subsurface/core/divecomputer.cpp
Linus Torvalds 914cdb102b Fix Suunto FIT file import dive duration mis-calculation
The Suunto FIT files end up creating a sample every second, but a lot of
those samples with no depth information, marked as "depth.mm" being negative.

That doesn't end up being a problem for subsurface, _except_ that it
really confuses our "dc_fixup_duration()" logic, and the dive duration
ends up being completely nonsensical (generally roughly by a factor of
five: every tenth sample has a depth, and we only count samples that
"begin or end under water" as being relevant for the dive duration, so
two out of the ten samples will count towards the dive time).

Saving the dive will then not save these invalid depths, so saving and
reloading the dive ends up fixing the dive duration calculation.

The fix is trivial - we just ignore samples with negative depth in
dc_fixup_duration().

The FIT file parser should probably be taught to not even bother sending
empty samples to subsurface, but that's a separate cleanup.  This fixes
the actual bad behavior.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-08-26 21:01:32 -07:00

400 lines
11 KiB
C++

// SPDX-License-Identifier: GPL-2.0
#include "divecomputer.h"
#include "errorhelper.h"
#include "event.h"
#include "extradata.h"
#include "pref.h"
#include "sample.h"
#include "subsurface-string.h"
#include <string.h>
#include <stdlib.h>
#include <tuple>
divecomputer::divecomputer() = default;
divecomputer::~divecomputer() = default;
divecomputer::divecomputer(const divecomputer &) = default;
divecomputer::divecomputer(divecomputer &&) = default;
divecomputer &divecomputer::operator=(const divecomputer &) = default;
/*
* Good fake dive profiles are hard.
*
* "depthtime" is the integral of the dive depth over
* time ("area" of the dive profile). We want that
* area to match the average depth (avg_d*max_t).
*
* To do that, we generate a 6-point profile:
*
* (0, 0)
* (t1, max_d)
* (t2, max_d)
* (t3, d)
* (t4, d)
* (max_t, 0)
*
* with the same ascent/descent rates between the
* different depths.
*
* NOTE: avg_d, max_d and max_t are given constants.
* The rest we can/should play around with to get a
* good-looking profile.
*
* That six-point profile gives a total area of:
*
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
*
* And the "same ascent/descent rates" requirement
* gives us (time per depth must be same):
*
* t1 / max_d = (t3-t2) / (max_d-d)
* t1 / max_d = (max_t-t4) / d
*
* We also obviously require:
*
* 0 <= t1 <= t2 <= t3 <= t4 <= max_t
*
* Let us call 'd_frac = d / max_d', and we get:
*
* Total area must match average depth-time:
*
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
* max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
* max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
* t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
*
* and descent slope must match ascent slopes:
*
* t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
* t1 = (t3-t2)/(1-d_frac)
*
* and
*
* t1 / max_d = (max_t-t4) / (max_d*d_frac)
* t1 = (max_t-t4)/d_frac
*
* In general, we have more free variables than we have constraints,
* but we can aim for certain basics, like a good ascent slope.
*/
static int fill_samples(std::vector<sample> &s, int max_d, int avg_d, int max_t, double slope, double d_frac)
{
double t_frac = max_t * (1 - avg_d / (double)max_d);
int t1 = lrint(max_d / slope);
int t4 = lrint(max_t - t1 * d_frac);
int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
int t2 = lrint(t3 - t1 * (1 - d_frac));
if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
return 0;
s[1].time.seconds = t1;
s[1].depth.mm = max_d;
s[2].time.seconds = t2;
s[2].depth.mm = max_d;
s[3].time.seconds = t3;
s[3].depth.mm = lrint(max_d * d_frac);
s[4].time.seconds = t4;
s[4].depth.mm = lrint(max_d * d_frac);
return 1;
}
/* we have no average depth; instead of making up a random average depth
* we should assume either a PADI rectangular profile (for short and/or
* shallow dives) or more reasonably a six point profile with a 3 minute
* safety stop at 5m */
static void fill_samples_no_avg(std::vector<sample> &s, int max_d, int max_t, double slope)
{
// shallow or short dives are just trapecoids based on the given slope
if (max_d < 10000 || max_t < 600) {
s[1].time.seconds = lrint(max_d / slope);
s[1].depth.mm = max_d;
s[2].time.seconds = max_t - lrint(max_d / slope);
s[2].depth.mm = max_d;
} else {
s[1].time.seconds = lrint(max_d / slope);
s[1].depth.mm = max_d;
s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
s[2].depth.mm = max_d;
s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
s[3].depth.mm = 5000;
s[4].time.seconds = max_t - lrint(5000 / slope);
s[4].depth.mm = 5000;
}
}
void fake_dc(struct divecomputer *dc)
{
/* The dive has no samples, so create a few fake ones */
int max_t = dc->duration.seconds;
int max_d = dc->maxdepth.mm;
int avg_d = dc->meandepth.mm;
if (!max_t || !max_d) {
dc->samples.clear();
return;
}
std::vector<struct sample> &fake = dc->samples;
fake.resize(6);
fake[5].time.seconds = max_t;
for (int i = 0; i < 6; i++) {
fake[i].bearing.degrees = -1;
fake[i].ndl.seconds = -1;
}
/* Set last manually entered time to the total dive length */
dc->last_manual_time = dc->duration;
/*
* We want to fake the profile so that the average
* depth ends up correct. However, in the absence of
* a reasonable average, let's just make something
* up. Note that 'avg_d == max_d' is _not_ a reasonable
* average.
* We explicitly treat avg_d == 0 differently */
if (avg_d == 0) {
/* we try for a sane slope, but bow to the insanity of
* the user supplied data */
fill_samples_no_avg(fake, max_d, max_t, std::max(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
if (fake[3].time.seconds == 0) { // just a 4 point profile
dc->samples.resize(4);
fake[3].time.seconds = max_t;
}
return;
}
if (avg_d < max_d / 10 || avg_d >= max_d) {
avg_d = (max_d + 10000) / 3;
if (avg_d > max_d)
avg_d = max_d * 2 / 3;
}
if (!avg_d)
avg_d = 1;
/*
* Ok, first we try a basic profile with a specific ascent
* rate (5 meters per minute) and d_frac (1/3).
*/
if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
return;
/*
* Ok, assume that didn't work because we cannot make the
* average come out right because it was a quick deep dive
* followed by a much shallower region
*/
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
return;
/*
* Uhhuh. That didn't work. We'd need to find a good combination that
* satisfies our constraints. Currently, we don't, we just give insane
* slopes.
*/
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
return;
/* Even that didn't work? Give up, there's something wrong */
}
divemode_loop::divemode_loop(const struct divecomputer &dc) :
dc(dc), last(dc.divemode), loop("modechange")
{
/* on first invocation, get first event (if any) */
ev = loop.next(dc);
}
divemode_t divemode_loop::next(int time)
{
while (ev && ev->time.seconds <= time) {
last = static_cast<divemode_t>(ev->value);
ev = loop.next(dc);
}
return last;
}
/* helper function to make it easier to work with our structures
* we don't interpolate here, just use the value from the last sample up to that time */
int get_depth_at_time(const struct divecomputer *dc, unsigned int time)
{
int depth = 0;
if (dc) {
for (const auto &sample: dc->samples) {
if (sample.time.seconds > (int)time)
break;
depth = sample.depth.mm;
}
}
return depth;
}
struct sample *prepare_sample(struct divecomputer *dc)
{
if (dc) {
dc->samples.emplace_back();
auto &sample = dc->samples.back();
// Copy the sensor numbers - but not the pressure values
// from the previous sample if any.
if (dc->samples.size() >= 2) {
auto &prev = dc->samples[dc->samples.size() - 2];
for (int idx = 0; idx < MAX_SENSORS; idx++)
sample.sensor[idx] = prev.sensor[idx];
}
// Init some values with -1
sample.bearing.degrees = -1;
sample.ndl.seconds = -1;
return &sample;
}
return NULL;
}
void append_sample(const struct sample &sample, struct divecomputer *dc)
{
dc->samples.push_back(sample);
}
/*
* Calculate how long we were actually under water, and the average
* depth while under water.
*
* This ignores any surface time in the middle of the dive.
*/
void fixup_dc_duration(struct divecomputer &dc)
{
int duration = 0;
int lasttime = 0, lastdepth = 0, depthtime = 0;
for (const auto &sample: dc.samples) {
int time = sample.time.seconds;
int depth = sample.depth.mm;
/* Do we *have* a depth? */
if (depth < 0)
continue;
/* We ignore segments at the surface */
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
duration += time - lasttime;
depthtime += (time - lasttime) * (depth + lastdepth) / 2;
}
lastdepth = depth;
lasttime = time;
}
if (duration) {
dc.duration.seconds = duration;
dc.meandepth.mm = (depthtime + duration / 2) / duration;
}
}
static bool operator<(const event &ev1, const event &ev2)
{
return std::tie(ev1.time.seconds, ev1.name) <
std::tie(ev2.time.seconds, ev2.name);
}
int add_event_to_dc(struct divecomputer *dc, struct event ev)
{
// Do a binary search for insertion point
auto it = std::lower_bound(dc->events.begin(), dc->events.end(), ev);
int idx = it - dc->events.begin();
dc->events.insert(it, ev);
return idx;
}
struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const std::string &name)
{
struct event ev(time, type, flags, value, name);
int idx = add_event_to_dc(dc, std::move(ev));
return &dc->events[idx];
}
/* Remove given event from dive computer. Returns the removed event. */
struct event remove_event_from_dc(struct divecomputer *dc, int idx)
{
if (idx < 0 || static_cast<size_t>(idx) > dc->events.size()) {
report_info("removing invalid event %d", idx);
return event();
}
event res = std::move(dc->events[idx]);
dc->events.erase(dc->events.begin() + idx);
return res;
}
struct event *get_event(struct divecomputer *dc, int idx)
{
if (idx < 0 || static_cast<size_t>(idx) > dc->events.size()) {
report_info("accessing invalid event %d", idx);
return nullptr;
}
return &dc->events[idx];
}
void add_extra_data(struct divecomputer *dc, const std::string &key, const std::string &value)
{
if (key == "Serial") {
dc->deviceid = calculate_string_hash(value.c_str());
dc->serial = value;
}
if (key == "FW Version")
dc->fw_version = value;
dc->extra_data.push_back(extra_data { key, value });
}
/*
* Match two dive computer entries against each other, and
* tell if it's the same dive. Return 0 if "don't know",
* positive for "same dive" and negative for "definitely
* not the same dive"
*/
int match_one_dc(const struct divecomputer &a, const struct divecomputer &b)
{
/* Not same model? Don't know if matching.. */
if (a.model.empty() || b.model.empty())
return 0;
if (strcasecmp(a.model.c_str(), b.model.c_str()))
return 0;
/* Different device ID's? Don't know */
if (a.deviceid != b.deviceid)
return 0;
/* Do we have dive IDs? */
if (!a.diveid || !b.diveid)
return 0;
/*
* If they have different dive ID's on the same
* dive computer, that's a definite "same or not"
*/
return a.diveid == b.diveid && a.when == b.when ? 1 : -1;
}
static const char *planner_dc_name = "planned dive";
bool is_dc_planner(const struct divecomputer *dc)
{
return dc->model == planner_dc_name;
}
void make_planner_dc(struct divecomputer *dc)
{
dc->model = planner_dc_name;
}
const char *manual_dc_name = "manually added dive";
bool is_dc_manually_added_dive(const struct divecomputer *dc)
{
return dc->model == manual_dc_name;
}
void make_manually_added_dive_dc(struct divecomputer *dc)
{
dc->model = manual_dc_name;
}