subsurface/qt-models/diveplotdatamodel.cpp

226 lines
5.5 KiB
C++
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "qt-models/diveplotdatamodel.h"
#include "qt-models/diveplannermodel.h"
#include "core/profile.h"
#include "core/divelist.h"
#include "core/color.h"
DivePlotDataModel::DivePlotDataModel(QObject *parent) :
QAbstractTableModel(parent),
diveId(0),
dcNr(0)
{
init_plot_info(&pInfo);
memset(&plot_deco_state, 0, sizeof(struct deco_state));
}
int DivePlotDataModel::columnCount(const QModelIndex&) const
{
return COLUMNS;
}
QVariant DivePlotDataModel::data(const QModelIndex &index, int role) const
{
if ((!index.isValid()) || (index.row() >= pInfo.nr) || pInfo.entry == 0)
return QVariant();
plot_data item = pInfo.entry[index.row()];
if (role == Qt::DisplayRole) {
switch (index.column()) {
case DEPTH:
return item.depth;
case TIME:
return item.sec;
case PRESSURE:
return item.pressure[0][0];
case TEMPERATURE:
return item.temperature;
case COLOR:
return item.velocity;
case USERENTERED:
return false;
case SENSOR_PRESSURE:
return item.pressure[0][0];
case INTERPOLATED_PRESSURE:
return item.pressure[0][1];
case CEILING:
return item.ceiling;
case SAC:
return item.sac;
case PN2:
return item.pressures.n2;
case PHE:
return item.pressures.he;
case PO2:
return item.pressures.o2;
case O2SETPOINT:
return item.o2setpoint.mbar / 1000.0;
case CCRSENSOR1:
return item.o2sensor[0].mbar / 1000.0;
case CCRSENSOR2:
return item.o2sensor[1].mbar / 1000.0;
case CCRSENSOR3:
return item.o2sensor[2].mbar / 1000.0;
case SCR_OC_PO2:
return item.scr_OC_pO2.mbar / 1000.0;
case HEARTBEAT:
return item.heartbeat;
case AMBPRESSURE:
return AMB_PERCENTAGE;
case GFLINE:
return item.gfline;
case INSTANT_MEANDEPTH:
return item.running_sum;
}
}
if (role == Qt::DisplayRole && index.column() >= TISSUE_1 && index.column() <= TISSUE_16) {
return item.ceilings[index.column() - TISSUE_1];
}
if (role == Qt::DisplayRole && index.column() >= PERCENTAGE_1 && index.column() <= PERCENTAGE_16) {
return item.percentages[index.column() - PERCENTAGE_1];
}
if (role == Qt::BackgroundRole) {
switch (index.column()) {
case COLOR:
return getColor((color_index_t)(VELOCITY_COLORS_START_IDX + item.velocity));
}
}
return QVariant();
}
const plot_info &DivePlotDataModel::data() const
{
return pInfo;
}
int DivePlotDataModel::rowCount(const QModelIndex&) const
{
return pInfo.nr;
}
QVariant DivePlotDataModel::headerData(int section, Qt::Orientation orientation, int role) const
{
if (orientation != Qt::Horizontal)
return QVariant();
if (role != Qt::DisplayRole)
return QVariant();
switch (section) {
case DEPTH:
return tr("Depth");
case TIME:
return tr("Time");
case PRESSURE:
return tr("Pressure");
case TEMPERATURE:
return tr("Temperature");
case COLOR:
return tr("Color");
case USERENTERED:
return tr("User entered");
case SENSOR_PRESSURE:
return tr("Pressure S");
case INTERPOLATED_PRESSURE:
return tr("Pressure I");
case CEILING:
return tr("Ceiling");
case SAC:
return tr("SAC");
case PN2:
return tr("pN₂");
case PHE:
return tr("pHe");
case PO2:
return tr("pO₂");
case O2SETPOINT:
return tr("Setpoint");
case CCRSENSOR1:
return tr("Sensor 1");
case CCRSENSOR2:
return tr("Sensor 2");
case CCRSENSOR3:
return tr("Sensor 3");
case AMBPRESSURE:
return tr("Ambient pressure");
case HEARTBEAT:
return tr("Heart rate");
case GFLINE:
return tr("Gradient factor");
case INSTANT_MEANDEPTH:
return tr("Mean depth @ s");
}
if (role == Qt::DisplayRole && section >= TISSUE_1 && section <= TISSUE_16) {
return QString("Ceiling: %1").arg(section - TISSUE_1);
}
if (role == Qt::DisplayRole && section >= PERCENTAGE_1 && section <= PERCENTAGE_16) {
return QString("Tissue: %1").arg(section - PERCENTAGE_1);
}
return QVariant();
}
void DivePlotDataModel::clear()
{
if (rowCount() != 0) {
beginRemoveRows(QModelIndex(), 0, rowCount() - 1);
pInfo.nr = 0;
free(pInfo.entry);
pInfo.entry = 0;
diveId = -1;
dcNr = -1;
endRemoveRows();
}
}
void DivePlotDataModel::setDive(dive *d, const plot_info &info)
{
clear();
Q_ASSERT(d != NULL);
diveId = d->id;
dcNr = dc_number;
free(pInfo.entry);
pInfo = info;
pInfo.entry = (struct plot_data *)malloc(sizeof(struct plot_data) * pInfo.nr);
memcpy(pInfo.entry, info.entry, sizeof(plot_data) * pInfo.nr);
beginInsertRows(QModelIndex(), 0, pInfo.nr - 1);
endInsertRows();
}
unsigned int DivePlotDataModel::dcShown() const
{
return dcNr;
}
#define MAX_PPGAS_FUNC(GAS, GASFUNC) \
double DivePlotDataModel::GASFUNC() \
{ \
double ret = -1; \
for (int i = 0, count = rowCount(); i < count; i++) { \
if (pInfo.entry[i].pressures.GAS > ret) \
ret = pInfo.entry[i].pressures.GAS; \
} \
return ret; \
}
MAX_PPGAS_FUNC(he, pheMax);
MAX_PPGAS_FUNC(n2, pn2Max);
MAX_PPGAS_FUNC(o2, po2Max);
void DivePlotDataModel::emitDataChanged()
{
emit dataChanged(QModelIndex(), QModelIndex());
}
#ifndef SUBSURFACE_MOBILE
void DivePlotDataModel::calculateDecompression()
{
struct divecomputer *dc = select_dc(&displayed_dive);
init_decompression(&plot_deco_state, &displayed_dive);
calculate_deco_information(&plot_deco_state, &(DivePlannerPointsModel::instance()->final_deco_state), &displayed_dive, dc, &pInfo, false);
dataChanged(index(0, CEILING), index(pInfo.nr - 1, TISSUE_16));
}
#endif