subsurface/core/divelist.c

1422 lines
34 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* divelist.c */
/* core logic for the dive list -
* accessed through the following interfaces:
*
* dive_trip_t *dive_trip_list;
* unsigned int amount_selected;
* void dump_selection(void)
* dive_trip_t *find_trip_by_idx(int idx)
* int trip_has_selected_dives(dive_trip_t *trip)
* void get_dive_gas(struct dive *dive, int *o2_p, int *he_p, int *o2low_p)
* int total_weight(struct dive *dive)
* int get_divenr(struct dive *dive)
* int init_decompression(struct dive *dive)
* void update_cylinder_related_info(struct dive *dive)
* void dump_trip_list(void)
* dive_trip_t *find_matching_trip(timestamp_t when)
* void insert_trip(dive_trip_t **dive_trip_p)
* void remove_dive_from_trip(struct dive *dive)
* void add_dive_to_trip(struct dive *dive, dive_trip_t *trip)
* dive_trip_t *create_and_hookup_trip_from_dive(struct dive *dive)
* void autogroup_dives(void)
* void delete_single_dive(int idx)
* void add_single_dive(int idx, struct dive *dive)
* void merge_two_dives(struct dive *a, struct dive *b)
* void select_dive(int idx)
* void deselect_dive(int idx)
* void mark_divelist_changed(int changed)
* int unsaved_changes()
* void remove_autogen_trips()
*/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "gettext.h"
2012-11-10 18:51:03 +00:00
#include <assert.h>
#include <zip.h>
#include <libxslt/transform.h>
#include "dive.h"
#include "divelist.h"
#include "display.h"
#include "planner.h"
#include "qthelperfromc.h"
#include "git-access.h"
static bool dive_list_changed = false;
bool autogroup = false;
dive_trip_t *dive_trip_list;
unsigned int amount_selected;
// We need to stop using globals, really.
struct dive_table downloadTable;
#if DEBUG_SELECTION_TRACKING
void dump_selection(void)
{
int i;
struct dive *dive;
printf("currently selected are %u dives:", amount_selected);
for_each_dive(i, dive) {
if (dive->selected)
printf(" %d", i);
}
printf("\n");
}
#endif
void set_autogroup(bool value)
{
/* if we keep the UI paradigm, this needs to toggle
* the checkbox on the autogroup menu item */
autogroup = value;
}
dive_trip_t *find_trip_by_idx(int idx)
{
dive_trip_t *trip = dive_trip_list;
if (idx >= 0)
return NULL;
idx = -idx;
while (trip) {
if (trip->index == idx)
return trip;
trip = trip->next;
}
return NULL;
}
/*
* Get "maximal" dive gas for a dive.
* Rules:
* - Trimix trumps nitrox (highest He wins, O2 breaks ties)
* - Nitrox trumps air (even if hypoxic)
* These are the same rules as the inter-dive sorting rules.
*/
void get_dive_gas(struct dive *dive, int *o2_p, int *he_p, int *o2max_p)
{
int i;
int maxo2 = -1, maxhe = -1, mino2 = 1000;
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder + i;
int o2 = get_o2(&cyl->gasmix);
int he = get_he(&cyl->gasmix);
if (!is_cylinder_used(dive, i))
continue;
if (cylinder_none(cyl))
continue;
if (o2 > maxo2)
maxo2 = o2;
if (he > maxhe)
goto newmax;
if (he < maxhe)
continue;
if (o2 <= maxo2)
continue;
newmax:
maxhe = he;
mino2 = o2;
}
/* All air? Show/sort as "air"/zero */
if ((!maxhe && maxo2 == O2_IN_AIR && mino2 == maxo2) ||
(maxo2 == -1 && maxhe == -1 && mino2 == 1000))
maxo2 = mino2 = 0;
*o2_p = mino2;
*he_p = maxhe;
*o2max_p = maxo2;
}
int total_weight(struct dive *dive)
{
int i, total_grams = 0;
if (dive)
for (i = 0; i < MAX_WEIGHTSYSTEMS; i++)
total_grams += dive->weightsystem[i].weight.grams;
return total_grams;
}
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
static int active_o2(struct dive *dive, struct divecomputer *dc, duration_t time)
{
struct gasmix gas;
get_gas_at_time(dive, dc, time, &gas);
return get_o2(&gas);
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
}
/* calculate OTU for a dive - this only takes the first divecomputer into account */
static int calculate_otu(struct dive *dive)
{
int i;
double otu = 0.0;
struct divecomputer *dc = &dive->dc;
for (i = 1; i < dc->samples; i++) {
int t;
int po2;
struct sample *sample = dc->sample + i;
struct sample *psample = sample - 1;
t = sample->time.seconds - psample->time.seconds;
if (sample->setpoint.mbar) {
po2 = sample->setpoint.mbar;
} else {
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
int o2 = active_o2(dive, dc, sample->time);
po2 = lrint(o2 * depth_to_atm(sample->depth.mm, dive));
}
if (po2 >= 500)
otu += pow((po2 - 500) / 1000.0, 0.83) * t / 30.0;
}
return lrint(otu);
}
/* calculate CNS for a dive - this only takes the first divecomputer into account */
int const cns_table[][3] = {
/* po2, Maximum Single Exposure, Maximum 24 hour Exposure */
{ 1600, 45 * 60, 150 * 60 },
{ 1500, 120 * 60, 180 * 60 },
{ 1400, 150 * 60, 180 * 60 },
{ 1300, 180 * 60, 210 * 60 },
{ 1200, 210 * 60, 240 * 60 },
{ 1100, 240 * 60, 270 * 60 },
{ 1000, 300 * 60, 300 * 60 },
{ 900, 360 * 60, 360 * 60 },
{ 800, 450 * 60, 450 * 60 },
{ 700, 570 * 60, 570 * 60 },
{ 600, 720 * 60, 720 * 60 }
};
/* Calculate the CNS for a single dive */
double calculate_cns_dive(struct dive *dive)
{
int n;
size_t j;
struct divecomputer *dc = &dive->dc;
double cns = 0.0;
/* Caclulate the CNS for each sample in this dive and sum them */
for (n = 1; n < dc->samples; n++) {
int t;
int po2;
struct sample *sample = dc->sample + n;
struct sample *psample = sample - 1;
t = sample->time.seconds - psample->time.seconds;
if (sample->setpoint.mbar) {
po2 = sample->setpoint.mbar;
} else {
int o2 = active_o2(dive, dc, sample->time);
po2 = lrint(o2 * depth_to_atm(sample->depth.mm, dive));
}
/* CNS don't increse when below 500 matm */
if (po2 < 500)
continue;
/* Find what table-row we should calculate % for */
for (j = 1; j < sizeof(cns_table) / (sizeof(int) * 3); j++)
if (po2 > cns_table[j][0])
break;
j--;
cns += ((double)t) / ((double)cns_table[j][1]) * 100;
}
return cns;
}
/* this only gets called if dive->maxcns == 0 which means we know that
* none of the divecomputers has tracked any CNS for us
* so we calculated it "by hand" */
static int calculate_cns(struct dive *dive)
{
int i, divenr;
double cns = 0.0;
timestamp_t last_starttime, last_endtime = 0;
/* shortcut */
if (dive->cns)
return dive->cns;
divenr = get_divenr(dive);
i = divenr >= 0 ? divenr : dive_table.nr;
#if DECO_CALC_DEBUG & 2
if (i >= 0 && i < dive_table.nr)
printf("\n\n*** CNS for dive #%d %d\n", i, get_dive(i)->number);
else
printf("\n\n*** CNS for dive #%d\n", i);
#endif
/* Look at next dive in dive list table and correct i when needed */
while (i < dive_table.nr - 1) {
struct dive *pdive = get_dive(i);
if (!pdive || pdive->when > dive->when)
break;
i++;
}
/* Look at previous dive in dive list table and correct i when needed */
while (i > 0) {
struct dive *pdive = get_dive(i - 1);
if (!pdive || pdive->when < dive->when)
break;
i--;
}
#if DECO_CALC_DEBUG & 2
printf("Dive number corrected to #%d\n", i);
#endif
last_starttime = dive->when;
/* Walk backwards to check previous dives - how far do we need to go back? */
while (i--) {
if (i == divenr && i > 0)
i--;
#if DECO_CALC_DEBUG & 2
printf("Check if dive #%d %d has to be considered as prev dive: ", i, get_dive(i)->number);
#endif
struct dive *pdive = get_dive(i);
/* we don't want to mix dives from different trips as we keep looking
* for how far back we need to go */
if (dive->divetrip && pdive->divetrip != dive->divetrip) {
#if DECO_CALC_DEBUG & 2
printf("No - other dive trip\n");
#endif
continue;
}
if (!pdive || pdive->when >= dive->when || dive_endtime(pdive) + 12 * 60 * 60 < last_starttime) {
#if DECO_CALC_DEBUG & 2
printf("No\n");
#endif
break;
}
last_starttime = pdive->when;
#if DECO_CALC_DEBUG & 2
printf("Yes\n");
#endif
}
/* Walk forward and add dives and surface intervals to CNS */
while (++i < dive_table.nr) {
#if DECO_CALC_DEBUG & 2
printf("Check if dive #%d %d will be really added to CNS calc: ", i, get_dive(i)->number);
#endif
struct dive *pdive = get_dive(i);
/* again skip dives from different trips */
if (dive->divetrip && dive->divetrip != pdive->divetrip) {
#if DECO_CALC_DEBUG & 2
printf("No - other dive trip\n");
#endif
continue;
}
/* Don't add future dives */
if (pdive->when >= dive->when) {
#if DECO_CALC_DEBUG & 2
printf("No - future or same dive\n");
#endif
break;
}
/* Don't add the copy of the dive itself */
if (i == divenr) {
#if DECO_CALC_DEBUG & 2
printf("No - copy of dive\n");
#endif
continue;
}
#if DECO_CALC_DEBUG & 2
printf("Yes\n");
#endif
/* CNS reduced with 90min halftime during surface interval */
if (last_endtime)
cns /= pow(2, (pdive->when - last_endtime) / (90.0 * 60.0));
#if DECO_CALC_DEBUG & 2
printf("CNS after surface interval: %f\n", cns);
#endif
cns += calculate_cns_dive(pdive);
#if DECO_CALC_DEBUG & 2
printf("CNS after previous dive: %f\n", cns);
#endif
last_starttime = pdive->when;
last_endtime = dive_endtime(pdive);
}
/* CNS reduced with 90min halftime during surface interval */
if (last_endtime)
cns /= pow(2, (dive->when - last_endtime) / (90.0 * 60.0));
#if DECO_CALC_DEBUG & 2
printf("CNS after last surface interval: %f\n", cns);
#endif
cns += calculate_cns_dive(dive);
#if DECO_CALC_DEBUG & 2
printf("CNS after dive: %f\n", cns);
#endif
/* save calculated cns in dive struct */
dive->cns = lrint(cns);
return dive->cns;
}
/*
* Return air usage (in liters).
*/
static double calculate_airuse(struct dive *dive)
{
int airuse = 0;
int i;
for (i = 0; i < MAX_CYLINDERS; i++) {
pressure_t start, end;
cylinder_t *cyl = dive->cylinder + i;
start = cyl->start.mbar ? cyl->start : cyl->sample_start;
end = cyl->end.mbar ? cyl->end : cyl->sample_end;
if (!end.mbar || start.mbar <= end.mbar)
continue;
airuse += gas_volume(cyl, start) - gas_volume(cyl, end);
}
return airuse / 1000.0;
}
/* this only uses the first divecomputer to calculate the SAC rate */
static int calculate_sac(struct dive *dive)
{
struct divecomputer *dc = &dive->dc;
double airuse, pressure, sac;
int duration, meandepth;
airuse = calculate_airuse(dive);
if (!airuse)
return 0;
duration = dc->duration.seconds;
if (!duration)
return 0;
meandepth = dc->meandepth.mm;
if (!meandepth)
return 0;
Fix up SAC calculations for ATM/bar confusion We even documented that we did SAC in bar*l/min, but the "S" in SAC stands for "Surface". So we should normalize SAC rate to surface pressure, not one bar. It's a tiny 1% difference, and doesn't actually matter in practice, but it's noticeable when you want to explicitly test for SAC-rate by creating a test-dive that averages exactly 10m. Suddenly you don't get the round numbers you expect. [ Side note: 10m is not _exactly_ one extra atmosphere according to our calculations, but it's darn close in sea water: the standard salinity of 1.03 kg/l together with the standard acceleration of 9.81m/s^2 gives an additional pressure of 1.01 bar, which is within a fraction of a percent of one ATM. Of course, divers have likely chosen that value exactly for the math to come out that way, since the true average salinity of seawater is actually slightly lower ] So here's a few test-dives, along with the SAC rate fixup to make them look right. (There's also a one-liner to dive.c that makes the duration come out right if the last sample has a non-zero depth, and the previous sample did not: one of my original test-dives did the "average 10m depth" by starting at 0 and ending at 20m, and dive.c got a tiny bit confused about that ;) [ The rationale for me testing our SAC rate calculations in the first place was that on snorkkeli.net user "Poltsi" reported that our SAC rate calculations differ from the ones that Suunto DM4 reports. So I wanted to verify that we did things right. Note that Poltsi reported differences larger than the difference of BAR/ATM, so this is not the cause. I'll continue to look at this. ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-02-24 18:01:18 +00:00
/* Mean pressure in ATM (SAC calculations are in atm*l/min) */
pressure = depth_to_atm(meandepth, dive);
sac = airuse / pressure * 60 / duration;
/* milliliters per minute.. */
return lrint(sac * 1000);
}
/* for now we do this based on the first divecomputer */
static void add_dive_to_deco(struct deco_state *ds, struct dive *dive)
{
struct divecomputer *dc = &dive->dc;
struct gasmix *gasmix = NULL;
struct event *ev = NULL;
int i;
if (!dc)
return;
for (i = 1; i < dc->samples; i++) {
struct sample *psample = dc->sample + i - 1;
struct sample *sample = dc->sample + i;
int t0 = psample->time.seconds;
int t1 = sample->time.seconds;
int j;
for (j = t0; j < t1; j++) {
int depth = interpolate(psample->depth.mm, sample->depth.mm, j - t0, t1 - t0);
gasmix = get_gasmix(dive, dc, j, &ev, gasmix);
add_segment(ds, depth_to_bar(depth, dive), gasmix, 1, sample->setpoint.mbar, dive, dive->sac);
}
}
}
int get_divenr(struct dive *dive)
{
int i;
struct dive *d;
// tempting as it may be, don't die when called with dive=NULL
if (dive)
for_each_dive(i, d) {
if (d->id == dive->id) // don't compare pointers, we could be passing in a copy of the dive
return i;
}
return -1;
}
int get_divesite_idx(struct dive_site *ds)
{
int i;
struct dive_site *d;
// tempting as it may be, don't die when called with dive=NULL
if (ds)
for_each_dive_site(i, d) {
if (d->uuid == ds->uuid) // don't compare pointers, we could be passing in a copy of the dive
return i;
}
return -1;
}
Deco artefacts with low GFlow In a dive, when you choose a very low GFlow (like 5 or 9) and a trimix with quite some He (12/48 in the example) and descend fast, the ceiling seems to do strange things in the first minutes of the dive (very very deep for example or jumping around). To understand what is going on we have to recall what gradient factors do in detail: Plain Buehlmann gives you for each tissue a maximal inert gas pressure that is a straight line when plotted against the ambient pressure. So for each depth (=ambient pressure) there is a maximally allowed over-pressure. The idea of gradient factors is that one does not use all the possible over-pressure that Buehlmann gives us but only a depth dependent fraction. GFhigh is the fraction of the possible over-pressure at the surface while GFlow is the fraction at the first deco stop. In between, the fraction is linearly interpolated. As the Buehlmann over-pressure is increasing with depth and typically also the allowed overpressure after applications of gradient factors increases with depth or said differently: the tissue saturation has to be lower if the diver wants to ascent. The main problem is: What is the first stop (where to apply GFlow)? In a planned dive, we could take the first deco stop, but in a real dive from a dive computer download it is impossible to say what constitutes a stop and what is only a slow ascent? What I have used so far is not exactly the first stop but rather the first theoretical stop: During all of the dive, I have calculated the ceiling under the assumption that GFlow applies everywhere (and not just at a single depth). The deepest of these ceilings I have used as the “first stop depth”, the depth at which GFlow applies. Even more, I only wanted to use the information that a diver has during the dive, so I actually only considered the ceilings in the past (and not in the future of a given sample). But this brings with it the problem that early in the dive, in particular during the descent the lowest ceiling so far is very shallow (as not much gas has built up in the body so far). This problem now interferes with a second one: If at the start of the dive when the all compartments have 790mbar N2 the diver starts breathing a He-heavy mix (like 12/48) and descents fast the He builds up in the tissues before the N2 can diffuse out. So right at the start, we already encounter high tissue loadings. If now we have a large difference between GFhigh and GFlow but they apply at very similar depth (the surface and a very shallow depth of the deepest ceiling (which for a non-decompression dive would be theoretically at negative depth) so far) it can happen that the linear interpolation as opposite slope then in the typical case above: The allowed over-pressure is degreasing with depth, shallower depth do not require lower gas loading in the tissue (i.e. can be reached after further off-gasing) but but tolerate higher loadings. In that situation the ceiling disappears (or is rather a floor). So far, I got rid of that problem, by stating that the minimum depth for GFlow was 20m (after all, GFlow is about deep stops, so it should better not be too shallow). Now the dive reported in ticket #549 takes values to an extreme in such away that 20m (which is determined by buehlmann_config.gf_low_position_min in deco.c) was not enough to prevent this inversion problem (or in a milder form that the interpolation of gradient factors is in fact an extrapolation with quite extreme values). This patch that gets rid of the problem for the dive described above but still it is possible to find (more extreme) parameter choices that lead to non-realistic ceilings. Let me close by pointing out that all this is only about the descent, as it is about too shallow depth for GFlow. So no real deco (i.e. later part of the dive) is inflicted. This is only about a theoretical ceiling displayed possibly in the first minutes of a dive. So this is more an aesthetically than a practical problem. Fixes #549 Signed-off-by: Robert C. Helling <helling@atdotde.de> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2014-06-18 15:11:54 +00:00
static struct gasmix air = { .o2.permille = O2_IN_AIR, .he.permille = 0 };
/* take into account previous dives until there is a 48h gap between dives */
/* return last surface time before this dive or dummy value of 48h */
/* return negative surface time if dives are overlapping */
/* The place you call this function is likely the place where you want
* to create the deco_state */
int init_decompression(struct deco_state *ds, struct dive *dive)
{
int i, divenr = -1;
int surface_time = 48 * 60 * 60;
timestamp_t last_endtime = 0, last_starttime = 0;
bool deco_init = false;
double surface_pressure;
if (!dive)
return false;
divenr = get_divenr(dive);
i = divenr >= 0 ? divenr : dive_table.nr;
#if DECO_CALC_DEBUG & 2
if (i >= 0 && i < dive_table.nr)
printf("\n\n*** Init deco for dive #%d %d\n", i, get_dive(i)->number);
else
printf("\n\n*** Init deco for dive #%d\n", i);
#endif
/* Look at next dive in dive list table and correct i when needed */
while (i < dive_table.nr - 1) {
struct dive *pdive = get_dive(i);
if (!pdive || pdive->when > dive->when)
break;
i++;
}
/* Look at previous dive in dive list table and correct i when needed */
while (i > 0) {
struct dive *pdive = get_dive(i - 1);
if (!pdive || pdive->when < dive->when)
break;
i--;
}
#if DECO_CALC_DEBUG & 2
printf("Dive number corrected to #%d\n", i);
#endif
last_starttime = dive->when;
/* Walk backwards to check previous dives - how far do we need to go back? */
while (i--) {
if (i == divenr && i > 0)
i--;
#if DECO_CALC_DEBUG & 2
printf("Check if dive #%d %d has to be considered as prev dive: ", i, get_dive(i)->number);
#endif
struct dive *pdive = get_dive(i);
/* we don't want to mix dives from different trips as we keep looking
* for how far back we need to go */
if (dive->divetrip && pdive->divetrip != dive->divetrip) {
#if DECO_CALC_DEBUG & 2
printf("No - other dive trip\n");
#endif
continue;
}
if (!pdive || pdive->when >= dive->when || dive_endtime(pdive) + 48 * 60 * 60 < last_starttime) {
#if DECO_CALC_DEBUG & 2
printf("No\n");
#endif
break;
}
last_starttime = pdive->when;
#if DECO_CALC_DEBUG & 2
printf("Yes\n");
#endif
}
/* Walk forward an add dives and surface intervals to deco */
while (++i < dive_table.nr) {
#if DECO_CALC_DEBUG & 2
printf("Check if dive #%d %d will be really added to deco calc: ", i, get_dive(i)->number);
#endif
struct dive *pdive = get_dive(i);
/* again skip dives from different trips */
if (dive->divetrip && dive->divetrip != pdive->divetrip) {
#if DECO_CALC_DEBUG & 2
printf("No - other dive trip\n");
#endif
continue;
}
/* Don't add future dives */
if (pdive->when >= dive->when) {
#if DECO_CALC_DEBUG & 2
printf("No - future or same dive\n");
#endif
break;
}
/* Don't add the copy of the dive itself */
if (i == divenr) {
#if DECO_CALC_DEBUG & 2
printf("No - copy of dive\n");
#endif
continue;
}
#if DECO_CALC_DEBUG & 2
printf("Yes\n");
#endif
surface_pressure = get_surface_pressure_in_mbar(pdive, true) / 1000.0;
/* Is it the first dive we add? */
if (!deco_init) {
#if DECO_CALC_DEBUG & 2
printf("Init deco\n");
#endif
clear_deco(ds, surface_pressure);
deco_init = true;
#if DECO_CALC_DEBUG & 2
printf("Tissues after init:\n");
dump_tissues();
#endif
}
else {
surface_time = pdive->when - last_endtime;
if (surface_time < 0) {
#if DECO_CALC_DEBUG & 2
printf("Exit because surface intervall is %d\n", surface_time);
#endif
return surface_time;
}
add_segment(ds, surface_pressure, &air, surface_time, 0, dive, prefs.decosac);
#if DECO_CALC_DEBUG & 2
printf("Tissues after surface intervall of %d:%02u:\n", FRACTION(surface_time, 60));
dump_tissues(ds);
#endif
}
add_dive_to_deco(ds, pdive);
last_starttime = pdive->when;
last_endtime = dive_endtime(pdive);
clear_vpmb_state(ds);
#if DECO_CALC_DEBUG & 2
printf("Tissues after added dive #%d:\n", pdive->number);
dump_tissues(ds);
#endif
}
surface_pressure = get_surface_pressure_in_mbar(dive, true) / 1000.0;
/* We don't have had a previous dive at all? */
if (!deco_init) {
#if DECO_CALC_DEBUG & 2
printf("Init deco\n");
#endif
clear_deco(ds, surface_pressure);
#if DECO_CALC_DEBUG & 2
printf("Tissues after no previous dive, surface time set to 48h:\n");
dump_tissues(ds);
#endif
}
else {
surface_time = dive->when - last_endtime;
if (surface_time < 0) {
#if DECO_CALC_DEBUG & 2
printf("Exit because surface intervall is %d\n", surface_time);
#endif
return surface_time;
}
add_segment(ds, surface_pressure, &air, surface_time, 0, dive, prefs.decosac);
#if DECO_CALC_DEBUG & 2
printf("Tissues after surface intervall of %d:%02u:\n", FRACTION(surface_time, 60));
dump_tissues(ds);
#endif
}
// I do not dare to remove this call. We don't need the result but it might have side effects. Bummer.
tissue_tolerance_calc(ds, dive, surface_pressure);
return surface_time;
}
void update_cylinder_related_info(struct dive *dive)
{
if (dive != NULL) {
dive->sac = calculate_sac(dive);
dive->otu = calculate_otu(dive);
if (dive->maxcns == 0)
dive->maxcns = calculate_cns(dive);
}
}
#define MAX_GAS_STRING 80
#define UTF8_ELLIPSIS "\xE2\x80\xA6"
/* callers needs to free the string */
char *get_dive_gas_string(struct dive *dive)
{
int o2, he, o2max;
char *buffer = malloc(MAX_GAS_STRING);
if (buffer) {
get_dive_gas(dive, &o2, &he, &o2max);
o2 = (o2 + 5) / 10;
he = (he + 5) / 10;
o2max = (o2max + 5) / 10;
if (he)
if (o2 == o2max)
snprintf(buffer, MAX_GAS_STRING, "%d/%d", o2, he);
else
snprintf(buffer, MAX_GAS_STRING, "%d/%d" UTF8_ELLIPSIS "%d%%", o2, he, o2max);
else if (o2)
if (o2 == o2max)
snprintf(buffer, MAX_GAS_STRING, "%d%%", o2);
else
snprintf(buffer, MAX_GAS_STRING, "%d" UTF8_ELLIPSIS "%d%%", o2, o2max);
else
strcpy(buffer, translate("gettextFromC", "air"));
}
return buffer;
}
/*
* helper functions for dive_trip handling
*/
#ifdef DEBUG_TRIP
void dump_trip_list(void)
{
dive_trip_t *trip;
int i = 0;
timestamp_t last_time = 0;
for (trip = dive_trip_list; trip; trip = trip->next) {
struct tm tm;
utc_mkdate(trip->when, &tm);
if (trip->when < last_time)
printf("\n\ndive_trip_list OUT OF ORDER!!!\n\n\n");
2012-11-10 18:51:03 +00:00
printf("%s trip %d to \"%s\" on %04u-%02u-%02u %02u:%02u:%02u (%d dives - %p)\n",
trip->autogen ? "autogen " : "",
++i, trip->location,
tm.tm_year, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec,
trip->nrdives, trip);
last_time = trip->when;
}
printf("-----\n");
}
#endif
/* this finds the last trip that at or before the time given */
dive_trip_t *find_matching_trip(timestamp_t when)
{
dive_trip_t *trip = dive_trip_list;
if (!trip || trip->when > when) {
#ifdef DEBUG_TRIP
printf("no matching trip\n");
#endif
return NULL;
}
while (trip->next && trip->next->when <= when)
trip = trip->next;
#ifdef DEBUG_TRIP
{
struct tm tm;
utc_mkdate(trip->when, &tm);
2012-11-10 18:51:03 +00:00
printf("found trip %p @ %04d-%02d-%02d %02d:%02d:%02d\n",
trip,
tm.tm_year, tm.tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
}
#endif
return trip;
}
/* insert the trip into the dive_trip_list - but ensure you don't have
* two trips for the same date; but if you have, make sure you don't
* keep the one with less information */
void insert_trip(dive_trip_t **dive_trip_p)
{
dive_trip_t *dive_trip = *dive_trip_p;
dive_trip_t **p = &dive_trip_list;
dive_trip_t *trip;
struct dive *divep;
/* Walk the dive trip list looking for the right location.. */
while ((trip = *p) != NULL && trip->when < dive_trip->when)
p = &trip->next;
if (trip && trip->when == dive_trip->when) {
if (!trip->location)
trip->location = dive_trip->location;
if (!trip->notes)
trip->notes = dive_trip->notes;
divep = dive_trip->dives;
while (divep) {
add_dive_to_trip(divep, trip);
divep = divep->next;
}
*dive_trip_p = trip;
} else {
dive_trip->next = trip;
*p = dive_trip;
}
#ifdef DEBUG_TRIP
dump_trip_list();
#endif
}
2012-11-10 18:51:03 +00:00
static void delete_trip(dive_trip_t *trip)
{
dive_trip_t **p, *tmp;
2012-11-10 18:51:03 +00:00
assert(!trip->dives);
/* Remove the trip from the list of trips */
p = &dive_trip_list;
while ((tmp = *p) != NULL) {
if (tmp == trip) {
*p = trip->next;
break;
}
p = &tmp->next;
}
/* .. and free it */
free(trip->location);
free(trip->notes);
2012-11-10 18:51:03 +00:00
free(trip);
}
void find_new_trip_start_time(dive_trip_t *trip)
{
struct dive *dive = trip->dives;
timestamp_t when = dive->when;
2012-11-10 18:51:03 +00:00
while ((dive = dive->next) != NULL) {
if (dive->when < when)
when = dive->when;
2012-11-10 18:51:03 +00:00
}
trip->when = when;
2012-11-10 18:51:03 +00:00
}
/* check if we have a trip right before / after this dive */
bool is_trip_before_after(struct dive *dive, bool before)
{
int idx = get_idx_by_uniq_id(dive->id);
if (before) {
if (idx > 0 && get_dive(idx - 1)->divetrip)
return true;
} else {
if (idx < dive_table.nr - 1 && get_dive(idx + 1)->divetrip)
return true;
}
return false;
}
struct dive *first_selected_dive()
{
int idx;
struct dive *d;
for_each_dive (idx, d) {
if (d->selected)
return d;
}
return NULL;
}
struct dive *last_selected_dive()
{
int idx;
struct dive *d, *ret = NULL;
for_each_dive (idx, d) {
if (d->selected)
ret = d;
}
return ret;
}
void remove_dive_from_trip(struct dive *dive, short was_autogen)
2012-11-10 18:51:03 +00:00
{
struct dive *next, **pprev;
2012-11-10 18:51:03 +00:00
dive_trip_t *trip = dive->divetrip;
if (!trip)
return;
/* Remove the dive from the trip's list of dives */
next = dive->next;
pprev = dive->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
2012-11-10 18:51:03 +00:00
dive->divetrip = NULL;
if (was_autogen)
dive->tripflag = TF_NONE;
else
dive->tripflag = NO_TRIP;
2012-11-10 18:51:03 +00:00
assert(trip->nrdives > 0);
if (!--trip->nrdives)
delete_trip(trip);
else if (trip->when == dive->when)
find_new_trip_start_time(trip);
}
void add_dive_to_trip(struct dive *dive, dive_trip_t *trip)
{
if (dive->divetrip == trip)
return;
remove_dive_from_trip(dive, false);
2012-11-10 18:51:03 +00:00
trip->nrdives++;
dive->divetrip = trip;
dive->tripflag = ASSIGNED_TRIP;
/* Add it to the trip's list of dives*/
dive->next = trip->dives;
if (dive->next)
dive->next->pprev = &dive->next;
trip->dives = dive;
dive->pprev = &trip->dives;
2012-11-10 18:51:03 +00:00
if (dive->when && trip->when > dive->when)
trip->when = dive->when;
}
dive_trip_t *create_and_hookup_trip_from_dive(struct dive *dive)
{
dive_trip_t *dive_trip = calloc(1, sizeof(dive_trip_t));
dive_trip->when = dive->when;
dive_trip->location = copy_string(get_dive_location(dive));
insert_trip(&dive_trip);
2012-11-10 18:51:03 +00:00
dive->tripflag = IN_TRIP;
2012-11-10 18:51:03 +00:00
add_dive_to_trip(dive, dive_trip);
return dive_trip;
}
/*
* Walk the dives from the oldest dive, and see if we can autogroup them
*/
void autogroup_dives(void)
{
int i;
struct dive *dive, *lastdive = NULL;
for_each_dive(i, dive) {
dive_trip_t *trip;
if (dive->divetrip) {
lastdive = dive;
continue;
}
if (!DIVE_NEEDS_TRIP(dive)) {
lastdive = NULL;
continue;
}
/* Do we have a trip we can combine this into? */
if (lastdive && dive->when < lastdive->when + TRIP_THRESHOLD) {
dive_trip_t *trip = lastdive->divetrip;
add_dive_to_trip(dive, trip);
if (get_dive_location(dive) && !trip->location)
trip->location = copy_string(get_dive_location(dive));
lastdive = dive;
continue;
}
lastdive = dive;
trip = create_and_hookup_trip_from_dive(dive);
trip->autogen = 1;
}
#ifdef DEBUG_TRIP
dump_trip_list();
#endif
}
/* this implements the mechanics of removing the dive from the table,
* but doesn't deal with updating dive trips, etc */
void delete_single_dive(int idx)
{
int i;
struct dive *dive = get_dive(idx);
if (!dive)
return; /* this should never happen */
remove_dive_from_trip(dive, false);
if (dive->selected)
deselect_dive(idx);
for (i = idx; i < dive_table.nr - 1; i++)
dive_table.dives[i] = dive_table.dives[i + 1];
dive_table.dives[--dive_table.nr] = NULL;
/* free all allocations */
free(dive->dc.sample);
free((void *)dive->notes);
free((void *)dive->divemaster);
free((void *)dive->buddy);
free((void *)dive->suit);
taglist_free(dive->tag_list);
free(dive);
}
struct dive **grow_dive_table(struct dive_table *table)
{
int nr = table->nr, allocated = table->allocated;
struct dive **dives = table->dives;
if (nr >= allocated) {
allocated = (nr + 32) * 3 / 2;
dives = realloc(dives, allocated * sizeof(struct dive *));
if (!dives)
exit(1);
table->dives = dives;
table->allocated = allocated;
}
return dives;
}
void add_single_dive(int idx, struct dive *dive)
{
int i;
grow_dive_table(&dive_table);
dive_table.nr++;
if (dive->selected)
amount_selected++;
if (idx < 0) {
// convert an idx of -1 so we do insert-in-chronological-order
idx = dive_table.nr - 1;
for (int i = 0; i < dive_table.nr - 1; i++) {
if (dive->when <= dive_table.dives[i]->when) {
idx = i;
break;
}
}
}
for (i = idx; i < dive_table.nr; i++) {
struct dive *tmp = dive_table.dives[i];
dive_table.dives[i] = dive;
dive = tmp;
}
}
bool consecutive_selected()
{
struct dive *d;
int i;
bool consecutive = true;
bool firstfound = false;
bool lastfound = false;
if (amount_selected == 0 || amount_selected == 1)
return true;
for_each_dive(i, d) {
if (d->selected) {
if (!firstfound)
firstfound = true;
else if (lastfound)
consecutive = false;
} else if (firstfound) {
lastfound = true;
}
}
return consecutive;
}
Be smarter about dive renumbering when merging dives We really have two different cases for merging dives: (a) downloading a new dive from a dive computer, and merging it with an existing dive that we had already created using a different dive computer. This is the "try_to_merge()" case, called from "process_dives() (b) merging two different dives into one longer dive. This is the "merge_two_dives()" case when you explicitly merge dives using the divelist. While a lot of the issues are the same, many details differ, and one of the details is how dive numbering should be handled. In particular, when you download from a dive computer and merge with an existing dive, you want too take the *maximum* dive number, because the dive computer notion of which dive it is may well not match what the user dive number is. On the other hand, when you explicitly merge in the dive list, you end up renumbering not just the dive you are merging, but also all subsequent dives, since you now have one fewer dives overall. So that case already has to be handled by the caller. Now, the simpler "download from dive computer" case was broken by commit ce3a78efcac2 ("Assign lower number to a merged dive instead of higher one"). It fixed the numbering for the divelist case, but broke the download case. So this commit reverts commit ce3a78efcac2, and instead extends and clarifies the dive renumbering that "merge_two_dives()" already did. It now explicitly renumbers not just the following dives, but also renumbers the merged dive itself, so now we can go back to the old "take the bigger dive number" for the core merging, which fixes the download case. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2016-03-30 19:42:27 +00:00
/*
* Merge two dives. 'a' is always before 'b' in the dive list
* (and thus in time).
*/
struct dive *merge_two_dives(struct dive *a, struct dive *b)
{
struct dive *res;
Be smarter about dive renumbering when merging dives We really have two different cases for merging dives: (a) downloading a new dive from a dive computer, and merging it with an existing dive that we had already created using a different dive computer. This is the "try_to_merge()" case, called from "process_dives() (b) merging two different dives into one longer dive. This is the "merge_two_dives()" case when you explicitly merge dives using the divelist. While a lot of the issues are the same, many details differ, and one of the details is how dive numbering should be handled. In particular, when you download from a dive computer and merge with an existing dive, you want too take the *maximum* dive number, because the dive computer notion of which dive it is may well not match what the user dive number is. On the other hand, when you explicitly merge in the dive list, you end up renumbering not just the dive you are merging, but also all subsequent dives, since you now have one fewer dives overall. So that case already has to be handled by the caller. Now, the simpler "download from dive computer" case was broken by commit ce3a78efcac2 ("Assign lower number to a merged dive instead of higher one"). It fixed the numbering for the divelist case, but broke the download case. So this commit reverts commit ce3a78efcac2, and instead extends and clarifies the dive renumbering that "merge_two_dives()" already did. It now explicitly renumbers not just the following dives, but also renumbers the merged dive itself, so now we can go back to the old "take the bigger dive number" for the core merging, which fixes the download case. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2016-03-30 19:42:27 +00:00
int i, j, nr, nrdiff;
int id;
if (!a || !b)
return NULL;
id = a->id;
i = get_divenr(a);
j = get_divenr(b);
if (i < 0 || j < 0)
// something is wrong with those dives. Bail
return NULL;
res = merge_dives(a, b, b->when - a->when, false);
if (!res)
return NULL;
Be smarter about dive renumbering when merging dives We really have two different cases for merging dives: (a) downloading a new dive from a dive computer, and merging it with an existing dive that we had already created using a different dive computer. This is the "try_to_merge()" case, called from "process_dives() (b) merging two different dives into one longer dive. This is the "merge_two_dives()" case when you explicitly merge dives using the divelist. While a lot of the issues are the same, many details differ, and one of the details is how dive numbering should be handled. In particular, when you download from a dive computer and merge with an existing dive, you want too take the *maximum* dive number, because the dive computer notion of which dive it is may well not match what the user dive number is. On the other hand, when you explicitly merge in the dive list, you end up renumbering not just the dive you are merging, but also all subsequent dives, since you now have one fewer dives overall. So that case already has to be handled by the caller. Now, the simpler "download from dive computer" case was broken by commit ce3a78efcac2 ("Assign lower number to a merged dive instead of higher one"). It fixed the numbering for the divelist case, but broke the download case. So this commit reverts commit ce3a78efcac2, and instead extends and clarifies the dive renumbering that "merge_two_dives()" already did. It now explicitly renumbers not just the following dives, but also renumbers the merged dive itself, so now we can go back to the old "take the bigger dive number" for the core merging, which fixes the download case. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2016-03-30 19:42:27 +00:00
/*
* If 'a' and 'b' were numbered, and in proper order,
* then the resulting dive will get the first number,
* and the subsequent dives will be renumbered by the
* difference.
*
* So if you had a dive list 1 3 6 7 8, and you
* merge 1 and 3, the resulting numbered list will
* be 1 4 5 6, because we assume that there were
* some missing dives (originally dives 4 and 5),
* that now will still be missing (dives 2 and 3
* in the renumbered world).
*
* Obviously the normal case is that everything is
* consecutive, and the difference will be 1, so the
* above example is not supposed to be normal.
*/
nrdiff = 0;
nr = a->number;
if (a->number && b->number > a->number) {
res->number = nr;
nrdiff = b->number - nr;
}
add_single_dive(i, res);
delete_single_dive(i + 1);
delete_single_dive(j);
// now make sure that we keep the id of the first dive.
// why?
// because this way one of the previously selected ids is still around
res->id = id;
Renumber dive list after manual dive merging As Linus pointed out in mail list, user is forced to manually renumber his dives after doing a merge, unless the merged dives were those at the list tail. This patch try to manage the more usual cases, letting the user to deal with those more complex, based on some assumptions: 1.- We are working on an time ordered list of type: dive_table.nr ... 100 -- 101 -- 102 -- 103 -- 104 ... dive_table.dives.number ... 234 -- 235 -- 236 -- 245 -- 246 ... 2.- It's unlikely to merge no consecutive dives, as merging is time based. 3.- It's unlikely (although possible) to find consecutive dives with no consecutive numbers. 4.- It would be rather bizarre to find that newer dive,of those to merge, has lower number than older. 5.- It can be found that one (or both) dives to merge are zero numbered. 6.- There is only need to renumber from merged dives in advance. A variable, "factor", is fixed before reworking the dive table. This number will be substracted from the original dive number. If we are in point 5.- case, "factor" will be set to zero, meaning that dive numbers will not change (if older dive is zero, merged one will be numbered zero too and will let the user to manage this; if newer dive is zero there won't be need of renumbering as following dives will be correctly numbered, e.g. after splitting a dive which is not at the tail of the table). In most cases, "factor" *should* be set to 1. While renumbering it can be found a dive with it's number set to zero, this won't be changed and will remain zeroed to avoid negative numbers. It, mostly, means that the user has pending work on his dives. I don't know why I've written such a big explanation for such a tiny patch :-) Signed-off-by: Salvador Cuñat <salvador.cunat@gmail.com> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2016-01-09 15:21:08 +00:00
// renumber dives from merged one in advance by difference between
// merged dives numbers. Do not renumber if actual number is zero.
Be smarter about dive renumbering when merging dives We really have two different cases for merging dives: (a) downloading a new dive from a dive computer, and merging it with an existing dive that we had already created using a different dive computer. This is the "try_to_merge()" case, called from "process_dives() (b) merging two different dives into one longer dive. This is the "merge_two_dives()" case when you explicitly merge dives using the divelist. While a lot of the issues are the same, many details differ, and one of the details is how dive numbering should be handled. In particular, when you download from a dive computer and merge with an existing dive, you want too take the *maximum* dive number, because the dive computer notion of which dive it is may well not match what the user dive number is. On the other hand, when you explicitly merge in the dive list, you end up renumbering not just the dive you are merging, but also all subsequent dives, since you now have one fewer dives overall. So that case already has to be handled by the caller. Now, the simpler "download from dive computer" case was broken by commit ce3a78efcac2 ("Assign lower number to a merged dive instead of higher one"). It fixed the numbering for the divelist case, but broke the download case. So this commit reverts commit ce3a78efcac2, and instead extends and clarifies the dive renumbering that "merge_two_dives()" already did. It now explicitly renumbers not just the following dives, but also renumbers the merged dive itself, so now we can go back to the old "take the bigger dive number" for the core merging, which fixes the download case. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2016-03-30 19:42:27 +00:00
for (; j < dive_table.nr; j++) {
struct dive *dive = dive_table.dives[j];
int newnr;
if (!dive->number)
continue;
newnr = dive->number - nrdiff;
/*
* Don't renumber stuff that isn't in order!
*
* So if the new dive number isn't larger than the
* previous dive number, just stop here.
*/
if (newnr <= nr)
break;
dive->number = newnr;
nr = newnr;
}
Renumber dive list after manual dive merging As Linus pointed out in mail list, user is forced to manually renumber his dives after doing a merge, unless the merged dives were those at the list tail. This patch try to manage the more usual cases, letting the user to deal with those more complex, based on some assumptions: 1.- We are working on an time ordered list of type: dive_table.nr ... 100 -- 101 -- 102 -- 103 -- 104 ... dive_table.dives.number ... 234 -- 235 -- 236 -- 245 -- 246 ... 2.- It's unlikely to merge no consecutive dives, as merging is time based. 3.- It's unlikely (although possible) to find consecutive dives with no consecutive numbers. 4.- It would be rather bizarre to find that newer dive,of those to merge, has lower number than older. 5.- It can be found that one (or both) dives to merge are zero numbered. 6.- There is only need to renumber from merged dives in advance. A variable, "factor", is fixed before reworking the dive table. This number will be substracted from the original dive number. If we are in point 5.- case, "factor" will be set to zero, meaning that dive numbers will not change (if older dive is zero, merged one will be numbered zero too and will let the user to manage this; if newer dive is zero there won't be need of renumbering as following dives will be correctly numbered, e.g. after splitting a dive which is not at the tail of the table). In most cases, "factor" *should* be set to 1. While renumbering it can be found a dive with it's number set to zero, this won't be changed and will remain zeroed to avoid negative numbers. It, mostly, means that the user has pending work on his dives. I don't know why I've written such a big explanation for such a tiny patch :-) Signed-off-by: Salvador Cuñat <salvador.cunat@gmail.com> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2016-01-09 15:21:08 +00:00
mark_divelist_changed(true);
return res;
}
void select_dive(int idx)
{
struct dive *dive = get_dive(idx);
if (dive) {
/* never select an invalid dive that isn't displayed */
Merge branch 'Qt' After the 3.1 release it is time to shift the focus on the Qt effort - and the best way to do this is to merge the changes in the Qt branch into master. Linus was extremely nice and did a merge for me. I decided to do my own merge instead (which by accident actually based on a different version of the Qt branch) and then used his merge to double check what I was doing. I resolved a few things differently but overall what we did was very much the same (and I say this with pride since Linus is a professional git merger) Here's his merge commit message: This is a rough and tumble merge of the Qt branch into 'master', trying to sort out the conflicts as best as I could. There were two major kinds of conflicts: - the Makefile changes, in particular the split of the single Makefile into Rules.mk and Configure.mk, along with the obvious Qt build changes themselves. Those changes conflicted with some of the updates done in mainline wrt "release" targets and some helper macros ($(NAME) etc). Resolved by largely taking the Qt branch versions, and then editing in the most obvious parts of the Makefile updates from mainline. NOTE! The script/get_version shell script was made to just fail silently on not finding a git repository, which avoided having to take some particularly ugly Makefile changes. - Various random updates in mainline to support things like dive tags. The conflicts were mainly to the gtk GUI parts, which obviously looked different afterwards. I fixed things up to look like the newer code, but since the gtk files themselves are actually dead in the Qt branch, this is largely irrelevant. NOTE! This does *NOT* introduce the equivalent Qt functionality. The fields are there in the code now, but there's no Qt UI for the whole dive tag stuff etc. This seems to compile for me (although I have to force "QMAKE=qmake-qt4" on f19), and results in a Linux binary that seems to work, but it is otherwise largely untested. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-05-18 05:01:41 +00:00
if (!dive->selected) {
dive->selected = 1;
amount_selected++;
}
selected_dive = idx;
}
}
void deselect_dive(int idx)
Don't deselect all dives on all selection "change" events gtk sends the selection change events all the time, for pretty much any "divelist changed - so selection changed". The expansion of a trip, the switch to a new model, yadda yadda. But we actually want selections to be sticky across these events, so we can't just forget all of our old selection state and repopulate it. So we re-introduce the "am I allowed to change this row" callback, which we used to use to create a list of every actual selection that was changed. But instead of remembering the list (and having the stale entries issue with that remembered list that caused problems), we now just use that as a "that *particular* selection cleared" event. So this callback works as the "which part of the visible, currently selected state got cleared" notifier, and handles unselection. Then, when the selection is over, we use the new model of "let's just traverse the list of things gtk thinks are selected" and use that to handle new selections in the visible state that gtk actually tracks well. So that logic handles the new selections. This way, dives that aren't visible to gtk don't ever get modified: gtk won't ask about them being selected or not, and gtk won't track them in its selection logic, so with this model their state never changes for us. gtk selections are annoying. They are simple for the case gtk knows about (ie they are *visually* selected in the GUI), but since we very much want to track selection across events that change the visual state, we need to have this insane "impedance match". Reported-by: Dirk Hohdnel <dirk@hohndel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
{
struct dive *dive = get_dive(idx);
if (dive && dive->selected) {
dive->selected = 0;
if (amount_selected)
amount_selected--;
if (selected_dive == idx && amount_selected > 0) {
/* pick a different dive as selected */
while (--selected_dive >= 0) {
dive = get_dive(selected_dive);
if (dive && dive->selected)
return;
}
selected_dive = idx;
while (++selected_dive < dive_table.nr) {
dive = get_dive(selected_dive);
if (dive && dive->selected)
return;
}
}
if (amount_selected == 0)
selected_dive = -1;
Don't deselect all dives on all selection "change" events gtk sends the selection change events all the time, for pretty much any "divelist changed - so selection changed". The expansion of a trip, the switch to a new model, yadda yadda. But we actually want selections to be sticky across these events, so we can't just forget all of our old selection state and repopulate it. So we re-introduce the "am I allowed to change this row" callback, which we used to use to create a list of every actual selection that was changed. But instead of remembering the list (and having the stale entries issue with that remembered list that caused problems), we now just use that as a "that *particular* selection cleared" event. So this callback works as the "which part of the visible, currently selected state got cleared" notifier, and handles unselection. Then, when the selection is over, we use the new model of "let's just traverse the list of things gtk thinks are selected" and use that to handle new selections in the visible state that gtk actually tracks well. So that logic handles the new selections. This way, dives that aren't visible to gtk don't ever get modified: gtk won't ask about them being selected or not, and gtk won't track them in its selection logic, so with this model their state never changes for us. gtk selections are annoying. They are simple for the case gtk knows about (ie they are *visually* selected in the GUI), but since we very much want to track selection across events that change the visual state, we need to have this insane "impedance match". Reported-by: Dirk Hohdnel <dirk@hohndel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
}
}
void deselect_dives_in_trip(struct dive_trip *trip)
{
struct dive *dive;
if (!trip)
return;
for (dive = trip->dives; dive; dive = dive->next)
deselect_dive(get_divenr(dive));
}
void select_dives_in_trip(struct dive_trip *trip)
{
struct dive *dive;
if (!trip)
return;
for (dive = trip->dives; dive; dive = dive->next)
if (!dive->hidden_by_filter)
select_dive(get_divenr(dive));
}
void filter_dive(struct dive *d, bool shown)
{
if (!d)
return;
d->hidden_by_filter = !shown;
if (!shown && d->selected)
deselect_dive(get_divenr(d));
}
/* This only gets called with non-NULL trips.
* It does not combine notes or location, just picks the first one
* (or the second one if the first one is empty */
void combine_trips(struct dive_trip *trip_a, struct dive_trip *trip_b)
{
if (empty_string(trip_a->location) && trip_b->location) {
free(trip_a->location);
trip_a->location = strdup(trip_b->location);
}
if (empty_string(trip_a->notes) && trip_b->notes) {
free(trip_a->notes);
trip_a->notes = strdup(trip_b->notes);
}
/* this also removes the dives from trip_b and eventually
* calls delete_trip(trip_b) when the last dive has been moved */
while (trip_b->dives)
add_dive_to_trip(trip_b->dives, trip_a);
}
void mark_divelist_changed(bool changed)
{
if (dive_list_changed == changed)
return;
dive_list_changed = changed;
updateWindowTitle();
}
int unsaved_changes()
{
return dive_list_changed;
}
void remove_autogen_trips()
{
int i;
struct dive *dive;
for_each_dive(i, dive) {
dive_trip_t *trip = dive->divetrip;
if (trip && trip->autogen)
remove_dive_from_trip(dive, true);
}
}
/*
* When adding dives to the dive table, we try to renumber
* the new dives based on any old dives in the dive table.
*
* But we only do it if:
*
* - there are no dives in the dive table
*
* OR
*
* - the last dive in the old dive table was numbered
*
* - all the new dives are strictly at the end (so the
* "last dive" is at the same location in the dive table
* after re-sorting the dives.
*
* - none of the new dives have any numbers
*
* This catches the common case of importing new dives from
* a dive computer, and gives them proper numbers based on
* your old dive list. But it tries to be very conservative
* and not give numbers if there is *any* question about
* what the numbers should be - in which case you need to do
* a manual re-numbering.
*/
static void try_to_renumber(struct dive *last, int preexisting)
{
int i, nr;
/*
* If the new dives aren't all strictly at the end,
* we're going to expect the user to do a manual
* renumbering.
*/
if (preexisting && get_dive(preexisting - 1) != last)
return;
/*
* If any of the new dives already had a number,
* we'll have to do a manual renumbering.
*/
for (i = preexisting; i < dive_table.nr; i++) {
struct dive *dive = get_dive(i);
if (dive->number)
return;
}
/*
* Ok, renumber..
*/
if (last)
nr = last->number;
else
nr = 0;
for (i = preexisting; i < dive_table.nr; i++) {
struct dive *dive = get_dive(i);
dive->number = ++nr;
}
}
void process_dives(bool is_imported, bool prefer_imported)
{
int i;
int preexisting = dive_table.preexisting;
bool did_merge = false;
struct dive *last;
/* check if we need a nickname for the divecomputer for newly downloaded dives;
* since we know they all came from the same divecomputer we just check for the
* first one */
if (preexisting < dive_table.nr && dive_table.dives[preexisting]->downloaded)
set_dc_nickname(dive_table.dives[preexisting]);
else
/* they aren't downloaded, so record / check all new ones */
for (i = preexisting; i < dive_table.nr; i++)
set_dc_nickname(dive_table.dives[i]);
for (i = preexisting; i < dive_table.nr; i++)
dive_table.dives[i]->downloaded = true;
/* This does the right thing for -1: NULL */
last = get_dive(preexisting - 1);
sort_table(&dive_table);
for (i = 1; i < dive_table.nr; i++) {
struct dive **pp = &dive_table.dives[i - 1];
struct dive *prev = pp[0];
struct dive *dive = pp[1];
struct dive *merged;
int id;
/* only try to merge overlapping dives - or if one of the dives has
* zero duration (that might be a gps marker from the webservice) */
if (prev->duration.seconds && dive->duration.seconds &&
dive_endtime(prev) < dive->when)
continue;
merged = try_to_merge(prev, dive, prefer_imported);
if (!merged)
continue;
// remember the earlier dive's id
id = prev->id;
/* careful - we might free the dive that last points to. Oops... */
if (last == prev || last == dive)
last = merged;
/* Redo the new 'i'th dive */
i--;
add_single_dive(i, merged);
delete_single_dive(i + 1);
delete_single_dive(i + 1);
// keep the id or the first dive for the merged dive
merged->id = id;
/* this means the table was changed */
did_merge = true;
}
/* make sure no dives are still marked as downloaded */
for (i = 1; i < dive_table.nr; i++)
dive_table.dives[i]->downloaded = false;
if (is_imported) {
/* If there are dives in the table, are they numbered */
if (!last || last->number)
try_to_renumber(last, preexisting);
/* did we add dives or divecomputers to the dive table? */
if (did_merge || preexisting < dive_table.nr) {
mark_divelist_changed(true);
}
}
}
void set_dive_nr_for_current_dive()
{
if (dive_table.nr == 1)
current_dive->number = 1;
else if (selected_dive == dive_table.nr - 1 && get_dive(dive_table.nr - 2)->number)
current_dive->number = get_dive(dive_table.nr - 2)->number + 1;
}
static int min_datafile_version;
int get_min_datafile_version()
{
return min_datafile_version;
}
void reset_min_datafile_version()
{
min_datafile_version = 0;
}
void report_datafile_version(int version)
{
if (min_datafile_version == 0 || min_datafile_version > version)
min_datafile_version = version;
}
int get_dive_id_closest_to(timestamp_t when)
{
int i;
int nr = dive_table.nr;
// deal with pathological cases
if (nr == 0)
return 0;
else if (nr == 1)
return dive_table.dives[0]->id;
for (i = 0; i < nr && dive_table.dives[i]->when <= when; i++)
; // nothing
// again, capture the two edge cases first
if (i == nr)
return dive_table.dives[i - 1]->id;
else if (i == 0)
return dive_table.dives[0]->id;
if (when - dive_table.dives[i - 1]->when < dive_table.dives[i]->when - when)
return dive_table.dives[i - 1]->id;
else
return dive_table.dives[i]->id;
}
void clear_dive_file_data()
{
while (dive_table.nr)
delete_single_dive(0);
while (dive_site_table.nr)
delete_dive_site(get_dive_site(0)->uuid);
clear_dive(&displayed_dive);
clear_dive_site(&displayed_dive_site);
reset_min_datafile_version();
saved_git_id = "";
}