statistics: convert scatter series to use QSG

The original plan to reuse the ChartPixmapItem for the
scatteritems was dumped, because it is unclear if the
textures are shared if generated for each item.

Instead, a new ChartScatterItem was created, where all
items share the same textures (one for highlighted,
one for non-highlighted). This means that the rendering
of the scatter items is now done in the chartitem.cpp
file, which feels like a layering violation. Not good,
but the easiest for now.

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
This commit is contained in:
Berthold Stoeger 2021-01-17 22:03:27 +01:00 committed by bstoeger
parent 409f159e1d
commit b07a7fe5f1
4 changed files with 123 additions and 69 deletions

View file

@ -1,5 +1,6 @@
// SPDX-License-Identifier: GPL-2.0
#include "scatterseries.h"
#include "chartitem.h"
#include "informationbox.h"
#include "statscolors.h"
#include "statshelper.h"
@ -11,12 +12,6 @@
#include "core/divelist.h"
#include "core/qthelper.h"
#include <QGraphicsPixmapItem>
#include <QPainter>
static const int scatterItemDiameter = 10;
static const int scatterItemBorder = 1;
ScatterSeries::ScatterSeries(QGraphicsScene *scene, StatsView &view, StatsAxis *xAxis, StatsAxis *yAxis,
const StatsVariable &varX, const StatsVariable &varY) :
StatsSeries(scene, view, xAxis, yAxis),
@ -28,62 +23,28 @@ ScatterSeries::~ScatterSeries()
{
}
static QPixmap createScatterPixmap(const QColor &color, const QColor &borderColor)
{
QPixmap res(scatterItemDiameter, scatterItemDiameter);
res.fill(Qt::transparent);
QPainter painter(&res);
painter.setPen(Qt::NoPen);
painter.setRenderHint(QPainter::Antialiasing);
painter.setBrush(borderColor);
painter.drawEllipse(0, 0, scatterItemDiameter, scatterItemDiameter);
painter.setBrush(color);
painter.drawEllipse(scatterItemBorder, scatterItemBorder,
scatterItemDiameter - 2 * scatterItemBorder,
scatterItemDiameter - 2 * scatterItemBorder);
return res;
}
// Annoying: we can create a QPixmap only after the application was initialized.
// Therefore, do this as a on-demand initialized pointer. A function local static
// variable does unnecesssary (in this case) thread synchronization.
static std::unique_ptr<QPixmap> scatterPixmapPtr;
static std::unique_ptr<QPixmap> scatterPixmapHighlightedPtr;
static const QPixmap &scatterPixmap(bool highlight)
{
if (!scatterPixmapPtr) {
scatterPixmapPtr.reset(new QPixmap(createScatterPixmap(fillColor, ::borderColor)));
scatterPixmapHighlightedPtr.reset(new QPixmap(createScatterPixmap(highlightedColor, highlightedBorderColor)));
}
return highlight ? *scatterPixmapHighlightedPtr : *scatterPixmapPtr;
}
ScatterSeries::Item::Item(QGraphicsScene *scene, ScatterSeries *series, dive *d, double pos, double value) :
item(createItemPtr<QGraphicsPixmapItem>(scene, scatterPixmap(false))),
ScatterSeries::Item::Item(StatsView &view, ScatterSeries *series, dive *d, double pos, double value) :
item(view.createChartItem<ChartScatterItem>(ChartZValue::Series)),
d(d),
pos(pos),
value(value)
{
item->setZValue(ZValues::series);
updatePosition(series);
}
void ScatterSeries::Item::updatePosition(ScatterSeries *series)
{
QPointF center = series->toScreen(QPointF(pos, value));
item->setPos(center.x() - scatterItemDiameter / 2.0,
center.y() - scatterItemDiameter / 2.0);
item->setPos(series->toScreen(QPointF(pos, value)));
}
void ScatterSeries::Item::highlight(bool highlight)
{
item->setPixmap(scatterPixmap(highlight));
item->setHighlight(highlight);
}
void ScatterSeries::append(dive *d, double pos, double value)
{
items.emplace_back(scene, this, d, pos, value);
items.emplace_back(view, this, d, pos, value);
}
void ScatterSeries::updatePositions()
@ -92,35 +53,20 @@ void ScatterSeries::updatePositions()
item.updatePosition(this);
}
static double sq(double f)
{
return f * f;
}
static double squareDist(const QPointF &p1, const QPointF &p2)
{
QPointF diff = p1 - p2;
return QPointF::dotProduct(diff, diff);
}
std::vector<int> ScatterSeries::getItemsUnderMouse(const QPointF &point) const
{
std::vector<int> res;
double x = point.x();
auto low = std::lower_bound(items.begin(), items.end(), x - scatterItemDiameter,
[] (const Item &item, double x) { return item.item->pos().x() < x; });
auto high = std::upper_bound(low, items.end(), x + scatterItemDiameter,
[] (double x, const Item &item) { return x < item.item->pos().x(); });
auto low = std::lower_bound(items.begin(), items.end(), x,
[] (const Item &item, double x) { return item.item->getRect().right() < x; });
auto high = std::upper_bound(low, items.end(), x,
[] (double x, const Item &item) { return x < item.item->getRect().left(); });
// Hopefully that narrows it down enough. For discrete scatter plots, we could also partition
// by equal x and do a binary search in these partitions. But that's probably not worth it.
res.reserve(high - low);
double minSquare = sq(scatterItemDiameter / 2.0 + scatterItemBorder);
for (auto it = low; it < high; ++it) {
QPointF pos = it->item->pos();
pos.rx() += scatterItemDiameter / 2.0 + scatterItemBorder;
pos.ry() += scatterItemDiameter / 2.0 + scatterItemBorder;
if (squareDist(pos, point) <= minSquare)
if (it->item->contains(point))
res.push_back(it - items.begin());
}
return res;