mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-28 05:00:20 +00:00
016365c5f1
Here is what Linus reported: I think you have made a mistake in trying to translate some of libdivecomputer.c Translating some of those things based on locale is *wrong*, because they are saved in the XML file. That covers at least the warnings: they'll get translated when you import them, and then saved to the XML file as that translation, but now if you start subsurface in another locale, they will not get translated back. So translating XML file contents is fundamentally buggy. It just shouldn't be done. So all the "translations" for the event handling are buggy, and generate crap. Please don't do that. Leave them as English. And of course he is absolutely right. However, instead of not translating them at all, this commit fixes things a better way - we now mark the strings for translation but store the original English strings everywhere (in the in-memory data structure as well as in the XML file). Only when we actually display something on the screen (in a tooltip or in the filter dialog) do we actually translate the strings into the native language. This should address both Linus' issue and the desire to have localized event texts. Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
247 lines
8.1 KiB
C
247 lines
8.1 KiB
C
/*
|
|
* uemis.c
|
|
*
|
|
* UEMIS SDA file importer
|
|
* AUTHOR: Dirk Hohndel - Copyright 2011
|
|
*
|
|
* Licensed under the MIT license.
|
|
*/
|
|
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <glib/gi18n.h>
|
|
#define __USE_XOPEN
|
|
#include <time.h>
|
|
|
|
#include "dive.h"
|
|
#include "uemis.h"
|
|
|
|
/*
|
|
* following code is based on code found in at base64.sourceforge.net/b64.c
|
|
* AUTHOR: Bob Trower 08/04/01
|
|
* COPYRIGHT: Copyright (c) Trantor Standard Systems Inc., 2001
|
|
* NOTE: This source code may be used as you wish, subject to
|
|
* the MIT license.
|
|
*/
|
|
/*
|
|
* Translation Table to decode (created by Bob Trower)
|
|
*/
|
|
static const char cd64[]="|$$$}rstuvwxyz{$$$$$$$>?@ABCDEFGHIJKLMNOPQRSTUVW$$$$$$XYZ[\\]^_`abcdefghijklmnopq";
|
|
|
|
/*
|
|
* decodeblock -- decode 4 '6-bit' characters into 3 8-bit binary bytes
|
|
*/
|
|
static void decodeblock( unsigned char in[4], unsigned char out[3] ) {
|
|
out[ 0 ] = (unsigned char ) (in[0] << 2 | in[1] >> 4);
|
|
out[ 1 ] = (unsigned char ) (in[1] << 4 | in[2] >> 2);
|
|
out[ 2 ] = (unsigned char ) (((in[2] << 6) & 0xc0) | in[3]);
|
|
}
|
|
|
|
/*
|
|
* decode a base64 encoded stream discarding padding, line breaks and noise
|
|
*/
|
|
static void decode( uint8_t *inbuf, uint8_t *outbuf, int inbuf_len ) {
|
|
uint8_t in[4], out[3], v;
|
|
int i,len,indx_in=0,indx_out=0;
|
|
|
|
while (indx_in < inbuf_len) {
|
|
for (len = 0, i = 0; i < 4 && (indx_in < inbuf_len); i++ ) {
|
|
v = 0;
|
|
while ((indx_in < inbuf_len) && v == 0) {
|
|
v = inbuf[indx_in++];
|
|
v = ((v < 43 || v > 122) ? 0 : cd64[ v - 43 ]);
|
|
if (v)
|
|
v = ((v == '$') ? 0 : v - 61);
|
|
}
|
|
if (indx_in < inbuf_len) {
|
|
len++;
|
|
if (v)
|
|
in[i] = (v - 1);
|
|
}
|
|
else
|
|
in[i] = 0;
|
|
}
|
|
if( len ) {
|
|
decodeblock( in, out );
|
|
for( i = 0; i < len - 1; i++ )
|
|
outbuf[indx_out++] = out[i];
|
|
}
|
|
}
|
|
}
|
|
/* end code from Bob Trower */
|
|
|
|
/*
|
|
* pressure_to_depth: In centibar. And when converting to
|
|
* depth, I'm just going to always use saltwater, because I
|
|
* think "true depth" is just stupid. From a diving standpoint,
|
|
* "true depth" is pretty much completely pointless, unless
|
|
* you're doing some kind of underwater surveying work.
|
|
*
|
|
* So I give water depths in "pressure depth", always assuming
|
|
* salt water. So one atmosphere per 10m.
|
|
*/
|
|
static int pressure_to_depth(uint16_t value)
|
|
{
|
|
double atm, cm;
|
|
|
|
atm = bar_to_atm(value / 100.0);
|
|
cm = 100 * atm + 0.5;
|
|
return (cm > 0) ? 10 * (long)cm : 0;
|
|
}
|
|
|
|
/*
|
|
* convert the base64 data blog
|
|
*/
|
|
int uemis_convert_base64(char *base64, uint8_t **data) {
|
|
int len,datalen;
|
|
|
|
len = strlen(base64);
|
|
datalen = (len/4 + 1)*3;
|
|
if (datalen < 0x123+0x25) {
|
|
/* less than header + 1 sample??? */
|
|
fprintf(stderr,"suspiciously short data block\n");
|
|
}
|
|
*data = malloc(datalen);
|
|
if (! *data) {
|
|
datalen = 0;
|
|
fprintf(stderr,"Out of memory\n");
|
|
goto bail;
|
|
}
|
|
decode(base64, *data, len);
|
|
|
|
if (memcmp(*data,"Dive\01\00\00",7))
|
|
fprintf(stderr,"Missing Dive100 header\n");
|
|
|
|
bail:
|
|
return datalen;
|
|
}
|
|
|
|
/* Create events from the flag bits;
|
|
* These bits basically represent what is displayed on screen at sample time.
|
|
* Many of these 'warnings' are way hyper-active and seriously clutter the
|
|
* profile plot - so these are disabled by default
|
|
*
|
|
* we mark all the strings for translation, but we store the untranslated
|
|
* strings and only convert them when displaying them on screen - this way
|
|
* when we write them to the XML file we'll always have the English strings,
|
|
* regardless of locale
|
|
*/
|
|
void uemis_event(struct dive *dive, struct sample *sample, uemis_sample_t *u_sample)
|
|
{
|
|
uint8_t *flags = u_sample->flags;
|
|
|
|
if (flags[1] & 0x01)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Safety Stop Violation"));
|
|
if (flags[1] & 0x08)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Speed Alarm"));
|
|
#if WANT_CRAZY_WARNINGS
|
|
if (flags[1] & 0x06) /* both bits 1 and 2 are a warning */
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Speed Warning"));
|
|
if (flags[1] & 0x10)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("PO2 Green Warning"));
|
|
#endif
|
|
if (flags[1] & 0x20)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("PO2 Ascend Warning"));
|
|
if (flags[1] & 0x40)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("PO2 Ascend Alarm"));
|
|
/* flags[2] reflects the deco / time bar
|
|
* flags[3] reflects more display details on deco and pO2 */
|
|
if (flags[4] & 0x01)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Tank Pressure Info"));
|
|
if (flags[4] & 0x04)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("RGT Warning"));
|
|
if (flags[4] & 0x08)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("RGT Alert"));
|
|
if (flags[4] & 0x40)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Tank Change Suggested"));
|
|
if (flags[4] & 0x80)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Depth Limit Exceeded"));
|
|
if (flags[5] & 0x01)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Max Deco Time Warning"));
|
|
if (flags[5] & 0x04)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Dive Time Info"));
|
|
if (flags[5] & 0x08)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Dive Time Alert"));
|
|
if (flags[5] & 0x10)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Marker"));
|
|
if (flags[6] & 0x02)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("No Tank Data"));
|
|
if (flags[6] & 0x04)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Low Battery Warning"));
|
|
if (flags[6] & 0x08)
|
|
add_event(dive, sample->time.seconds, 0, 0, 0, N_("Low Battery Alert"));
|
|
/* flags[7] reflects the little on screen icons that remind of previous
|
|
* warnings / alerts - not useful for events */
|
|
}
|
|
|
|
/*
|
|
* parse uemis base64 data blob into struct dive
|
|
*/
|
|
void uemis_parse_divelog_binary(char *base64, void *datap) {
|
|
int datalen;
|
|
int i;
|
|
uint8_t *data;
|
|
struct sample *sample;
|
|
uemis_sample_t *u_sample;
|
|
struct dive **divep = datap;
|
|
struct dive *dive = *divep;
|
|
int template, gasoffset;
|
|
|
|
datalen = uemis_convert_base64(base64, &data);
|
|
|
|
/* dive template in use:
|
|
0 = air
|
|
1 = nitrox (B)
|
|
2 = nitrox (B+D)
|
|
3 = nitrox (B+T+D)
|
|
uemis cylinder data is insane - it stores seven tank settings in a block
|
|
and the template tells us which of the four groups of tanks we need to look at
|
|
*/
|
|
gasoffset = template = *(uint8_t *)(data+115);
|
|
if (template == 3)
|
|
gasoffset = 4;
|
|
if (template == 0)
|
|
template = 1;
|
|
for (i = 0; i < template; i++) {
|
|
float volume = *(float *)(data+116+25*(gasoffset + i)) * 1000.0;
|
|
/* uemis always assumes a working pressure of 202.6bar (!?!?) - I first thought
|
|
* it was 3000psi, but testing against all my dives gets me that strange number.
|
|
* Still, that's of course completely bogus and shows they don't get how
|
|
* cylinders are named in non-metric parts of the world...
|
|
* we store the incorrect working pressure to get the SAC calculations "close"
|
|
* but the user will have to correct this manually
|
|
*/
|
|
dive->cylinder[i].type.size.mliter = volume;
|
|
dive->cylinder[i].type.workingpressure.mbar = 202600;
|
|
dive->cylinder[i].gasmix.o2.permille = *(uint8_t *)(data+120+25*(gasoffset + i)) * 10 + 0.5;
|
|
dive->cylinder[i].gasmix.he.permille = 0;
|
|
}
|
|
/* first byte of divelog data is at offset 0x123 */
|
|
i = 0x123;
|
|
u_sample = (uemis_sample_t *)(data + i);
|
|
while ((i < datalen) && (u_sample->dive_time)) {
|
|
/* it seems that a dive_time of 0 indicates the end of the valid readings */
|
|
/* the SDA usually records more samples after the end of the dive --
|
|
* we want to discard those, but not cut the dive short; sadly the dive
|
|
* duration in the header is a) in minutes and b) up to 3 minutes short */
|
|
if (u_sample->dive_time > dive->duration.seconds + 180)
|
|
break;
|
|
sample = prepare_sample(divep);
|
|
dive = *divep; /* prepare_sample might realloc the dive */
|
|
sample->time.seconds = u_sample->dive_time;
|
|
sample->depth.mm = pressure_to_depth(u_sample->water_pressure);
|
|
sample->temperature.mkelvin = (u_sample->dive_temperature * 100) + 273150;
|
|
sample->cylinderindex = u_sample->active_tank;
|
|
sample->cylinderpressure.mbar =
|
|
(u_sample->tank_pressure_high * 256 + u_sample->tank_pressure_low) * 10;
|
|
uemis_event(dive, sample, u_sample);
|
|
finish_sample(dive);
|
|
i += 0x25;
|
|
u_sample++;
|
|
}
|
|
dive->duration.seconds = sample->time.seconds - 1;
|
|
return;
|
|
}
|