mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-29 21:50:26 +00:00
3e88bd686f
The last direct user of the used parameter was removed in16276faa45
, the last actual user ine2bbd0ceec
. Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
1695 lines
55 KiB
C
1695 lines
55 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
||
/* profile.c */
|
||
/* creates all the necessary data for drawing the dive profile
|
||
*/
|
||
#include "ssrf.h"
|
||
#include "gettext.h"
|
||
#include <limits.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
|
||
#include "dive.h"
|
||
#include "subsurface-string.h"
|
||
#include "display.h"
|
||
#include "divelist.h"
|
||
|
||
#include "profile.h"
|
||
#include "gaspressures.h"
|
||
#include "deco.h"
|
||
#include "libdivecomputer/parser.h"
|
||
#include "libdivecomputer/version.h"
|
||
#include "membuffer.h"
|
||
#include "qthelper.h"
|
||
#include "format.h"
|
||
|
||
//#define DEBUG_GAS 1
|
||
|
||
#define MAX_PROFILE_DECO 7200
|
||
|
||
extern int ascent_velocity(int depth, int avg_depth, int bottom_time);
|
||
|
||
struct dive *current_dive = NULL;
|
||
unsigned int dc_number = 0;
|
||
|
||
static struct plot_data *last_pi_entry_new = NULL;
|
||
|
||
#ifdef DEBUG_PI
|
||
/* debugging tool - not normally used */
|
||
static void dump_pi(struct plot_info *pi)
|
||
{
|
||
int i;
|
||
|
||
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
|
||
" maxpressure:%d mintemp:%d maxtemp:%d\n",
|
||
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
|
||
pi->maxpressure, pi->mintemp, pi->maxtemp);
|
||
for (i = 0; i < pi->nr; i++) {
|
||
struct plot_data *entry = &pi->entry[i];
|
||
printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
|
||
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
|
||
i, entry->sensor[0], entry->sec,
|
||
entry->pressure[0], entry->pressure[1],
|
||
entry->sec / 60, entry->sec % 60,
|
||
entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
|
||
entry->pressures.o2, entry->pressures.he, entry->pressures.n2,
|
||
entry->pressures.o2 + entry->pressures.he + entry->pressures.n2);
|
||
}
|
||
printf(" }\n");
|
||
}
|
||
#endif
|
||
|
||
#define ROUND_UP(x, y) ((((x) + (y) - 1) / (y)) * (y))
|
||
#define DIV_UP(x, y) (((x) + (y) - 1) / (y))
|
||
|
||
/*
|
||
* When showing dive profiles, we scale things to the
|
||
* current dive. However, we don't scale past less than
|
||
* 30 minutes or 90 ft, just so that small dives show
|
||
* up as such unless zoom is enabled.
|
||
* We also need to add 180 seconds at the end so the min/max
|
||
* plots correctly
|
||
*/
|
||
int get_maxtime(struct plot_info *pi)
|
||
{
|
||
int seconds = pi->maxtime;
|
||
|
||
int DURATION_THR = (pi->dive_type == FREEDIVING ? 60 : 600);
|
||
int CEILING = (pi->dive_type == FREEDIVING ? 30 : 60);
|
||
|
||
if (prefs.zoomed_plot) {
|
||
/* Rounded up to one minute, with at least 2.5 minutes to
|
||
* spare.
|
||
* For dive times shorter than 10 minutes, we use seconds/4 to
|
||
* calculate the space dynamically.
|
||
* This is seamless since 600/4 = 150.
|
||
*/
|
||
if (seconds < DURATION_THR)
|
||
return ROUND_UP(seconds + seconds / 4, CEILING);
|
||
else
|
||
return ROUND_UP(seconds + DURATION_THR/4, CEILING);
|
||
} else {
|
||
#ifndef SUBSURFACE_MOBILE
|
||
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
|
||
return MAX(30 * 60, ROUND_UP(seconds + DURATION_THR/4, CEILING * 5));
|
||
#else
|
||
/* just add 2.5 minutes so we have a consistant right margin */
|
||
return seconds + DURATION_THR / 4;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* get the maximum depth to which we want to plot
|
||
* take into account the additional vertical space needed to plot
|
||
* partial pressure graphs */
|
||
int get_maxdepth(struct plot_info *pi)
|
||
{
|
||
unsigned mm = pi->maxdepth;
|
||
int md;
|
||
|
||
if (prefs.zoomed_plot) {
|
||
/* Rounded up to 10m, with at least 3m to spare */
|
||
md = ROUND_UP(mm + 3000, 10000);
|
||
} else {
|
||
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
|
||
md = MAX((unsigned)30000, ROUND_UP(mm + 3000, 10000));
|
||
}
|
||
md += lrint(pi->maxpp * 9000);
|
||
return md;
|
||
}
|
||
|
||
/* collect all event names and whether we display them */
|
||
struct ev_select *ev_namelist;
|
||
int evn_allocated;
|
||
int evn_used;
|
||
|
||
#if WE_DONT_USE_THIS /* we need to implement event filters in Qt */
|
||
int evn_foreach (void (*callback)(const char *, bool *, void *), void *data)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < evn_used; i++) {
|
||
/* here we display an event name on screen - so translate */
|
||
callback(translate("gettextFromC", ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
|
||
}
|
||
return i;
|
||
}
|
||
#endif /* WE_DONT_USE_THIS */
|
||
|
||
void clear_events(void)
|
||
{
|
||
for (int i = 0; i < evn_used; i++)
|
||
free(ev_namelist[i].ev_name);
|
||
evn_used = 0;
|
||
}
|
||
|
||
void remember_event(const char *eventname)
|
||
{
|
||
int i = 0, len;
|
||
|
||
if (!eventname || (len = strlen(eventname)) == 0)
|
||
return;
|
||
while (i < evn_used) {
|
||
if (!strncmp(eventname, ev_namelist[i].ev_name, len))
|
||
return;
|
||
i++;
|
||
}
|
||
if (evn_used == evn_allocated) {
|
||
evn_allocated += 10;
|
||
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
|
||
if (!ev_namelist)
|
||
/* we are screwed, but let's just bail out */
|
||
return;
|
||
}
|
||
ev_namelist[evn_used].ev_name = strdup(eventname);
|
||
ev_namelist[evn_used].plot_ev = true;
|
||
evn_used++;
|
||
}
|
||
|
||
/* UNUSED! */
|
||
static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive) __attribute__((unused));
|
||
|
||
/* Get local sac-rate (in ml/min) between entry1 and entry2 */
|
||
static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive)
|
||
{
|
||
int index = 0;
|
||
cylinder_t *cyl;
|
||
int duration = entry2->sec - entry1->sec;
|
||
int depth, airuse;
|
||
pressure_t a, b;
|
||
double atm;
|
||
|
||
if (duration <= 0)
|
||
return 0;
|
||
a.mbar = GET_PRESSURE(entry1, 0);
|
||
b.mbar = GET_PRESSURE(entry2, 0);
|
||
if (!b.mbar || a.mbar <= b.mbar)
|
||
return 0;
|
||
|
||
/* Mean pressure in ATM */
|
||
depth = (entry1->depth + entry2->depth) / 2;
|
||
atm = depth_to_atm(depth, dive);
|
||
|
||
cyl = dive->cylinder + index;
|
||
|
||
airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
|
||
|
||
/* milliliters per minute */
|
||
return lrint(airuse / atm * 60 / duration);
|
||
}
|
||
|
||
#define HALF_INTERVAL 9 * 30
|
||
/*
|
||
* Run the min/max calculations: over a 9 minute interval
|
||
* around the entry point (indices 0, 1, 2 respectively).
|
||
*/
|
||
static void analyze_plot_info_minmax(struct plot_info *pi, int entry_index)
|
||
{
|
||
struct plot_data *plot_entry = pi->entry + entry_index; // fixed
|
||
struct plot_data *p = plot_entry; // moves with 'entry'
|
||
int start = p->sec - HALF_INTERVAL, end = p->sec + HALF_INTERVAL;
|
||
int min, max;
|
||
|
||
/* Go back 'seconds' in time */
|
||
while (entry_index > 0) {
|
||
if (p[-1].sec < start)
|
||
break;
|
||
entry_index--;
|
||
p--;
|
||
}
|
||
|
||
// indexes to the min/max entries
|
||
min = max = entry_index;
|
||
|
||
/* Then go forward until we hit an entry past the time */
|
||
while (entry_index < pi->nr) {
|
||
int time = p->sec;
|
||
int depth = p->depth;
|
||
|
||
if (time > end)
|
||
break;
|
||
|
||
if (depth < pi->entry[min].depth)
|
||
min = entry_index;
|
||
if (depth > pi->entry[max].depth)
|
||
max = entry_index;
|
||
|
||
p++;
|
||
entry_index++;
|
||
}
|
||
|
||
plot_entry->min = min;
|
||
plot_entry->max = max;
|
||
}
|
||
|
||
static velocity_t velocity(int speed)
|
||
{
|
||
velocity_t v;
|
||
|
||
if (speed < -304) /* ascent faster than -60ft/min */
|
||
v = CRAZY;
|
||
else if (speed < -152) /* above -30ft/min */
|
||
v = FAST;
|
||
else if (speed < -76) /* -15ft/min */
|
||
v = MODERATE;
|
||
else if (speed < -25) /* -5ft/min */
|
||
v = SLOW;
|
||
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
|
||
for descent are usually about 2x ascent rate; still, we want
|
||
stable to mean stable */
|
||
v = STABLE;
|
||
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
|
||
v = SLOW;
|
||
else if (speed < 304) /* up to 60ft/min is moderate */
|
||
v = MODERATE;
|
||
else if (speed < 507) /* up to 100ft/min is fast */
|
||
v = FAST;
|
||
else /* more than that is just crazy - you'll blow your ears out */
|
||
v = CRAZY;
|
||
|
||
return v;
|
||
}
|
||
|
||
struct plot_info *analyze_plot_info(struct plot_info *pi)
|
||
{
|
||
int i;
|
||
int nr = pi->nr;
|
||
|
||
/* Smoothing function: 5-point triangular smooth */
|
||
for (i = 2; i < nr; i++) {
|
||
struct plot_data *entry = pi->entry + i;
|
||
int depth;
|
||
|
||
if (i < nr - 2) {
|
||
depth = entry[-2].depth + 2 * entry[-1].depth + 3 * entry[0].depth + 2 * entry[1].depth + entry[2].depth;
|
||
entry->smoothed = (depth + 4) / 9;
|
||
}
|
||
/* vertical velocity in mm/sec */
|
||
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
|
||
if (entry[0].sec - entry[-1].sec) {
|
||
entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec);
|
||
entry->velocity = velocity(entry->speed);
|
||
/* if our samples are short and we aren't too FAST*/
|
||
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
|
||
int past = -2;
|
||
while (i + past > 0 && entry[0].sec - entry[past].sec < 15)
|
||
past--;
|
||
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
|
||
(entry[0].sec - entry[past].sec));
|
||
}
|
||
} else {
|
||
entry->velocity = STABLE;
|
||
entry->speed = 0;
|
||
}
|
||
}
|
||
|
||
/* get minmax data */
|
||
for (i = 0; i < nr; i++)
|
||
analyze_plot_info_minmax(pi, i);
|
||
|
||
return pi;
|
||
}
|
||
|
||
/*
|
||
* If the event has an explicit cylinder index,
|
||
* we return that. If it doesn't, we return the best
|
||
* match based on the gasmix.
|
||
*
|
||
* Some dive computers give cylinder indexes, some
|
||
* give just the gas mix.
|
||
*/
|
||
int get_cylinder_index(const struct dive *dive, const struct event *ev)
|
||
{
|
||
int best;
|
||
struct gasmix mix;
|
||
|
||
if (ev->gas.index >= 0)
|
||
return ev->gas.index;
|
||
|
||
/*
|
||
* This should no longer happen!
|
||
*
|
||
* We now match up gas change events with their cylinders at dive
|
||
* event fixup time.
|
||
*/
|
||
fprintf(stderr, "Still looking up cylinder based on gas mix in get_cylinder_index()!\n");
|
||
|
||
mix = get_gasmix_from_event(dive, ev);
|
||
best = find_best_gasmix_match(mix, dive->cylinder);
|
||
return best < 0 ? 0 : best;
|
||
}
|
||
|
||
struct event *get_next_event_mutable(struct event *event, const char *name)
|
||
{
|
||
if (!name || !*name)
|
||
return NULL;
|
||
while (event) {
|
||
if (!strcmp(event->name, name))
|
||
return event;
|
||
event = event->next;
|
||
}
|
||
return event;
|
||
}
|
||
|
||
const struct event *get_next_event(const struct event *event, const char *name)
|
||
{
|
||
return get_next_event_mutable((struct event *)event, name);
|
||
}
|
||
|
||
static int count_events(struct divecomputer *dc)
|
||
{
|
||
int result = 0;
|
||
struct event *ev = dc->events;
|
||
while (ev != NULL) {
|
||
result++;
|
||
ev = ev->next;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
static int set_setpoint(struct plot_info *pi, int i, int setpoint, int end)
|
||
{
|
||
while (i < pi->nr) {
|
||
struct plot_data *entry = pi->entry + i;
|
||
if (entry->sec > end)
|
||
break;
|
||
entry->o2pressure.mbar = setpoint;
|
||
i++;
|
||
}
|
||
return i;
|
||
}
|
||
|
||
static void check_setpoint_events(const struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
||
{
|
||
UNUSED(dive);
|
||
int i = 0;
|
||
pressure_t setpoint;
|
||
setpoint.mbar = 0;
|
||
const struct event *ev = get_next_event(dc->events, "SP change");
|
||
|
||
if (!ev)
|
||
return;
|
||
|
||
do {
|
||
i = set_setpoint(pi, i, setpoint.mbar, ev->time.seconds);
|
||
setpoint.mbar = ev->value;
|
||
if (setpoint.mbar)
|
||
dc->divemode = CCR;
|
||
ev = get_next_event(ev->next, "SP change");
|
||
} while (ev);
|
||
set_setpoint(pi, i, setpoint.mbar, INT_MAX);
|
||
}
|
||
|
||
|
||
struct plot_info calculate_max_limits_new(struct dive *dive, struct divecomputer *given_dc)
|
||
{
|
||
struct divecomputer *dc = &(dive->dc);
|
||
bool seen = false;
|
||
static struct plot_info pi;
|
||
int maxdepth = dive->maxdepth.mm;
|
||
int maxtime = 0;
|
||
int maxpressure = 0, minpressure = INT_MAX;
|
||
int maxhr = 0, minhr = INT_MAX;
|
||
int mintemp = dive->mintemp.mkelvin;
|
||
int maxtemp = dive->maxtemp.mkelvin;
|
||
int cyl;
|
||
|
||
/* Get the per-cylinder maximum pressure if they are manual */
|
||
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
||
int mbar = dive->cylinder[cyl].start.mbar;
|
||
if (mbar > maxpressure)
|
||
maxpressure = mbar;
|
||
if (mbar < minpressure)
|
||
minpressure = mbar;
|
||
}
|
||
|
||
/* Then do all the samples from all the dive computers */
|
||
do {
|
||
if (dc == given_dc)
|
||
seen = true;
|
||
int i = dc->samples;
|
||
int lastdepth = 0;
|
||
struct sample *s = dc->sample;
|
||
struct event *ev;
|
||
|
||
while (--i >= 0) {
|
||
int depth = s->depth.mm;
|
||
int pressure = s->pressure[0].mbar;
|
||
int temperature = s->temperature.mkelvin;
|
||
int heartbeat = s->heartbeat;
|
||
|
||
if (!mintemp && temperature < mintemp)
|
||
mintemp = temperature;
|
||
if (temperature > maxtemp)
|
||
maxtemp = temperature;
|
||
|
||
if (pressure && pressure < minpressure)
|
||
minpressure = pressure;
|
||
if (pressure > maxpressure)
|
||
maxpressure = pressure;
|
||
if (heartbeat > maxhr)
|
||
maxhr = heartbeat;
|
||
if (heartbeat && heartbeat < minhr)
|
||
minhr = heartbeat;
|
||
|
||
if (depth > maxdepth)
|
||
maxdepth = s->depth.mm;
|
||
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD || in_planner()) &&
|
||
s->time.seconds > maxtime)
|
||
maxtime = s->time.seconds;
|
||
lastdepth = depth;
|
||
s++;
|
||
}
|
||
|
||
/* Make sure we can fit all events */
|
||
ev = dc->events;
|
||
while (ev) {
|
||
if (ev->time.seconds > maxtime)
|
||
maxtime = ev->time.seconds;
|
||
ev = ev->next;
|
||
}
|
||
|
||
dc = dc->next;
|
||
if (dc == NULL && !seen) {
|
||
dc = given_dc;
|
||
seen = true;
|
||
}
|
||
} while (dc != NULL);
|
||
|
||
if (minpressure > maxpressure)
|
||
minpressure = 0;
|
||
if (minhr > maxhr)
|
||
minhr = maxhr;
|
||
|
||
memset(&pi, 0, sizeof(pi));
|
||
pi.maxdepth = maxdepth;
|
||
pi.maxtime = maxtime;
|
||
pi.maxpressure = maxpressure;
|
||
pi.minpressure = minpressure;
|
||
pi.minhr = minhr;
|
||
pi.maxhr = maxhr;
|
||
pi.mintemp = mintemp;
|
||
pi.maxtemp = maxtemp;
|
||
return pi;
|
||
}
|
||
|
||
/* copy the previous entry (we know this exists), update time and depth
|
||
* and zero out the sensor pressure (since this is a synthetic entry)
|
||
* increment the entry pointer and the count of synthetic entries. */
|
||
#define INSERT_ENTRY(_time, _depth, _sac) \
|
||
*entry = entry[-1]; \
|
||
entry->sec = _time; \
|
||
entry->depth = _depth; \
|
||
entry->running_sum = (entry - 1)->running_sum + (_time - (entry - 1)->sec) * (_depth + (entry - 1)->depth) / 2; \
|
||
memset(entry->pressure, 0, sizeof(entry->pressure)); \
|
||
entry->sac = _sac; \
|
||
entry->ndl = -1; \
|
||
entry->bearing = -1; \
|
||
entry++; \
|
||
idx++
|
||
|
||
struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
||
{
|
||
UNUSED(dive);
|
||
int idx, maxtime, nr, i;
|
||
int lastdepth, lasttime, lasttemp = 0;
|
||
struct plot_data *plot_data;
|
||
struct event *ev = dc->events;
|
||
maxtime = pi->maxtime;
|
||
|
||
/*
|
||
* We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
|
||
* but samples could be more dense than that (so add in dc->samples). We also
|
||
* need to have one for every event (so count events and add that) and
|
||
* additionally we want two surface events around the whole thing (thus the
|
||
* additional 4). There is also one extra space for a final entry
|
||
* that has time > maxtime (because there can be surface samples
|
||
* past "maxtime" in the original sample data)
|
||
*/
|
||
nr = dc->samples + 6 + maxtime / 10 + count_events(dc);
|
||
plot_data = calloc(nr, sizeof(struct plot_data));
|
||
pi->entry = plot_data;
|
||
if (!plot_data)
|
||
return NULL;
|
||
pi->nr = nr;
|
||
idx = 2; /* the two extra events at the start */
|
||
|
||
lastdepth = 0;
|
||
lasttime = 0;
|
||
/* skip events at time = 0 */
|
||
while (ev && ev->time.seconds == 0)
|
||
ev = ev->next;
|
||
for (i = 0; i < dc->samples; i++) {
|
||
struct plot_data *entry = plot_data + idx;
|
||
struct sample *sample = dc->sample + i;
|
||
int time = sample->time.seconds;
|
||
int offset, delta;
|
||
int depth = sample->depth.mm;
|
||
int sac = sample->sac.mliter;
|
||
|
||
/* Add intermediate plot entries if required */
|
||
delta = time - lasttime;
|
||
if (delta <= 0) {
|
||
time = lasttime;
|
||
delta = 1; // avoid divide by 0
|
||
}
|
||
for (offset = 10; offset < delta; offset += 10) {
|
||
if (lasttime + offset > maxtime)
|
||
break;
|
||
|
||
/* Add events if they are between plot entries */
|
||
while (ev && (int)ev->time.seconds < lasttime + offset) {
|
||
INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
|
||
ev = ev->next;
|
||
}
|
||
|
||
/* now insert the time interpolated entry */
|
||
INSERT_ENTRY(lasttime + offset, interpolate(lastdepth, depth, offset, delta), sac);
|
||
|
||
/* skip events that happened at this time */
|
||
while (ev && (int)ev->time.seconds == lasttime + offset)
|
||
ev = ev->next;
|
||
}
|
||
|
||
/* Add events if they are between plot entries */
|
||
while (ev && (int)ev->time.seconds < time) {
|
||
INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
|
||
ev = ev->next;
|
||
}
|
||
|
||
entry->sec = time;
|
||
entry->depth = depth;
|
||
|
||
entry->running_sum = (entry - 1)->running_sum + (time - (entry - 1)->sec) * (depth + (entry - 1)->depth) / 2;
|
||
entry->stopdepth = sample->stopdepth.mm;
|
||
entry->stoptime = sample->stoptime.seconds;
|
||
entry->ndl = sample->ndl.seconds;
|
||
entry->tts = sample->tts.seconds;
|
||
entry->in_deco = sample->in_deco;
|
||
entry->cns = sample->cns;
|
||
if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) {
|
||
entry->o2pressure.mbar = entry->o2setpoint.mbar = sample->setpoint.mbar; // for rebreathers
|
||
entry->o2sensor[0].mbar = sample->o2sensor[0].mbar; // for up to three rebreather O2 sensors
|
||
entry->o2sensor[1].mbar = sample->o2sensor[1].mbar;
|
||
entry->o2sensor[2].mbar = sample->o2sensor[2].mbar;
|
||
} else {
|
||
entry->pressures.o2 = sample->setpoint.mbar / 1000.0;
|
||
}
|
||
if (sample->pressure[0].mbar)
|
||
SENSOR_PRESSURE(entry, sample->sensor[0]) = sample->pressure[0].mbar;
|
||
if (sample->pressure[1].mbar)
|
||
SENSOR_PRESSURE(entry, sample->sensor[1]) = sample->pressure[1].mbar;
|
||
if (sample->temperature.mkelvin)
|
||
entry->temperature = lasttemp = sample->temperature.mkelvin;
|
||
else
|
||
entry->temperature = lasttemp;
|
||
entry->heartbeat = sample->heartbeat;
|
||
entry->bearing = sample->bearing.degrees;
|
||
entry->sac = sample->sac.mliter;
|
||
if (sample->rbt.seconds)
|
||
entry->rbt = sample->rbt.seconds;
|
||
/* skip events that happened at this time */
|
||
while (ev && (int)ev->time.seconds == time)
|
||
ev = ev->next;
|
||
lasttime = time;
|
||
lastdepth = depth;
|
||
idx++;
|
||
|
||
if (time > maxtime)
|
||
break;
|
||
}
|
||
|
||
/* Add any remaining events */
|
||
while (ev) {
|
||
struct plot_data *entry = plot_data + idx;
|
||
int time = ev->time.seconds;
|
||
|
||
if (time > lasttime) {
|
||
INSERT_ENTRY(ev->time.seconds, 0, 0);
|
||
lasttime = time;
|
||
}
|
||
ev = ev->next;
|
||
}
|
||
|
||
/* Add two final surface events */
|
||
plot_data[idx++].sec = lasttime + 1;
|
||
plot_data[idx++].sec = lasttime + 2;
|
||
pi->nr = idx;
|
||
|
||
return plot_data;
|
||
}
|
||
|
||
#undef INSERT_ENTRY
|
||
|
||
/*
|
||
* Calculate the sac rate between the two plot entries 'first' and 'last'.
|
||
*
|
||
* Everything in between has a cylinder pressure for at least some of the cylinders.
|
||
*/
|
||
static int sac_between(struct dive *dive, struct plot_data *first, struct plot_data *last, unsigned int gases)
|
||
{
|
||
int i, airuse;
|
||
double pressuretime;
|
||
|
||
if (first == last)
|
||
return 0;
|
||
|
||
/* Get airuse for the set of cylinders over the range */
|
||
airuse = 0;
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
pressure_t a, b;
|
||
cylinder_t *cyl;
|
||
int cyluse;
|
||
|
||
if (!(gases & (1u << i)))
|
||
continue;
|
||
|
||
a.mbar = GET_PRESSURE(first, i);
|
||
b.mbar = GET_PRESSURE(last, i);
|
||
cyl = dive->cylinder + i;
|
||
cyluse = gas_volume(cyl, a) - gas_volume(cyl, b);
|
||
if (cyluse > 0)
|
||
airuse += cyluse;
|
||
}
|
||
if (!airuse)
|
||
return 0;
|
||
|
||
/* Calculate depthpressure integrated over time */
|
||
pressuretime = 0.0;
|
||
do {
|
||
int depth = (first[0].depth + first[1].depth) / 2;
|
||
int time = first[1].sec - first[0].sec;
|
||
double atm = depth_to_atm(depth, dive);
|
||
|
||
pressuretime += atm * time;
|
||
} while (++first < last);
|
||
|
||
/* Turn "atmseconds" into "atmminutes" */
|
||
pressuretime /= 60;
|
||
|
||
/* SAC = mliter per minute */
|
||
return lrint(airuse / pressuretime);
|
||
}
|
||
|
||
/* Which of the set of gases have pressure data */
|
||
static unsigned int have_pressures(struct plot_data *entry, unsigned int gases)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
unsigned int mask = 1 << i;
|
||
if (gases & mask) {
|
||
if (!GET_PRESSURE(entry, i))
|
||
gases &= ~mask;
|
||
}
|
||
}
|
||
return gases;
|
||
}
|
||
|
||
/*
|
||
* Try to do the momentary sac rate for this entry, averaging over one
|
||
* minute.
|
||
*/
|
||
static void fill_sac(struct dive *dive, struct plot_info *pi, int idx, unsigned int gases)
|
||
{
|
||
struct plot_data *entry = pi->entry + idx;
|
||
struct plot_data *first, *last;
|
||
int time;
|
||
|
||
if (entry->sac)
|
||
return;
|
||
|
||
/*
|
||
* We may not have pressure data for all the cylinders,
|
||
* but we'll calculate the SAC for the ones we do have.
|
||
*/
|
||
gases = have_pressures(entry, gases);
|
||
if (!gases)
|
||
return;
|
||
|
||
/*
|
||
* Try to go back 30 seconds to get 'first'.
|
||
* Stop if the cylinder pressure data set changes.
|
||
*/
|
||
first = entry;
|
||
time = entry->sec - 30;
|
||
while (idx > 0) {
|
||
struct plot_data *prev = first-1;
|
||
|
||
if (prev->depth < SURFACE_THRESHOLD && first->depth < SURFACE_THRESHOLD)
|
||
break;
|
||
if (prev->sec < time)
|
||
break;
|
||
if (have_pressures(prev, gases) != gases)
|
||
break;
|
||
idx--;
|
||
first = prev;
|
||
}
|
||
|
||
/* Now find an entry a minute after the first one */
|
||
last = first;
|
||
time = first->sec + 60;
|
||
while (++idx < pi->nr) {
|
||
struct plot_data *next = last+1;
|
||
if (next->depth < SURFACE_THRESHOLD && last->depth < SURFACE_THRESHOLD)
|
||
break;
|
||
if (next->sec > time)
|
||
break;
|
||
if (have_pressures(next, gases) != gases)
|
||
break;
|
||
last = next;
|
||
}
|
||
|
||
/* Ok, now calculate the SAC between 'first' and 'last' */
|
||
entry->sac = sac_between(dive, first, last, gases);
|
||
}
|
||
|
||
/*
|
||
* Create a bitmap of cylinders that match our current gasmix
|
||
*/
|
||
static unsigned int matching_gases(struct dive *dive, struct gasmix gasmix)
|
||
{
|
||
int i;
|
||
unsigned int gases = 0;
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
cylinder_t *cyl = dive->cylinder + i;
|
||
if (same_gasmix(gasmix, cyl->gasmix))
|
||
gases |= 1 << i;
|
||
}
|
||
return gases;
|
||
}
|
||
|
||
static void calculate_sac(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
||
{
|
||
struct gasmix gasmix = gasmix_invalid;
|
||
const struct event *ev = NULL;
|
||
unsigned int gases = 0;
|
||
|
||
for (int i = 0; i < pi->nr; i++) {
|
||
struct plot_data *entry = pi->entry + i;
|
||
struct gasmix newmix = get_gasmix(dive, dc, entry->sec, &ev, gasmix);
|
||
if (!same_gasmix(newmix, gasmix)) {
|
||
gasmix = newmix;
|
||
gases = matching_gases(dive, newmix);
|
||
}
|
||
|
||
fill_sac(dive, pi, i, gases);
|
||
}
|
||
}
|
||
|
||
static void populate_secondary_sensor_data(const struct divecomputer *dc, struct plot_info *pi)
|
||
{
|
||
UNUSED(dc);
|
||
UNUSED(pi);
|
||
/* We should try to see if it has interesting pressure data here */
|
||
}
|
||
|
||
/*
|
||
* This adds a pressure entry to the plot_info based on the gas change
|
||
* information and the manually filled in pressures.
|
||
*/
|
||
static void add_plot_pressure(struct plot_info *pi, int time, int cyl, pressure_t p)
|
||
{
|
||
struct plot_data *entry;
|
||
if (pi->nr <= 0) {
|
||
fprintf(stderr, "add_plot_pressure(): called with pi->nr <= 0\n");
|
||
return;
|
||
}
|
||
for (int i = 0; i < pi->nr; i++) {
|
||
entry = pi->entry + i;
|
||
|
||
if (entry->sec >= time)
|
||
break;
|
||
}
|
||
SENSOR_PRESSURE(entry, cyl) = p.mbar;
|
||
}
|
||
|
||
static void setup_gas_sensor_pressure(const struct dive *dive, const struct divecomputer *dc, struct plot_info *pi)
|
||
{
|
||
int prev, i;
|
||
const struct event *ev;
|
||
int seen[MAX_CYLINDERS] = { 0, };
|
||
unsigned int first[MAX_CYLINDERS] = { 0, };
|
||
unsigned int last[MAX_CYLINDERS] = { 0, };
|
||
const struct divecomputer *secondary;
|
||
|
||
prev = explicit_first_cylinder(dive, dc);
|
||
seen[prev] = 1;
|
||
for (i = 0; i < MAX_CYLINDERS; i++)
|
||
last[i] = INT_MAX;
|
||
|
||
for (ev = get_next_event(dc->events, "gaschange"); ev != NULL; ev = get_next_event(ev->next, "gaschange")) {
|
||
int cyl = ev->gas.index;
|
||
int sec = ev->time.seconds;
|
||
|
||
if (cyl < 0)
|
||
continue;
|
||
|
||
last[prev] = sec;
|
||
prev = cyl;
|
||
|
||
last[cyl] = sec;
|
||
if (!seen[cyl]) {
|
||
// The end time may be updated by a subsequent cylinder change
|
||
first[cyl] = sec;
|
||
seen[cyl] = 1;
|
||
}
|
||
}
|
||
last[prev] = INT_MAX;
|
||
|
||
// Fill in "seen[]" array - mark cylinders we're not interested
|
||
// in as negative.
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
const cylinder_t *cyl = dive->cylinder + i;
|
||
int start = cyl->start.mbar;
|
||
int end = cyl->end.mbar;
|
||
|
||
/*
|
||
* Fundamentally uninteresting?
|
||
*
|
||
* A dive computer with no pressure data isn't interesting
|
||
* to plot pressures for even if we've seen it..
|
||
*/
|
||
if (!start || !end || start == end) {
|
||
seen[i] = -1;
|
||
continue;
|
||
}
|
||
|
||
/* If we've seen it, we're definitely interested */
|
||
if (seen[i])
|
||
continue;
|
||
|
||
/* If it's only mentioned by other dc's, ignore it */
|
||
for_each_dc(dive, secondary) {
|
||
if (has_gaschange_event(dive, secondary, i)) {
|
||
seen[i] = -1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
for (i = 0; i < MAX_CYLINDERS; i++) {
|
||
if (seen[i] >= 0) {
|
||
const cylinder_t *cyl = dive->cylinder + i;
|
||
|
||
add_plot_pressure(pi, first[i], i, cyl->start);
|
||
add_plot_pressure(pi, last[i], i, cyl->end);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Here, we should try to walk through all the dive computers,
|
||
* and try to see if they have sensor data different from the
|
||
* primary dive computer (dc).
|
||
*/
|
||
secondary = &dive->dc;
|
||
do {
|
||
if (secondary == dc)
|
||
continue;
|
||
populate_secondary_sensor_data(dc, pi);
|
||
} while ((secondary = secondary->next) != NULL);
|
||
}
|
||
|
||
#ifndef SUBSURFACE_MOBILE
|
||
/* calculate DECO STOP / TTS / NDL */
|
||
static void calculate_ndl_tts(struct deco_state *ds, const struct dive *dive, struct plot_data *entry, struct gasmix gasmix, double surface_pressure,enum divemode_t divemode)
|
||
{
|
||
/* should this be configurable? */
|
||
/* ascent speed up to first deco stop */
|
||
const int ascent_s_per_step = 1;
|
||
const int ascent_s_per_deco_step = 1;
|
||
/* how long time steps in deco calculations? */
|
||
const int time_stepsize = 60;
|
||
const int deco_stepsize = 3000;
|
||
/* at what depth is the current deco-step? */
|
||
int next_stop = ROUND_UP(deco_allowed_depth(
|
||
tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)),
|
||
surface_pressure, dive, 1), deco_stepsize);
|
||
int ascent_depth = entry->depth;
|
||
/* at what time should we give up and say that we got enuff NDL? */
|
||
/* If iterating through a dive, entry->tts_calc needs to be reset */
|
||
entry->tts_calc = 0;
|
||
|
||
/* If we don't have a ceiling yet, calculate ndl. Don't try to calculate
|
||
* a ndl for lower values than 3m it would take forever */
|
||
if (next_stop == 0) {
|
||
if (entry->depth < 3000) {
|
||
entry->ndl = MAX_PROFILE_DECO;
|
||
return;
|
||
}
|
||
/* stop if the ndl is above max_ndl seconds, and call it plenty of time */
|
||
while (entry->ndl_calc < MAX_PROFILE_DECO &&
|
||
deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)),
|
||
surface_pressure, dive, 1) <= 0
|
||
) {
|
||
entry->ndl_calc += time_stepsize;
|
||
add_segment(ds, depth_to_bar(entry->depth, dive),
|
||
gasmix, time_stepsize, entry->o2pressure.mbar, divemode, prefs.bottomsac);
|
||
}
|
||
/* we don't need to calculate anything else */
|
||
return;
|
||
}
|
||
|
||
/* We are in deco */
|
||
entry->in_deco_calc = true;
|
||
|
||
/* Add segments for movement to stopdepth */
|
||
for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_step * ascent_velocity(ascent_depth, entry->running_sum / entry->sec, 0), entry->tts_calc += ascent_s_per_step) {
|
||
add_segment(ds, depth_to_bar(ascent_depth, dive),
|
||
gasmix, ascent_s_per_step, entry->o2pressure.mbar, divemode, prefs.decosac);
|
||
next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth, dive)),
|
||
surface_pressure, dive, 1), deco_stepsize);
|
||
}
|
||
ascent_depth = next_stop;
|
||
|
||
/* And how long is the current deco-step? */
|
||
entry->stoptime_calc = 0;
|
||
entry->stopdepth_calc = next_stop;
|
||
next_stop -= deco_stepsize;
|
||
|
||
/* And how long is the total TTS */
|
||
while (next_stop >= 0) {
|
||
/* save the time for the first stop to show in the graph */
|
||
if (ascent_depth == entry->stopdepth_calc)
|
||
entry->stoptime_calc += time_stepsize;
|
||
|
||
entry->tts_calc += time_stepsize;
|
||
if (entry->tts_calc > MAX_PROFILE_DECO)
|
||
break;
|
||
add_segment(ds, depth_to_bar(ascent_depth, dive),
|
||
gasmix, time_stepsize, entry->o2pressure.mbar, divemode, prefs.decosac);
|
||
|
||
if (deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth,dive)), surface_pressure, dive, 1) <= next_stop) {
|
||
/* move to the next stop and add the travel between stops */
|
||
for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_deco_step * ascent_velocity(ascent_depth, entry->running_sum / entry->sec, 0), entry->tts_calc += ascent_s_per_deco_step)
|
||
add_segment(ds, depth_to_bar(ascent_depth, dive),
|
||
gasmix, ascent_s_per_deco_step, entry->o2pressure.mbar, divemode, prefs.decosac);
|
||
ascent_depth = next_stop;
|
||
next_stop -= deco_stepsize;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Let's try to do some deco calculations.
|
||
*/
|
||
void calculate_deco_information(struct deco_state *ds, const struct deco_state *planner_ds, const struct dive *dive, const struct divecomputer *dc, struct plot_info *pi, bool print_mode)
|
||
{
|
||
int i, count_iteration = 0;
|
||
double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0;
|
||
bool first_iteration = true;
|
||
int prev_deco_time = 10000000, time_deep_ceiling = 0;
|
||
|
||
if (!in_planner()) {
|
||
ds->deco_time = 0;
|
||
} else {
|
||
ds->deco_time = planner_ds->deco_time;
|
||
ds->first_ceiling_pressure = planner_ds->first_ceiling_pressure;
|
||
}
|
||
struct deco_state *cache_data_initial = NULL;
|
||
lock_planner();
|
||
/* For VPM-B outside the planner, cache the initial deco state for CVA iterations */
|
||
if (decoMode() == VPMB) {
|
||
cache_deco_state(ds, &cache_data_initial);
|
||
}
|
||
/* For VPM-B outside the planner, iterate until deco time converges (usually one or two iterations after the initial)
|
||
* Set maximum number of iterations to 10 just in case */
|
||
|
||
while ((abs(prev_deco_time - ds->deco_time) >= 30) && (count_iteration < 10)) {
|
||
int last_ndl_tts_calc_time = 0, first_ceiling = 0, current_ceiling, last_ceiling = 0, final_tts = 0 , time_clear_ceiling = 0;
|
||
if (decoMode() == VPMB)
|
||
ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive);
|
||
struct gasmix gasmix = gasmix_invalid;
|
||
const struct event *ev = NULL, *evd = NULL;
|
||
enum divemode_t current_divemode = UNDEF_COMP_TYPE;
|
||
|
||
for (i = 1; i < pi->nr; i++) {
|
||
struct plot_data *entry = pi->entry + i;
|
||
int j, t0 = (entry - 1)->sec, t1 = entry->sec;
|
||
int time_stepsize = 20;
|
||
|
||
current_divemode = get_current_divemode(dc, entry->sec, &evd, ¤t_divemode);
|
||
gasmix = get_gasmix(dive, dc, t1, &ev, gasmix);
|
||
entry->ambpressure = depth_to_bar(entry->depth, dive);
|
||
entry->gfline = get_gf(ds, entry->ambpressure, dive) * (100.0 - AMB_PERCENTAGE) + AMB_PERCENTAGE;
|
||
if (t0 > t1) {
|
||
fprintf(stderr, "non-monotonous dive stamps %d %d\n", t0, t1);
|
||
int xchg = t1;
|
||
t1 = t0;
|
||
t0 = xchg;
|
||
}
|
||
if (t0 != t1 && t1 - t0 < time_stepsize)
|
||
time_stepsize = t1 - t0;
|
||
for (j = t0 + time_stepsize; j <= t1; j += time_stepsize) {
|
||
int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0);
|
||
add_segment(ds, depth_to_bar(depth, dive),
|
||
gasmix, time_stepsize, entry->o2pressure.mbar, current_divemode, entry->sac);
|
||
entry->icd_warning = ds->icd_warning;
|
||
if ((t1 - j < time_stepsize) && (j < t1))
|
||
time_stepsize = t1 - j;
|
||
}
|
||
if (t0 == t1) {
|
||
entry->ceiling = (entry - 1)->ceiling;
|
||
} else {
|
||
/* Keep updating the VPM-B gradients until the start of the ascent phase of the dive. */
|
||
if (decoMode() == VPMB && last_ceiling >= first_ceiling && first_iteration == true) {
|
||
nuclear_regeneration(ds, t1);
|
||
vpmb_start_gradient(ds);
|
||
/* For CVA iterations, calculate next gradient */
|
||
if (!first_iteration || in_planner())
|
||
vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0);
|
||
}
|
||
entry->ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, !prefs.calcceiling3m);
|
||
if (prefs.calcceiling3m)
|
||
current_ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, true);
|
||
else
|
||
current_ceiling = entry->ceiling;
|
||
last_ceiling = current_ceiling;
|
||
/* If using VPM-B, take first_ceiling_pressure as the deepest ceiling */
|
||
if (decoMode() == VPMB) {
|
||
if (current_ceiling >= first_ceiling ||
|
||
(time_deep_ceiling == t0 && entry->depth == (entry - 1)->depth)) {
|
||
time_deep_ceiling = t1;
|
||
first_ceiling = current_ceiling;
|
||
ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive);
|
||
if (first_iteration) {
|
||
nuclear_regeneration(ds, t1);
|
||
vpmb_start_gradient(ds);
|
||
/* For CVA calculations, deco time = dive time remaining is a good guess,
|
||
but we want to over-estimate deco_time for the first iteration so it
|
||
converges correctly, so add 30min*/
|
||
if (!in_planner())
|
||
ds->deco_time = pi->maxtime - t1 + 1800;
|
||
vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0);
|
||
}
|
||
}
|
||
// Use the point where the ceiling clears as the end of deco phase for CVA calculations
|
||
if (current_ceiling > 0)
|
||
time_clear_ceiling = 0;
|
||
else if (time_clear_ceiling == 0 && t1 > time_deep_ceiling)
|
||
time_clear_ceiling = t1;
|
||
}
|
||
}
|
||
entry->surface_gf = 0.0;
|
||
for (j = 0; j < 16; j++) {
|
||
double m_value = ds->buehlmann_inertgas_a[j] + entry->ambpressure / ds->buehlmann_inertgas_b[j];
|
||
double surface_m_value = ds->buehlmann_inertgas_a[j] + surface_pressure / ds->buehlmann_inertgas_b[j];
|
||
entry->ceilings[j] = deco_allowed_depth(ds->tolerated_by_tissue[j], surface_pressure, dive, 1);
|
||
entry->percentages[j] = ds->tissue_inertgas_saturation[j] < entry->ambpressure ?
|
||
lrint(ds->tissue_inertgas_saturation[j] / entry->ambpressure * AMB_PERCENTAGE) :
|
||
lrint(AMB_PERCENTAGE + (ds->tissue_inertgas_saturation[j] - entry->ambpressure) / (m_value - entry->ambpressure) * (100.0 - AMB_PERCENTAGE));
|
||
double surface_gf = 100.0 * (ds->tissue_inertgas_saturation[j] - surface_pressure) / (surface_m_value - surface_pressure);
|
||
if (surface_gf > entry->surface_gf)
|
||
entry->surface_gf = surface_gf;
|
||
}
|
||
|
||
/* should we do more calculations?
|
||
* We don't for print-mode because this info doesn't show up there
|
||
* If the ceiling hasn't cleared by the last data point, we need tts for VPM-B CVA calculation
|
||
* It is not necessary to do these calculation on the first VPMB iteration, except for the last data point */
|
||
if ((prefs.calcndltts && !print_mode && (decoMode() != VPMB || in_planner() || !first_iteration)) ||
|
||
(decoMode() == VPMB && !in_planner() && i == pi->nr - 1)) {
|
||
/* only calculate ndl/tts on every 30 seconds */
|
||
if ((entry->sec - last_ndl_tts_calc_time) < 30 && i != pi->nr - 1) {
|
||
struct plot_data *prev_entry = (entry - 1);
|
||
entry->stoptime_calc = prev_entry->stoptime_calc;
|
||
entry->stopdepth_calc = prev_entry->stopdepth_calc;
|
||
entry->tts_calc = prev_entry->tts_calc;
|
||
entry->ndl_calc = prev_entry->ndl_calc;
|
||
continue;
|
||
}
|
||
last_ndl_tts_calc_time = entry->sec;
|
||
|
||
/* We are going to mess up deco state, so store it for later restore */
|
||
struct deco_state *cache_data = NULL;
|
||
cache_deco_state(ds, &cache_data);
|
||
calculate_ndl_tts(ds, dive, entry, gasmix, surface_pressure, current_divemode);
|
||
if (decoMode() == VPMB && !in_planner() && i == pi->nr - 1)
|
||
final_tts = entry->tts_calc;
|
||
/* Restore "real" deco state for next real time step */
|
||
restore_deco_state(cache_data, ds, decoMode() == VPMB);
|
||
free(cache_data);
|
||
}
|
||
}
|
||
if (decoMode() == VPMB && !in_planner()) {
|
||
int this_deco_time;
|
||
prev_deco_time = ds->deco_time;
|
||
// Do we need to update deco_time?
|
||
if (final_tts > 0)
|
||
ds->deco_time = last_ndl_tts_calc_time + final_tts - time_deep_ceiling;
|
||
else if (time_clear_ceiling > 0)
|
||
/* Consistent with planner, deco_time ends after ascending (20s @9m/min from 3m)
|
||
* at end of whole minute after clearing ceiling. The deepest ceiling when planning a dive
|
||
* comes typically 10-60s after the end of the bottom time, so add 20s to the calculated
|
||
* deco time. */
|
||
ds->deco_time = ROUND_UP(time_clear_ceiling - time_deep_ceiling + 20, 60) + 20;
|
||
vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0);
|
||
final_tts = 0;
|
||
last_ndl_tts_calc_time = 0;
|
||
first_ceiling = 0;
|
||
first_iteration = false;
|
||
count_iteration ++;
|
||
this_deco_time = ds->deco_time;
|
||
restore_deco_state(cache_data_initial, ds, true);
|
||
ds->deco_time = this_deco_time;
|
||
} else {
|
||
// With Buhlmann iterating isn't needed. This makes the while condition false.
|
||
prev_deco_time = ds->deco_time = 0;
|
||
}
|
||
}
|
||
|
||
free(cache_data_initial);
|
||
#if DECO_CALC_DEBUG & 1
|
||
dump_tissues(ds);
|
||
#endif
|
||
unlock_planner();
|
||
}
|
||
#endif
|
||
|
||
/* Function calculate_ccr_po2: This function takes information from one plot_data structure (i.e. one point on
|
||
* the dive profile), containing the oxygen sensor values of a CCR system and, for that plot_data structure,
|
||
* calculates the po2 value from the sensor data. Several rules are applied, depending on how many o2 sensors
|
||
* there are and the differences among the readings from these sensors.
|
||
*/
|
||
static int calculate_ccr_po2(struct plot_data *entry, struct divecomputer *dc)
|
||
{
|
||
int sump = 0, minp = 999999, maxp = -999999;
|
||
int diff_limit = 100; // The limit beyond which O2 sensor differences are considered significant (default = 100 mbar)
|
||
int i, np = 0;
|
||
|
||
for (i = 0; i < dc->no_o2sensors; i++)
|
||
if (entry->o2sensor[i].mbar) { // Valid reading
|
||
++np;
|
||
sump += entry->o2sensor[i].mbar;
|
||
minp = MIN(minp, entry->o2sensor[i].mbar);
|
||
maxp = MAX(maxp, entry->o2sensor[i].mbar);
|
||
}
|
||
switch (np) {
|
||
case 0: // Uhoh
|
||
return entry->o2pressure.mbar;
|
||
case 1: // Return what we have
|
||
return sump;
|
||
case 2: // Take the average
|
||
return sump / 2;
|
||
case 3: // Voting logic
|
||
if (2 * maxp - sump + minp < diff_limit) { // Upper difference acceptable...
|
||
if (2 * minp - sump + maxp) // ...and lower difference acceptable
|
||
return sump / 3;
|
||
else
|
||
return (sump - minp) / 2;
|
||
} else {
|
||
if (2 * minp - sump + maxp) // ...but lower difference acceptable
|
||
return (sump - maxp) / 2;
|
||
else
|
||
return sump / 3;
|
||
}
|
||
default: // This should not happen
|
||
assert(np <= 3);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static void calculate_gas_information_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
||
{
|
||
int i;
|
||
double amb_pressure;
|
||
struct gasmix gasmix = gasmix_invalid;
|
||
const struct event *evg = NULL, *evd = NULL;
|
||
enum divemode_t current_divemode = UNDEF_COMP_TYPE;
|
||
|
||
for (i = 1; i < pi->nr; i++) {
|
||
int fn2, fhe;
|
||
struct plot_data *entry = pi->entry + i;
|
||
|
||
gasmix = get_gasmix(dive, dc, entry->sec, &evg, gasmix);
|
||
amb_pressure = depth_to_bar(entry->depth, dive);
|
||
current_divemode = get_current_divemode(dc, entry->sec, &evd, ¤t_divemode);
|
||
fill_pressures(&entry->pressures, amb_pressure, gasmix, (current_divemode == OC) ? 0.0 : entry->o2pressure.mbar / 1000.0, current_divemode);
|
||
fn2 = (int)(1000.0 * entry->pressures.n2 / amb_pressure);
|
||
fhe = (int)(1000.0 * entry->pressures.he / amb_pressure);
|
||
if (dc->divemode == PSCR) { // OC pO2 is calulated for PSCR with or without external PO2 monitoring.
|
||
struct gasmix gasmix2 = get_gasmix(dive, dc, entry->sec, &evg, gasmix);
|
||
entry->scr_OC_pO2.mbar = (int) depth_to_mbar(entry->depth, dive) * get_o2(gasmix2) / 1000;
|
||
}
|
||
|
||
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
|
||
* so there is no difference in calculating between OC and CC
|
||
* END takes O₂ + N₂ (air) into account ("Narcotic" for trimix dives)
|
||
* EAD just uses N₂ ("Air" for nitrox dives) */
|
||
pressure_t modpO2 = { .mbar = (int)(prefs.modpO2 * 1000) };
|
||
entry->mod = (double)gas_mod(gasmix, modpO2, dive, 1).mm;
|
||
entry->end = (entry->depth + 10000) * (1000 - fhe) / 1000.0 - 10000;
|
||
entry->ead = (entry->depth + 10000) * fn2 / (double)N2_IN_AIR - 10000;
|
||
entry->eadd = (entry->depth + 10000) *
|
||
(entry->pressures.o2 / amb_pressure * O2_DENSITY +
|
||
entry->pressures.n2 / amb_pressure * N2_DENSITY +
|
||
entry->pressures.he / amb_pressure * HE_DENSITY) /
|
||
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 - 10000;
|
||
entry->density = gas_density(gasmix, depth_to_mbar(entry->depth, dive));
|
||
if (entry->mod < 0)
|
||
entry->mod = 0;
|
||
if (entry->ead < 0)
|
||
entry->ead = 0;
|
||
if (entry->end < 0)
|
||
entry->end = 0;
|
||
if (entry->eadd < 0)
|
||
entry->eadd = 0;
|
||
}
|
||
}
|
||
|
||
void fill_o2_values(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
||
/* In the samples from each dive computer, there may be uninitialised oxygen
|
||
* sensor or setpoint values, e.g. when events were inserted into the dive log
|
||
* or if the dive computer does not report o2 values with every sample. But
|
||
* for drawing the profile a complete series of valid o2 pressure values is
|
||
* required. This function takes the oxygen sensor data and setpoint values
|
||
* from the structures of plotinfo and replaces the zero values with their
|
||
* last known values so that the oxygen sensor data are complete and ready
|
||
* for plotting. This function called by: create_plot_info_new() */
|
||
{
|
||
int i, j;
|
||
pressure_t last_sensor[3], o2pressure;
|
||
pressure_t amb_pressure;
|
||
|
||
for (i = 0; i < pi->nr; i++) {
|
||
struct plot_data *entry = pi->entry + i;
|
||
|
||
if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) {
|
||
if (i == 0) { // For 1st iteration, initialise the last_sensor values
|
||
for (j = 0; j < dc->no_o2sensors; j++)
|
||
last_sensor[j].mbar = pi->entry->o2sensor[j].mbar;
|
||
} else { // Now re-insert the missing oxygen pressure values
|
||
for (j = 0; j < dc->no_o2sensors; j++)
|
||
if (entry->o2sensor[j].mbar)
|
||
last_sensor[j].mbar = entry->o2sensor[j].mbar;
|
||
else
|
||
entry->o2sensor[j].mbar = last_sensor[j].mbar;
|
||
} // having initialised the empty o2 sensor values for this point on the profile,
|
||
amb_pressure.mbar = depth_to_mbar(entry->depth, dive);
|
||
o2pressure.mbar = calculate_ccr_po2(entry, dc); // ...calculate the po2 based on the sensor data
|
||
entry->o2pressure.mbar = MIN(o2pressure.mbar, amb_pressure.mbar);
|
||
} else {
|
||
entry->o2pressure.mbar = 0; // initialise po2 to zero for dctype = OC
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef DEBUG_GAS
|
||
/* A CCR debug function that writes the cylinder pressure and the oxygen values to the file debug_print_profiledata.dat:
|
||
* Called in create_plot_info_new()
|
||
*/
|
||
static void debug_print_profiledata(struct plot_info *pi)
|
||
{
|
||
FILE *f1;
|
||
struct plot_data *entry;
|
||
int i;
|
||
if (!(f1 = fopen("debug_print_profiledata.dat", "w"))) {
|
||
printf("File open error for: debug_print_profiledata.dat\n");
|
||
} else {
|
||
fprintf(f1, "id t1 gas gasint t2 t3 dil dilint t4 t5 setpoint sensor1 sensor2 sensor3 t6 po2 fo2\n");
|
||
for (i = 0; i < pi->nr; i++) {
|
||
entry = pi->entry + i;
|
||
fprintf(f1, "%d gas=%8d %8d ; dil=%8d %8d ; o2_sp= %d %d %d %d PO2= %f\n", i, SENSOR_PRESSURE(entry),
|
||
INTERPOLATED_PRESSURE(entry), O2CYLINDER_PRESSURE(entry), INTERPOLATED_O2CYLINDER_PRESSURE(entry),
|
||
entry->o2pressure.mbar, entry->o2sensor[0].mbar, entry->o2sensor[1].mbar, entry->o2sensor[2].mbar, entry->pressures.o2);
|
||
}
|
||
fclose(f1);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* Create a plot-info with smoothing and ranged min/max
|
||
*
|
||
* This also makes sure that we have extra empty events on both
|
||
* sides, so that you can do end-points without having to worry
|
||
* about it.
|
||
*/
|
||
void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool fast, struct deco_state *planner_ds)
|
||
{
|
||
int o2, he, o2max;
|
||
#ifndef SUBSURFACE_MOBILE
|
||
struct deco_state plot_deco_state;
|
||
init_decompression(&plot_deco_state, dive);
|
||
#else
|
||
UNUSED(planner_ds);
|
||
#endif
|
||
/* Create the new plot data */
|
||
free((void *)last_pi_entry_new);
|
||
|
||
get_dive_gas(dive, &o2, &he, &o2max);
|
||
if (dc->divemode == FREEDIVE){
|
||
pi->dive_type = FREEDIVE;
|
||
} else if (he > 0) {
|
||
pi->dive_type = TRIMIX;
|
||
} else {
|
||
if (o2)
|
||
pi->dive_type = NITROX;
|
||
else
|
||
pi->dive_type = AIR;
|
||
}
|
||
|
||
last_pi_entry_new = populate_plot_entries(dive, dc, pi);
|
||
|
||
check_setpoint_events(dive, dc, pi); /* Populate setpoints */
|
||
setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */
|
||
if (!fast) {
|
||
for (int cyl = 0; cyl < MAX_CYLINDERS; cyl++)
|
||
populate_pressure_information(dive, dc, pi, cyl);
|
||
}
|
||
fill_o2_values(dive, dc, pi); /* .. and insert the O2 sensor data having 0 values. */
|
||
calculate_sac(dive, dc, pi); /* Calculate sac */
|
||
#ifndef SUBSURFACE_MOBILE
|
||
calculate_deco_information(&plot_deco_state, planner_ds, dive, dc, pi, false); /* and ceiling information, using gradient factor values in Preferences) */
|
||
#endif
|
||
calculate_gas_information_new(dive, dc, pi); /* Calculate gas partial pressures */
|
||
|
||
#ifdef DEBUG_GAS
|
||
debug_print_profiledata(pi);
|
||
#endif
|
||
|
||
pi->meandepth = dive->dc.meandepth.mm;
|
||
analyze_plot_info(pi);
|
||
}
|
||
|
||
struct divecomputer *select_dc(struct dive *dive)
|
||
{
|
||
unsigned int max = number_of_computers(dive);
|
||
unsigned int i = dc_number;
|
||
|
||
/* Reset 'dc_number' if we've switched dives and it is now out of range */
|
||
if (i >= max)
|
||
dc_number = i = 0;
|
||
|
||
return get_dive_dc(dive, i);
|
||
}
|
||
|
||
static void plot_string(struct plot_info *pi, struct plot_data *entry, struct membuffer *b)
|
||
{
|
||
int pressurevalue, mod, ead, end, eadd;
|
||
const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit;
|
||
double depthvalue, tempvalue, speedvalue, sacvalue;
|
||
int decimals, cyl;
|
||
const char *unit;
|
||
|
||
depthvalue = get_depth_units(entry->depth, NULL, &depth_unit);
|
||
put_format_loc(b, translate("gettextFromC", "@: %d:%02d\nD: %.1f%s\n"), FRACTION(entry->sec, 60), depthvalue, depth_unit);
|
||
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
||
int mbar = GET_PRESSURE(entry, cyl);
|
||
if (!mbar)
|
||
continue;
|
||
struct gasmix mix = displayed_dive.cylinder[cyl].gasmix;
|
||
pressurevalue = get_pressure_units(mbar, &pressure_unit);
|
||
put_format_loc(b, translate("gettextFromC", "P: %d%s (%s)\n"), pressurevalue, pressure_unit, gasname(mix));
|
||
}
|
||
if (entry->temperature) {
|
||
tempvalue = get_temp_units(entry->temperature, &temp_unit);
|
||
put_format_loc(b, translate("gettextFromC", "T: %.1f%s\n"), tempvalue, temp_unit);
|
||
}
|
||
speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit);
|
||
/* Ascending speeds are positive, descending are negative */
|
||
if (entry->speed > 0)
|
||
speedvalue *= -1;
|
||
put_format_loc(b, translate("gettextFromC", "V: %.1f%s\n"), speedvalue, vertical_speed_unit);
|
||
sacvalue = get_volume_units(entry->sac, &decimals, &unit);
|
||
if (entry->sac && prefs.show_sac)
|
||
put_format_loc(b, translate("gettextFromC", "SAC: %.*f%s/min\n"), decimals, sacvalue, unit);
|
||
if (entry->cns)
|
||
put_format_loc(b, translate("gettextFromC", "CNS: %u%%\n"), entry->cns);
|
||
if (prefs.pp_graphs.po2 && entry->pressures.o2 > 0) {
|
||
put_format_loc(b, translate("gettextFromC", "pO₂: %.2fbar\n"), entry->pressures.o2);
|
||
if (entry->scr_OC_pO2.mbar)
|
||
put_format_loc(b, translate("gettextFromC", "SCR ΔpO₂: %.2fbar\n"), entry->scr_OC_pO2.mbar/1000.0 - entry->pressures.o2);
|
||
}
|
||
if (prefs.pp_graphs.pn2 && entry->pressures.n2 > 0)
|
||
put_format_loc(b, translate("gettextFromC", "pN₂: %.2fbar\n"), entry->pressures.n2);
|
||
if (prefs.pp_graphs.phe && entry->pressures.he > 0)
|
||
put_format_loc(b, translate("gettextFromC", "pHe: %.2fbar\n"), entry->pressures.he);
|
||
if (prefs.mod && entry->mod > 0) {
|
||
mod = lrint(get_depth_units(lrint(entry->mod), NULL, &depth_unit));
|
||
put_format_loc(b, translate("gettextFromC", "MOD: %d%s\n"), mod, depth_unit);
|
||
}
|
||
eadd = lrint(get_depth_units(lrint(entry->eadd), NULL, &depth_unit));
|
||
|
||
if (prefs.ead) {
|
||
switch (pi->dive_type) {
|
||
case NITROX:
|
||
if (entry->ead > 0) {
|
||
ead = lrint(get_depth_units(lrint(entry->ead), NULL, &depth_unit));
|
||
put_format_loc(b, translate("gettextFromC", "EAD: %d%s\nEADD: %d%s / %.1fg/ℓ\n"), ead, depth_unit, eadd, depth_unit, entry->density);
|
||
break;
|
||
}
|
||
case TRIMIX:
|
||
if (entry->end > 0) {
|
||
end = lrint(get_depth_units(lrint(entry->end), NULL, &depth_unit));
|
||
put_format_loc(b, translate("gettextFromC", "END: %d%s\nEADD: %d%s / %.1fg/ℓ\n"), end, depth_unit, eadd, depth_unit, entry->density);
|
||
break;
|
||
}
|
||
case AIR:
|
||
if (entry->density > 0) {
|
||
put_format_loc(b, translate("gettextFromC", "Density: %.1fg/ℓ\n"), entry->density);
|
||
}
|
||
case FREEDIVING:
|
||
/* nothing */
|
||
break;
|
||
}
|
||
}
|
||
if (entry->stopdepth) {
|
||
depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
|
||
if (entry->ndl > 0) {
|
||
/* this is a safety stop as we still have ndl */
|
||
if (entry->stoptime)
|
||
put_format_loc(b, translate("gettextFromC", "Safety stop: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
|
||
depthvalue, depth_unit);
|
||
else
|
||
put_format_loc(b, translate("gettextFromC", "Safety stop: unknown time @ %.0f%s\n"),
|
||
depthvalue, depth_unit);
|
||
} else {
|
||
/* actual deco stop */
|
||
if (entry->stoptime)
|
||
put_format_loc(b, translate("gettextFromC", "Deco: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
|
||
depthvalue, depth_unit);
|
||
else
|
||
put_format_loc(b, translate("gettextFromC", "Deco: unknown time @ %.0f%s\n"),
|
||
depthvalue, depth_unit);
|
||
}
|
||
} else if (entry->in_deco) {
|
||
put_string(b, translate("gettextFromC", "In deco\n"));
|
||
} else if (entry->ndl >= 0) {
|
||
put_format_loc(b, translate("gettextFromC", "NDL: %umin\n"), DIV_UP(entry->ndl, 60));
|
||
}
|
||
if (entry->tts)
|
||
put_format_loc(b, translate("gettextFromC", "TTS: %umin\n"), DIV_UP(entry->tts, 60));
|
||
if (entry->stopdepth_calc && entry->stoptime_calc) {
|
||
depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit);
|
||
put_format_loc(b, translate("gettextFromC", "Deco: %umin @ %.0f%s (calc)\n"), DIV_UP(entry->stoptime_calc, 60),
|
||
depthvalue, depth_unit);
|
||
} else if (entry->in_deco_calc) {
|
||
/* This means that we have no NDL left,
|
||
* and we have no deco stop,
|
||
* so if we just accend to the surface slowly
|
||
* (ascent_mm_per_step / ascent_s_per_step)
|
||
* everything will be ok. */
|
||
put_string(b, translate("gettextFromC", "In deco (calc)\n"));
|
||
} else if (prefs.calcndltts && entry->ndl_calc != 0) {
|
||
if(entry->ndl_calc < MAX_PROFILE_DECO)
|
||
put_format_loc(b, translate("gettextFromC", "NDL: %umin (calc)\n"), DIV_UP(entry->ndl_calc, 60));
|
||
else
|
||
put_string(b, translate("gettextFromC", "NDL: >2h (calc)\n"));
|
||
}
|
||
if (entry->tts_calc) {
|
||
if (entry->tts_calc < MAX_PROFILE_DECO)
|
||
put_format_loc(b, translate("gettextFromC", "TTS: %umin (calc)\n"), DIV_UP(entry->tts_calc, 60));
|
||
else
|
||
put_string(b, translate("gettextFromC", "TTS: >2h (calc)\n"));
|
||
}
|
||
if (entry->rbt)
|
||
put_format_loc(b, translate("gettextFromC", "RBT: %umin\n"), DIV_UP(entry->rbt, 60));
|
||
if (prefs.decoinfo) {
|
||
if (entry->surface_gf > 0)
|
||
put_format(b, translate("gettextFromC", "Surface GF %.0f%%\n"), entry->surface_gf);
|
||
if (entry->ceiling) {
|
||
depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit);
|
||
put_format_loc(b, translate("gettextFromC", "Calculated ceiling %.0f%s\n"), depthvalue, depth_unit);
|
||
if (prefs.calcalltissues) {
|
||
int k;
|
||
for (k = 0; k < 16; k++) {
|
||
if (entry->ceilings[k]) {
|
||
depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit);
|
||
put_format_loc(b, translate("gettextFromC", "Tissue %.0fmin: %.1f%s\n"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (entry->icd_warning)
|
||
put_format(b, "%s", translate("gettextFromC", "ICD in leading tissue\n"));
|
||
if (entry->heartbeat && prefs.hrgraph)
|
||
put_format_loc(b, translate("gettextFromC", "heart rate: %d\n"), entry->heartbeat);
|
||
if (entry->bearing >= 0)
|
||
put_format_loc(b, translate("gettextFromC", "bearing: %d\n"), entry->bearing);
|
||
if (entry->running_sum) {
|
||
depthvalue = get_depth_units(entry->running_sum / entry->sec, NULL, &depth_unit);
|
||
put_format_loc(b, translate("gettextFromC", "mean depth to here %.1f%s\n"), depthvalue, depth_unit);
|
||
}
|
||
|
||
strip_mb(b);
|
||
}
|
||
|
||
struct plot_data *get_plot_details_new(struct plot_info *pi, int time, struct membuffer *mb)
|
||
{
|
||
struct plot_data *entry = NULL;
|
||
int i;
|
||
|
||
/* The two first and the two last plot entries do not have useful data */
|
||
for (i = 2; i < pi->nr - 2; i++) {
|
||
entry = pi->entry + i;
|
||
if (entry->sec >= time)
|
||
break;
|
||
}
|
||
if (entry)
|
||
plot_string(pi, entry, mb);
|
||
return entry;
|
||
}
|
||
|
||
/* Compare two plot_data entries and writes the results into a string */
|
||
void compare_samples(struct plot_data *e1, struct plot_data *e2, char *buf, int bufsize, int sum)
|
||
{
|
||
struct plot_data *start, *stop, *data;
|
||
const char *depth_unit, *pressure_unit, *vertical_speed_unit;
|
||
char *buf2 = malloc(bufsize);
|
||
int avg_speed, max_asc_speed, max_desc_speed;
|
||
int delta_depth, avg_depth, max_depth, min_depth;
|
||
int bar_used, last_pressure, pressurevalue;
|
||
int count, last_sec, delta_time;
|
||
bool crossed_tankchange = false;
|
||
|
||
double depthvalue, speedvalue;
|
||
|
||
if (bufsize > 0)
|
||
buf[0] = '\0';
|
||
if (e1 == NULL || e2 == NULL) {
|
||
free(buf2);
|
||
return;
|
||
}
|
||
|
||
if (e1->sec < e2->sec) {
|
||
start = e1;
|
||
stop = e2;
|
||
} else if (e1->sec > e2->sec) {
|
||
start = e2;
|
||
stop = e1;
|
||
} else {
|
||
free(buf2);
|
||
return;
|
||
}
|
||
count = 0;
|
||
avg_speed = 0;
|
||
max_asc_speed = 0;
|
||
max_desc_speed = 0;
|
||
|
||
delta_depth = abs(start->depth - stop->depth);
|
||
delta_time = abs(start->sec - stop->sec);
|
||
avg_depth = 0;
|
||
max_depth = 0;
|
||
min_depth = INT_MAX;
|
||
bar_used = 0;
|
||
|
||
last_sec = start->sec;
|
||
last_pressure = GET_PRESSURE(start, 0);
|
||
|
||
data = start;
|
||
while (data != stop) {
|
||
data = start + count;
|
||
if (sum)
|
||
avg_speed += abs(data->speed) * (data->sec - last_sec);
|
||
else
|
||
avg_speed += data->speed * (data->sec - last_sec);
|
||
avg_depth += data->depth * (data->sec - last_sec);
|
||
|
||
if (data->speed > max_desc_speed)
|
||
max_desc_speed = data->speed;
|
||
if (data->speed < max_asc_speed)
|
||
max_asc_speed = data->speed;
|
||
|
||
if (data->depth < min_depth)
|
||
min_depth = data->depth;
|
||
if (data->depth > max_depth)
|
||
max_depth = data->depth;
|
||
/* Try to detect gas changes - this hack might work for some side mount scenarios? */
|
||
if (GET_PRESSURE(data, 0) < last_pressure + 2000)
|
||
bar_used += last_pressure - GET_PRESSURE(data, 0);
|
||
|
||
count += 1;
|
||
last_sec = data->sec;
|
||
last_pressure = GET_PRESSURE(data, 0);
|
||
}
|
||
avg_depth /= stop->sec - start->sec;
|
||
avg_speed /= stop->sec - start->sec;
|
||
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "ΔT:%d:%02dmin"), delta_time / 60, delta_time % 60);
|
||
memcpy(buf2, buf, bufsize);
|
||
|
||
depthvalue = get_depth_units(delta_depth, NULL, &depth_unit);
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ΔD:%.1f%s"), buf2, depthvalue, depth_unit);
|
||
memcpy(buf2, buf, bufsize);
|
||
|
||
depthvalue = get_depth_units(min_depth, NULL, &depth_unit);
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↓D:%.1f%s"), buf2, depthvalue, depth_unit);
|
||
memcpy(buf2, buf, bufsize);
|
||
|
||
depthvalue = get_depth_units(max_depth, NULL, &depth_unit);
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↑D:%.1f%s"), buf2, depthvalue, depth_unit);
|
||
memcpy(buf2, buf, bufsize);
|
||
|
||
depthvalue = get_depth_units(avg_depth, NULL, &depth_unit);
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s øD:%.1f%s\n"), buf2, depthvalue, depth_unit);
|
||
memcpy(buf2, buf, bufsize);
|
||
|
||
speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit);
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↓V:%.2f%s"), buf2, speedvalue, vertical_speed_unit);
|
||
memcpy(buf2, buf, bufsize);
|
||
|
||
speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit);
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↑V:%.2f%s"), buf2, speedvalue, vertical_speed_unit);
|
||
memcpy(buf2, buf, bufsize);
|
||
|
||
speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit);
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s øV:%.2f%s"), buf2, speedvalue, vertical_speed_unit);
|
||
memcpy(buf2, buf, bufsize);
|
||
|
||
/* Only print if gas has been used */
|
||
if (bar_used) {
|
||
pressurevalue = get_pressure_units(bar_used, &pressure_unit);
|
||
memcpy(buf2, buf, bufsize);
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ΔP:%d%s"), buf2, pressurevalue, pressure_unit);
|
||
cylinder_t *cyl = displayed_dive.cylinder + 0;
|
||
/* if we didn't cross a tank change and know the cylidner size as well, show SAC rate */
|
||
if (!crossed_tankchange && cyl->type.size.mliter) {
|
||
double volume_value;
|
||
int volume_precision;
|
||
const char *volume_unit;
|
||
struct plot_data *first = start;
|
||
struct plot_data *last = stop;
|
||
while (first < stop && GET_PRESSURE(first, 0) == 0)
|
||
first++;
|
||
while (last > first && GET_PRESSURE(last, 0) == 0)
|
||
last--;
|
||
|
||
pressure_t first_pressure = { GET_PRESSURE(first, 0) };
|
||
pressure_t stop_pressure = { GET_PRESSURE(last, 0) };
|
||
int volume_used = gas_volume(cyl, first_pressure) - gas_volume(cyl, stop_pressure);
|
||
|
||
/* Mean pressure in ATM */
|
||
double atm = depth_to_atm(avg_depth, &displayed_dive);
|
||
|
||
/* milliliters per minute */
|
||
int sac = lrint(volume_used / atm * 60 / delta_time);
|
||
memcpy(buf2, buf, bufsize);
|
||
volume_value = get_volume_units(sac, &volume_precision, &volume_unit);
|
||
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s SAC:%.*f%s/min"), buf2, volume_precision, volume_value, volume_unit);
|
||
}
|
||
}
|
||
|
||
free(buf2);
|
||
}
|