TYPE_INT, /* nr */
G_TYPE_INT64, /* Date */
G_TYPE_INT, /* Star rating */
G_TYPE_INT, /* Depth */
G_TYPE_INT, /* Duration */
G_TYPE_INT, /* Temperature */
G_TYPE_INT, /* Total weight */
G_TYPE_STRING, /* Suit */
G_TYPE_STRING, /* Cylinder */
G_TYPE_INT, /* Nitrox */
G_TYPE_INT, /* SAC */
G_TYPE_INT, /* OTU */
G_TYPE_INT, /* MAXCNS */
G_TYPE_STRING, /* Location */
GDK_TYPE_PIXBUF /* GPS icon */
);
dive_list.model = dive_list.treemodel;
dive_list.tree_view = gtk_tree_view_new_with_model(TREEMODEL(dive_list));
set_divelist_font(prefs.divelist_font);
selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
gtk_tree_selection_set_mode(GTK_TREE_SELECTION(selection), GTK_SELECTION_MULTIPLE);
gtk_widget_set_size_request(dive_list.tree_view, 200, 200);
/* check if utf8 stars are available as a default OS feature */
if (!subsurface_os_feature_available(UTF8_FONT_WITH_STARS))
dl_column[3].header = "*";
dive_list.nr = divelist_column(&dive_list, dl_column + DIVE_NR);
dive_list.date = divelist_column(&dive_list, dl_column + DIVE_DATE);
dive_list.stars = divelist_column(&dive_list, dl_column + DIVE_RATING);
dive_list.depth = divelist_column(&dive_list, dl_column + DIVE_DEPTH);
dive_list.duration = divelist_column(&dive_list, dl_column + DIVE_DURATION);
dive_list.temperature = divelist_column(&dive_list, dl_column + DIVE_TEMPERATURE);
dive_list.totalweight = divelist_column(&dive_list, dl_column + DIVE_TOTALWEIGHT);
dive_list.suit = divelist_column(&dive_list, dl_column + DIVE_SUIT);
dive_list.cylinder = divelist_column(&dive_list, dl_column + DIVE_CYLINDER);
dive_list.nitrox = divelist_column(&dive_list, dl_column + DIVE_NITROX);
dive_list.sac = divelist_column(&dive_list, dl_column + DIVE_SAC);
dive_list.otu = divelist_column(&dive_list, dl_column + DIVE_OTU);
dive_list.maxcns = divelist_column(&dive_list, dl_column + DIVE_MAXCNS);
dive_list.location = divelist_column(&dive_list, dl_column + DIVE_LOCATION);
/* now add the GPS icon to the location column */
tree_view_column_add_pixbuf(dive_list.tree_view, gpsicon_data_func, dive_list.location);
fill_dive_list();
g_object_set(G_OBJECT(dive_list.tree_view), "headers-visible", TRUE,
"search-column", DIVE_LOCATION,
"rules-hint", TRUE,
NULL);
g_signal_connect_after(dive_list.tree_view, "realize", G_CALLBACK(realize_cb), NULL);
g_signal_connect(dive_list.tree_view, "row-activated", G_CALLBACK(row_activated_cb), NULL);
g_signal_connect(dive_list.tree_view, "row-expanded", G_CALLBACK(row_expanded_cb), NULL);
g_signal_connect(dive_list.tree_view, "row-collapsed", G_CALLBACK(row_collapsed_cb), NULL);
g_signal_connect(dive_list.tree_view, "button-press-event", G_CALLBACK(button_press_cb), NULL);
g_signal_connect(dive_list.tree_view, "popup-menu", G_CALLBACK(popup_menu_cb), NULL);
g_signal_connect(selection, "changed", G_CALLBACK(selection_cb), dive_list.model);
g_signal_connect(dive_list.listmodel, "sort-column-changed", G_CALLBACK(sort_column_change_cb), NULL);
g_signal_connect(dive_list.treemodel, "sort-column-changed", G_CALLBACK(sort_column_change_cb), NULL);
Don't deselect all dives on all selection "change" events gtk sends the selection change events all the time, for pretty much any "divelist changed - so selection changed". The expansion of a trip, the switch to a new model, yadda yadda. But we actually want selections to be sticky across these events, so we can't just forget all of our old selection state and repopulate it. So we re-introduce the "am I allowed to change this row" callback, which we used to use to create a list of every actual selection that was changed. But instead of remembering the list (and having the stale entries issue with that remembered list that caused problems), we now just use that as a "that *particular* selection cleared" event. So this callback works as the "which part of the visible, currently selected state got cleared" notifier, and handles unselection. Then, when the selection is over, we use the new model of "let's just traverse the list of things gtk thinks are selected" and use that to handle new selections in the visible state that gtk actually tracks well. So that logic handles the new selections. This way, dives that aren't visible to gtk don't ever get modified: gtk won't ask about them being selected or not, and gtk won't track them in its selection logic, so with this model their state never changes for us. gtk selections are annoying. They are simple for the case gtk knows about (ie they are *visually* selected in the GUI), but since we very much want to track selection across events that change the visual state, we need to have this insane "impedance match". Reported-by: Dirk Hohdnel <dirk@hohndel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
gtk_tree_selection_set_select_function(selection, modify_selection_cb, NULL, NULL);
dive_list.container_widget = gtk_scrolled_window_new(NULL, NULL);
gtk_scrolled_window_set_policy(GTK_SCROLLED_WINDOW(dive_list.container_widget),
GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);
gtk_container_add(GTK_CONTAINER(dive_list.container_widget), dive_list.tree_view);
dive_list.changed = 0;
return dive_list.container_widget;
}
void dive_list_destroy(void)
{
gtk_widget_destroy(dive_list.tree_view);
}
void mark_divelist_changed(int changed)
{
dive_list.changed = changed;
}
int unsaved_changes()
{
return dive_list.changed;
}
void remove_autogen_trips()
{
int i;
struct dive *dive;
for_each_dive(i, dive) {
dive_trip_t *trip = dive->divetrip;
if (trip && trip->autogen)
remove_dive_from_trip(dive);
}
}
struct iteridx {
int idx;
GtkTreeIter *iter;
};
static gboolean iter_has_idx(GtkTreeModel *model, GtkTreePath *path,
GtkTreeIter *iter, gpointer _data)
{
struct iteridx *iteridx = _data;
int idx;
/* Get the dive number */
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
if (idx == iteridx->idx) {
iteridx->iter = gtk_tree_iter_copy(iter);
return TRUE; /* end foreach */
}
return FALSE;
}
static GtkTreeIter *get_iter_from_idx(int idx)
{
struct iteridx iteridx = {idx, };
gtk_tree_model_foreach(MODEL(dive_list), iter_has_idx, &iteridx);
return iteridx.iter;
}
void scroll_to_selected(GtkTreeIter *iter)
{
GtkTreePath *treepath;
treepath = gtk_tree_model_get_path(MODEL(dive_list), iter);
gtk_tree_view_expand_to_path(GTK_TREE_VIEW(dive_list.tree_view), treepath);
gtk_tree_view_scroll_to_cell(GTK_TREE_VIEW(dive_list.tree_view), treepath, NULL, FALSE, 0, 0);
gtk_tree_path_free(treepath);
}
void show_and_select_dive(struct dive *dive)
{
GtkTreeSelection *selection;
GtkTreeIter *iter;
struct dive *odive;
int i, divenr;
divenr = get_divenr(dive);
if (divenr < 0)
/* we failed to find the dive */
return;
iter = get_iter_from_idx(divenr);
selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
gtk_tree_selection_unselect_all(selection);
for_each_dive(i, odive)
odive->selected = FALSE;
amount_selected = 1;
dive->selected = TRUE;
gtk_tree_selection_select_iter(selection, iter);
scroll_to_selected(iter);
}
void select_next_dive(void)
{
GtkTreeIter *nextiter, *parent;
GtkTreeIter *iter = get_iter_from_idx(selected_dive);
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
int idx;
if (!iter)
return;
nextiter = gtk_tree_iter_copy(iter);
if (!gtk_tree_model_iter_next(MODEL(dive_list), nextiter)) {
if (!gtk_tree_model_iter_parent(MODEL(dive_list), nextiter, iter)) {
/* we're at the last top level node */
return;
}
if (!gtk_tree_model_iter_next(MODEL(dive_list), nextiter)) {
/* last trip */
return;
}
}
gtk_tree_model_get(MODEL(dive_list), nextiter, DIVE_INDEX, &idx, -1);
if (idx < 0) {
/* need the first child */
parent = gtk_tree_iter_copy(nextiter);
if (! gtk_tree_model_iter_children(MODEL(dive_list), nextiter, parent))
return;
}
scroll_to_selected(nextiter);
gtk_tree_selection_unselect_all(selection);
gtk_tree_selection_select_iter(selection, nextiter);
}
void select_prev_dive(void)
{
GtkTreeIter previter, *parent;
GtkTreeIter *iter = get_iter_from_idx(selected_dive);
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
GtkTreePath *treepath;
int idx;
if (!iter)
return;
treepath = gtk_tree_model_get_path(MODEL(dive_list), iter);
if (!gtk_tree_path_prev(treepath)) {
if (!gtk_tree_model_iter_parent(MODEL(dive_list), &previter, iter))
/* we're at the last top level node */
goto free_path;
gtk_tree_path_free(treepath);
treepath = gtk_tree_model_get_path(MODEL(dive_list), &previter);
if (!gtk_tree_path_prev(treepath))
/* first trip */
goto free_path;
if (!gtk_tree_model_get_iter(MODEL(dive_list), &previter, treepath))
goto free_path;
}
if (!gtk_tree_model_get_iter(MODEL(dive_list), &previter, treepath))
goto free_path;
gtk_tree_model_get(MODEL(dive_list), &previter, DIVE_INDEX, &idx, -1);
if (idx < 0) {
/* need the last child */
parent = gtk_tree_iter_copy(&previter);
if (! gtk_tree_model_iter_nth_child(MODEL(dive_list), &previter, parent,
gtk_tree_model_iter_n_children(MODEL(dive_list), parent) - 1))
goto free_path;
}
scroll_to_selected(&previter);
gtk_tree_selection_unselect_all(selection);
gtk_tree_selection_select_iter(selection, &previter);
free_path:
gtk_tree_path_free(treepath);
}