2017-04-27 18:24:53 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2011-08-31 01:23:59 +00:00
|
|
|
#ifndef DIVE_H
|
|
|
|
#define DIVE_H
|
|
|
|
|
2011-09-03 20:19:26 +00:00
|
|
|
#include <stdlib.h>
|
2012-11-25 19:44:27 +00:00
|
|
|
#include <stdint.h>
|
2011-09-03 20:19:26 +00:00
|
|
|
#include <time.h>
|
2013-01-08 23:48:23 +00:00
|
|
|
#include <math.h>
|
2013-12-19 13:00:50 +00:00
|
|
|
#include <zip.h>
|
2014-02-15 06:36:49 +00:00
|
|
|
#include <sqlite3.h>
|
2014-05-06 21:08:17 +00:00
|
|
|
#include <string.h>
|
2017-02-24 07:06:48 +00:00
|
|
|
#include <sys/stat.h>
|
2015-02-12 05:46:02 +00:00
|
|
|
#include "divesite.h"
|
2013-10-07 04:04:25 +00:00
|
|
|
|
|
|
|
/* Windows has no MIN/MAX macros - so let's just roll our own */
|
|
|
|
#define MIN(x, y) ({ \
|
2014-06-15 20:45:23 +00:00
|
|
|
__typeof__(x) _min1 = (x); \
|
|
|
|
__typeof__(y) _min2 = (y); \
|
2014-03-05 20:19:45 +00:00
|
|
|
(void) (&_min1 == &_min2); \
|
|
|
|
_min1 < _min2 ? _min1 : _min2; })
|
2013-10-07 04:04:25 +00:00
|
|
|
|
|
|
|
#define MAX(x, y) ({ \
|
2014-06-15 20:45:23 +00:00
|
|
|
__typeof__(x) _max1 = (x); \
|
|
|
|
__typeof__(y) _max2 = (y); \
|
2014-03-05 20:19:45 +00:00
|
|
|
(void) (&_max1 == &_max2); \
|
|
|
|
_max1 > _max2 ? _max1 : _max2; })
|
2011-09-03 20:19:26 +00:00
|
|
|
|
2014-11-24 13:20:25 +00:00
|
|
|
#define IS_FP_SAME(_a, _b) (fabs((_a) - (_b)) <= 0.000001 * MAX(fabs(_a), fabs(_b)))
|
2014-01-21 20:43:07 +00:00
|
|
|
|
2014-05-06 21:08:17 +00:00
|
|
|
static inline int same_string(const char *a, const char *b)
|
|
|
|
{
|
2014-05-22 18:40:22 +00:00
|
|
|
return !strcmp(a ?: "", b ?: "");
|
2014-05-06 21:08:17 +00:00
|
|
|
}
|
|
|
|
|
2016-07-23 08:48:15 +00:00
|
|
|
static inline int same_string_caseinsensitive(const char *a, const char *b)
|
|
|
|
{
|
|
|
|
return !strcasecmp(a ?: "", b ?: "");
|
|
|
|
}
|
|
|
|
|
2017-10-30 19:19:24 +00:00
|
|
|
static inline int includes_string_caseinsensitive(const char *haystack, const char *needle)
|
|
|
|
{
|
|
|
|
if (!needle)
|
|
|
|
return 1; /* every string includes the NULL string */
|
|
|
|
if (!haystack)
|
|
|
|
return 0; /* nothing is included in the NULL string */
|
|
|
|
int len = strlen(needle);
|
|
|
|
while (*haystack) {
|
|
|
|
if (strncasecmp(haystack, needle, len))
|
|
|
|
return 1;
|
|
|
|
haystack++;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-07-03 04:05:22 +00:00
|
|
|
static inline char *copy_string(const char *s)
|
|
|
|
{
|
2015-06-27 10:58:47 +00:00
|
|
|
return (s && *s) ? strdup(s) : NULL;
|
2014-07-03 04:05:22 +00:00
|
|
|
}
|
|
|
|
|
2011-11-05 10:39:17 +00:00
|
|
|
#include <libxml/tree.h>
|
2013-03-10 08:24:49 +00:00
|
|
|
#include <libxslt/transform.h>
|
2014-07-16 08:57:29 +00:00
|
|
|
#include <libxslt/xsltutils.h>
|
2013-02-16 01:03:42 +00:00
|
|
|
|
|
|
|
#include "sha1.h"
|
2014-05-10 23:42:27 +00:00
|
|
|
#include "units.h"
|
2011-09-05 20:14:53 +00:00
|
|
|
|
2013-04-01 10:51:49 +00:00
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
2013-05-06 06:07:03 +00:00
|
|
|
#else
|
|
|
|
#include <stdbool.h>
|
2013-04-01 10:51:49 +00:00
|
|
|
#endif
|
|
|
|
|
2015-02-13 07:35:52 +00:00
|
|
|
extern int last_xml_version;
|
|
|
|
|
2015-01-01 16:00:46 +00:00
|
|
|
enum dive_comp_type {OC, CCR, PSCR, FREEDIVE, NUM_DC_TYPE}; // Flags (Open-circuit and Closed-circuit-rebreather) for setting dive computer type
|
2017-01-23 16:35:27 +00:00
|
|
|
enum cylinderuse {OC_GAS, DILUENT, OXYGEN, NOT_USED, NUM_GAS_USE}; // The different uses for cylinders
|
2014-11-16 22:11:34 +00:00
|
|
|
|
|
|
|
extern const char *cylinderuse_text[];
|
2015-01-10 23:01:15 +00:00
|
|
|
extern const char *divemode_text[];
|
2014-06-11 17:48:48 +00:00
|
|
|
|
2011-09-12 16:47:55 +00:00
|
|
|
struct gasmix {
|
2011-08-31 01:23:59 +00:00
|
|
|
fraction_t o2;
|
Start parsing gas mixes
The suunto xml is just completely crazy. What's the helium percentage
companion to "o2pct"? Would it be "hepct"? No. It's "hepct_0".
Ok, so they didn't number the first o2pct, which could be seen as sane:
that's the only mix value that should always exist. And they clearly
started their indexing with 0. So with multiple mixes, you'd then
expect "o2pct_1" and "hepct_1", right?
Wrong! Because XML people are crazy, the second O2 mix percentage is
obviously "o2pct_2". So the O2 percentages are one-based, with an
implicit one. But the He percentages are zero-based with an explicit
zero. So the second mix is "o2pct_2" and "hepct_1".
I'd like to ask what drugs Suunto people are on, but hey, it's a Finnish
company. No need to ask. Vodka explains everything. LOTS AND LOTS OF
VODKA.
In comparison, the libdivecomputer output is nice and sane, and uses a
'gasmix' node. Of course, now we have so many different XML nesting
nodes to check that I just made it an array of different noces. That
also allows me to mark the suunto case, so that we only do the "check
for crazy alcoholic xml entries" when it's a suunto file.
The "type of file" thing is probably a good idea for deciding on default
units too. Some day.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-01 20:32:52 +00:00
|
|
|
fraction_t he;
|
2011-09-12 16:47:55 +00:00
|
|
|
};
|
2011-08-31 01:23:59 +00:00
|
|
|
|
2014-02-28 04:09:57 +00:00
|
|
|
typedef struct
|
|
|
|
{
|
2011-08-31 01:23:59 +00:00
|
|
|
volume_t size;
|
2011-09-04 03:31:18 +00:00
|
|
|
pressure_t workingpressure;
|
2014-02-28 04:09:57 +00:00
|
|
|
const char *description; /* "LP85", "AL72", "AL80", "HP100+" or whatever */
|
2011-09-04 03:31:18 +00:00
|
|
|
} cylinder_type_t;
|
|
|
|
|
2014-02-28 04:09:57 +00:00
|
|
|
typedef struct
|
|
|
|
{
|
2011-09-04 03:31:18 +00:00
|
|
|
cylinder_type_t type;
|
2011-09-12 16:47:55 +00:00
|
|
|
struct gasmix gasmix;
|
2011-11-09 15:37:25 +00:00
|
|
|
pressure_t start, end, sample_start, sample_end;
|
2013-11-12 02:12:43 +00:00
|
|
|
depth_t depth;
|
2014-06-01 19:38:32 +00:00
|
|
|
bool manually_added;
|
2014-06-01 16:59:38 +00:00
|
|
|
volume_t gas_used;
|
2014-07-01 07:37:49 +00:00
|
|
|
volume_t deco_gas_used;
|
Calculate nitrogen and helium gas pressures for CCR after import from CSV
Currently the gas pressures stored in structures of pressure are
calculated using the gasmix composition of the currently selected
cylinder. But with CCR dives the default cylinder is the oxygen
cylinder (here, index 0). However, the gas pressures need to
be calculated using gasmix data from cylinder 1 (the diluent
cylinder). This patch allows setting the appropriate cylinder
for calculating the values in the structures of pressure. It
also allows for correctly calculating gas pressures for any
open circuit cylinders (e.g. bailout) that a CCR diver may
use. This is performed as follows:
1) In dive.h create an enum variable {oxygen, diluent, bailout}
2) Within the definition of cylinder_t, add a member: cylinder_use_type
This stores an enum variable, one of the above.
3) In file.c where the Poseidon CSV data are read in, assign
the appropriate enum values to each of the cylinders.
4) Within the definition of structure dive, add two members:
int oxygen_cylinder_index
int diluent_cylinder_index
This will keep the indices of the two main CCR cylinders.
5) In dive.c create a function get_cylinder_use(). This scans the
cylinders for that dive, looking for a cylinder that has a
particular cylinder_use_type and returns that cylinder index.
6) In dive.c create a function fixup_cylinder_use() that stores the
indices of the oxygen and diluent cylinders in the variables
dive->oxygen_cylinder_index and dive->diluent_cylinder_index,
making use of the function in 4) above.
7) In profile.c, modify function calculate_gas_information_new()
to use the above functions for CCR dives to find the oxygen and
diluent cylinders and to calculate partail gas pressures based
on the diluent cylinder gas mix.
This results in the correct calculation of gas partial pressures
in the case of CCR dives, displaying the correct partial pressure
graphs in the dive profile widget.
Signed-off-by: willem ferguson <willemferguson@zoology.up.ac.za>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2014-11-03 20:11:00 +00:00
|
|
|
enum cylinderuse cylinder_use;
|
2016-07-06 12:40:35 +00:00
|
|
|
bool bestmix_o2;
|
|
|
|
bool bestmix_he;
|
2011-09-04 03:31:18 +00:00
|
|
|
} cylinder_t;
|
2011-08-31 01:23:59 +00:00
|
|
|
|
2014-02-28 04:09:57 +00:00
|
|
|
typedef struct
|
|
|
|
{
|
2011-12-24 03:41:16 +00:00
|
|
|
weight_t weight;
|
2014-02-28 04:09:57 +00:00
|
|
|
const char *description; /* "integrated", "belt", "ankle" */
|
2011-12-24 03:41:16 +00:00
|
|
|
} weightsystem_t;
|
|
|
|
|
2014-06-01 19:07:29 +00:00
|
|
|
/*
|
|
|
|
* Events are currently based straight on what libdivecomputer gives us.
|
|
|
|
* We need to wrap these into our own events at some point to remove some of the limitations.
|
|
|
|
*/
|
|
|
|
struct event {
|
|
|
|
struct event *next;
|
|
|
|
duration_t time;
|
2014-08-17 18:26:21 +00:00
|
|
|
int type;
|
|
|
|
/* This is the annoying libdivecomputer format. */
|
|
|
|
int flags, value;
|
|
|
|
/* .. and this is our "extended" data for some event types */
|
|
|
|
union {
|
|
|
|
/*
|
|
|
|
* Currently only for gas switch events.
|
|
|
|
*
|
|
|
|
* NOTE! The index may be -1, which means "unknown". In that
|
|
|
|
* case, the get_cylinder_index() function will give the best
|
|
|
|
* match with the cylinders in the dive based on gasmix.
|
|
|
|
*/
|
|
|
|
struct {
|
|
|
|
int index;
|
|
|
|
struct gasmix mix;
|
|
|
|
} gas;
|
|
|
|
};
|
2014-06-01 19:07:29 +00:00
|
|
|
bool deleted;
|
|
|
|
char name[];
|
|
|
|
};
|
|
|
|
|
2014-08-17 18:26:21 +00:00
|
|
|
extern int event_is_gaschange(struct event *ev);
|
2014-06-02 19:40:31 +00:00
|
|
|
|
2014-05-29 20:13:11 +00:00
|
|
|
extern int get_pressure_units(int mb, const char **units);
|
2014-02-28 23:38:42 +00:00
|
|
|
extern double get_depth_units(int mm, int *frac, const char **units);
|
2012-08-07 18:24:40 +00:00
|
|
|
extern double get_volume_units(unsigned int ml, int *frac, const char **units);
|
|
|
|
extern double get_temp_units(unsigned int mk, const char **units);
|
|
|
|
extern double get_weight_units(unsigned int grams, int *frac, const char **units);
|
2013-10-04 05:57:48 +00:00
|
|
|
extern double get_vertical_speed_units(unsigned int mms, int *frac, const char **units);
|
2011-09-21 19:12:54 +00:00
|
|
|
|
2017-03-10 06:22:31 +00:00
|
|
|
extern depth_t units_to_depth(double depth);
|
2014-08-19 16:13:55 +00:00
|
|
|
extern int units_to_sac(double volume);
|
2013-10-11 23:39:40 +00:00
|
|
|
|
2013-02-25 23:23:16 +00:00
|
|
|
/* Volume in mliter of a cylinder at pressure 'p' */
|
|
|
|
extern int gas_volume(cylinder_t *cyl, pressure_t p);
|
2016-02-24 20:14:53 +00:00
|
|
|
extern double gas_compressibility_factor(struct gasmix *gas, double bar);
|
2017-01-12 20:19:40 +00:00
|
|
|
extern double isothermal_pressure(struct gasmix *gas, double p1, int volume1, int volume2);
|
2017-05-12 13:36:24 +00:00
|
|
|
extern double gas_density(struct gasmix *gas, int pressure);
|
2017-07-28 18:25:42 +00:00
|
|
|
extern int same_gasmix(struct gasmix *a, struct gasmix *b);
|
2014-10-13 19:19:21 +00:00
|
|
|
|
2013-03-28 16:56:32 +00:00
|
|
|
static inline int get_o2(const struct gasmix *mix)
|
|
|
|
{
|
2014-02-28 04:09:57 +00:00
|
|
|
return mix->o2.permille ?: O2_IN_AIR;
|
2013-03-28 16:56:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline int get_he(const struct gasmix *mix)
|
|
|
|
{
|
|
|
|
return mix->he.permille;
|
|
|
|
}
|
|
|
|
|
2014-09-15 12:55:20 +00:00
|
|
|
struct gas_pressures {
|
|
|
|
double o2, n2, he;
|
|
|
|
};
|
|
|
|
|
2015-01-19 10:32:27 +00:00
|
|
|
extern void fill_pressures(struct gas_pressures *pressures, const double amb_pressure, const struct gasmix *mix, double po2, enum dive_comp_type dctype);
|
2014-10-13 19:19:21 +00:00
|
|
|
|
2014-05-25 16:01:16 +00:00
|
|
|
extern void sanitize_gasmix(struct gasmix *mix);
|
|
|
|
extern int gasmix_distance(const struct gasmix *a, const struct gasmix *b);
|
2016-04-02 20:06:54 +00:00
|
|
|
extern int find_best_gasmix_match(struct gasmix *mix, cylinder_t array[], unsigned int used);
|
2014-05-25 16:01:16 +00:00
|
|
|
|
2014-06-01 22:25:19 +00:00
|
|
|
static inline bool gasmix_is_air(const struct gasmix *gasmix)
|
|
|
|
{
|
2014-06-02 03:56:29 +00:00
|
|
|
int o2 = gasmix->o2.permille;
|
|
|
|
int he = gasmix->he.permille;
|
|
|
|
return (he == 0) && (o2 == 0 || ((o2 >= O2_IN_AIR - 1) && (o2 <= O2_IN_AIR + 1)));
|
2014-06-01 22:25:19 +00:00
|
|
|
}
|
|
|
|
|
2013-01-08 23:48:23 +00:00
|
|
|
/* Linear interpolation between 'a' and 'b', when we are 'part'way into the 'whole' distance from a to b */
|
|
|
|
static inline int interpolate(int a, int b, int part, int whole)
|
|
|
|
{
|
|
|
|
/* It is doubtful that we actually need floating point for this, but whatever */
|
2016-08-30 03:05:20 +00:00
|
|
|
if (whole) {
|
|
|
|
double x = (double)a * (whole - part) + (double)b * part;
|
2017-03-08 06:41:41 +00:00
|
|
|
return lrint(x / whole);
|
2016-08-30 03:05:20 +00:00
|
|
|
}
|
|
|
|
return (a+b)/2;
|
2013-01-08 23:48:23 +00:00
|
|
|
}
|
|
|
|
|
2014-06-02 03:56:29 +00:00
|
|
|
void get_gas_string(const struct gasmix *gasmix, char *text, int len);
|
|
|
|
const char *gasname(const struct gasmix *gasmix);
|
|
|
|
|
Try to sanely download multiple concurrent cylinder pressures
This tries to sanely handle the case of a dive computer reporting
multiple cylinder pressures concurrently.
NOTE! There are various "interesting" situations that this whole issue
brings up:
- some dive computers may report more cylinder pressures than we have
slots for.
Currently we will drop such pressures on the floor if they come for
the same sample, but if they end up being spread across multiple
samples we will end up re-using the slots with different sensor
indexes.
That kind of slot re-use may or may not end up confusing other
subsurface logic - for example, make things believe there was a
cylidner change event.
- some dive computers might send only one sample at a time, but switch
*which* sample they send on a gas switch event. If they also report
the correct sensor number, we'll now start reporting that pressure in
the second slot.
This should all be fine, and is the RightThing(tm) to do, but is
different from what we used to do when we only ever used a single
slot.
- When people actually use multiple sensors, our old save format will
start to need fixing. Right now our save format comes from the CCR
model where the second sensor was always the Oxygen sensor.
We save that pressure fine (except we save it as "o2pressure" - just
an odd historical naming artifact), but we do *not* save the actual
sensor index, because in our traditional format that was always
implicit in the data ("it's the oxygen cylinder").
so while this code hopefully makes our libdivecomputer download do the
right thing, there *will* be further fallout from having multiple
cylinder pressure sensors. We're not done yet.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2017-07-24 18:55:47 +00:00
|
|
|
#define MAX_SENSORS 2
|
2014-06-03 17:21:41 +00:00
|
|
|
struct sample // BASE TYPE BYTES UNITS RANGE DESCRIPTION
|
|
|
|
{ // --------- ----- ----- ----- -----------
|
2014-06-04 06:07:55 +00:00
|
|
|
duration_t time; // uint32_t 4 seconds (0-68 yrs) elapsed dive time up to this sample
|
|
|
|
duration_t stoptime; // uint32_t 4 seconds (0-18 h) time duration of next deco stop
|
|
|
|
duration_t ndl; // uint32_t 4 seconds (0-18 h) time duration before no-deco limit
|
2014-07-09 20:13:36 +00:00
|
|
|
duration_t tts; // uint32_t 4 seconds (0-18 h) time duration to reach the surface
|
Add support for RBT reported sample value
RBT (Remaining Bottom Time) is a value calculated on the fly by some air
integrated divecomputers, for example Uwatec devices. This value is an
estimation based in some heuristic around time function pressure
gradients. This way, RBT would be the time a diver can spend at actual
depth without running out of gas (taking account of ascent, deco, if
required, and rock bottom gas reserve, if set).
Older Uwatec devices just made the calculus and only stored alarm events
if this time value reached zero, but modern devices store the value each
sample, in minutes.
It seems that Suunto Eon Steel is storing RBT values too, in seconds.
Libdivecomputer has supported RBT for a while, but Subsurface just
printed it to stdout and dropped it.
This adds support for RBT value on subsurface sample structure and shows
it in the profile's info box, right under TTS(calc), if selected, where
these two values can be easily compared by humans.
Signed-off-by: Salvador Cuñat <salvador.cunat@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2015-07-22 15:02:33 +00:00
|
|
|
duration_t rbt; // uint32_t 4 seconds (0-18 h) remaining bottom time
|
2014-06-04 06:07:55 +00:00
|
|
|
depth_t depth; // int32_t 4 mm (0-2000 km) dive depth of this sample
|
|
|
|
depth_t stopdepth; // int32_t 4 mm (0-2000 km) depth of next deco stop
|
|
|
|
temperature_t temperature; // int32_t 4 mdegrK (0-2 MdegK) ambient temperature
|
Try to sanely download multiple concurrent cylinder pressures
This tries to sanely handle the case of a dive computer reporting
multiple cylinder pressures concurrently.
NOTE! There are various "interesting" situations that this whole issue
brings up:
- some dive computers may report more cylinder pressures than we have
slots for.
Currently we will drop such pressures on the floor if they come for
the same sample, but if they end up being spread across multiple
samples we will end up re-using the slots with different sensor
indexes.
That kind of slot re-use may or may not end up confusing other
subsurface logic - for example, make things believe there was a
cylidner change event.
- some dive computers might send only one sample at a time, but switch
*which* sample they send on a gas switch event. If they also report
the correct sensor number, we'll now start reporting that pressure in
the second slot.
This should all be fine, and is the RightThing(tm) to do, but is
different from what we used to do when we only ever used a single
slot.
- When people actually use multiple sensors, our old save format will
start to need fixing. Right now our save format comes from the CCR
model where the second sensor was always the Oxygen sensor.
We save that pressure fine (except we save it as "o2pressure" - just
an odd historical naming artifact), but we do *not* save the actual
sensor index, because in our traditional format that was always
implicit in the data ("it's the oxygen cylinder").
so while this code hopefully makes our libdivecomputer download do the
right thing, there *will* be further fallout from having multiple
cylinder pressure sensors. We're not done yet.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2017-07-24 18:55:47 +00:00
|
|
|
pressure_t pressure[MAX_SENSORS]; // int32_t 4 mbar (0-2 Mbar) cylinder pressures (main and CCR o2)
|
2014-10-19 14:07:07 +00:00
|
|
|
o2pressure_t setpoint; // uint16_t 2 mbar (0-65 bar) O2 partial pressure (will be setpoint)
|
2014-06-04 06:07:55 +00:00
|
|
|
o2pressure_t o2sensor[3]; // uint16_t 6 mbar (0-65 bar) Up to 3 PO2 sensor values (rebreather)
|
|
|
|
bearing_t bearing; // int16_t 2 degrees (-32k to 32k deg) compass bearing
|
Try to sanely download multiple concurrent cylinder pressures
This tries to sanely handle the case of a dive computer reporting
multiple cylinder pressures concurrently.
NOTE! There are various "interesting" situations that this whole issue
brings up:
- some dive computers may report more cylinder pressures than we have
slots for.
Currently we will drop such pressures on the floor if they come for
the same sample, but if they end up being spread across multiple
samples we will end up re-using the slots with different sensor
indexes.
That kind of slot re-use may or may not end up confusing other
subsurface logic - for example, make things believe there was a
cylidner change event.
- some dive computers might send only one sample at a time, but switch
*which* sample they send on a gas switch event. If they also report
the correct sensor number, we'll now start reporting that pressure in
the second slot.
This should all be fine, and is the RightThing(tm) to do, but is
different from what we used to do when we only ever used a single
slot.
- When people actually use multiple sensors, our old save format will
start to need fixing. Right now our save format comes from the CCR
model where the second sensor was always the Oxygen sensor.
We save that pressure fine (except we save it as "o2pressure" - just
an odd historical naming artifact), but we do *not* save the actual
sensor index, because in our traditional format that was always
implicit in the data ("it's the oxygen cylinder").
so while this code hopefully makes our libdivecomputer download do the
right thing, there *will* be further fallout from having multiple
cylinder pressure sensors. We're not done yet.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2017-07-24 18:55:47 +00:00
|
|
|
uint8_t sensor[MAX_SENSORS]; // uint8_t 1 sensorID (0-255) ID of cylinder pressure sensor
|
2014-06-04 06:07:55 +00:00
|
|
|
uint8_t cns; // uint8_t 1 % (0-255 %) cns% accumulated
|
|
|
|
uint8_t heartbeat; // uint8_t 1 beats/m (0-255) heart rate measurement
|
2015-01-16 12:49:12 +00:00
|
|
|
volume_t sac; // 4 ml/min predefined SAC
|
2014-06-04 06:07:55 +00:00
|
|
|
bool in_deco; // bool 1 y/n y/n this sample is part of deco
|
2014-08-20 02:07:43 +00:00
|
|
|
bool manually_entered; // bool 1 y/n y/n this sample was entered by the user,
|
|
|
|
// not calculated when planning a dive
|
Add support for RBT reported sample value
RBT (Remaining Bottom Time) is a value calculated on the fly by some air
integrated divecomputers, for example Uwatec devices. This value is an
estimation based in some heuristic around time function pressure
gradients. This way, RBT would be the time a diver can spend at actual
depth without running out of gas (taking account of ascent, deco, if
required, and rock bottom gas reserve, if set).
Older Uwatec devices just made the calculus and only stored alarm events
if this time value reached zero, but modern devices store the value each
sample, in minutes.
It seems that Suunto Eon Steel is storing RBT values too, in seconds.
Libdivecomputer has supported RBT for a while, but Subsurface just
printed it to stdout and dropped it.
This adds support for RBT value on subsurface sample structure and shows
it in the profile's info box, right under TTS(calc), if selected, where
these two values can be easily compared by humans.
Signed-off-by: Salvador Cuñat <salvador.cunat@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2015-07-22 15:02:33 +00:00
|
|
|
}; // Total size of structure: 57 bytes, excluding padding at end
|
2011-08-31 01:23:59 +00:00
|
|
|
|
2013-11-02 01:12:42 +00:00
|
|
|
struct divetag {
|
|
|
|
/*
|
|
|
|
* The name of the divetag. If a translation is available, name contains
|
|
|
|
* the translated tag
|
|
|
|
*/
|
|
|
|
char *name;
|
|
|
|
/*
|
|
|
|
* If a translation is available, we write the original tag to source.
|
|
|
|
* This enables us to write a non-localized tag to the xml file.
|
|
|
|
*/
|
|
|
|
char *source;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct tag_entry {
|
|
|
|
struct divetag *tag;
|
|
|
|
struct tag_entry *next;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* divetags are only stored once, each dive only contains
|
|
|
|
* a list of tag_entries which then point to the divetags
|
|
|
|
* in the global g_tag_list
|
|
|
|
*/
|
|
|
|
|
|
|
|
extern struct tag_entry *g_tag_list;
|
|
|
|
|
Get rid of crazy empty tag_list element at the start
So this is totally unrelated to the git repository format, except for
the fact that I noticed it while writing the git saving code.
The subsurface divetag list handling is being stupid, and has a
initial dummy entry at the head of the list for no good reason.
I say "no good reason", because there *is* a reason for it: it allows
code to avoid the special case of empty list and adding entries to
before the first entry etc etc. But that reason is a really *bad*
reason, because it's valid only because people don't understand basic
list manipulation and pointers to pointers.
So get rid of the dummy element, and do things right instead - by
passing a *pointer* to the list, instead of the list. And then when
traversing the list and looking for a place to insert things, don't go
to the next entry - just update the "pointer to pointer" to point to
the address of the next entry. Each entry in a C linked list is no
different than the list itself, so you can use the pointer to the
pointer to the next entry as a pointer to the list.
This is a pet peeve of mine. The real beauty of pointers can never be
understood unless you understand the indirection they allow. People
who grew up with Pascal and were corrupted by that mindset are
mentally stunted. Niklaus Wirth has a lot to answer for!
But never fear. You too can overcome that mental limitation, it just
needs some brain exercise. Reading this patch may help. In particular,
contemplate the new "taglist_add_divetag()".
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2014-03-10 17:18:13 +00:00
|
|
|
struct divetag *taglist_add_tag(struct tag_entry **tag_list, const char *tag);
|
2015-05-02 19:16:03 +00:00
|
|
|
struct tag_entry *taglist_added(struct tag_entry *original_list, struct tag_entry *new_list);
|
|
|
|
void dump_taglist(const char *intro, struct tag_entry *tl);
|
2013-11-02 01:12:42 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Writes all divetags in tag_list to buffer, limited by the buffer's (len)gth.
|
|
|
|
* Returns the characters written
|
|
|
|
*/
|
|
|
|
int taglist_get_tagstring(struct tag_entry *tag_list, char *buffer, int len);
|
|
|
|
|
2014-07-10 16:39:51 +00:00
|
|
|
/* cleans up a list: removes empty tags and duplicates */
|
|
|
|
void taglist_cleanup(struct tag_entry **tag_list);
|
|
|
|
|
2013-11-02 01:12:42 +00:00
|
|
|
void taglist_init_global();
|
Get rid of crazy empty tag_list element at the start
So this is totally unrelated to the git repository format, except for
the fact that I noticed it while writing the git saving code.
The subsurface divetag list handling is being stupid, and has a
initial dummy entry at the head of the list for no good reason.
I say "no good reason", because there *is* a reason for it: it allows
code to avoid the special case of empty list and adding entries to
before the first entry etc etc. But that reason is a really *bad*
reason, because it's valid only because people don't understand basic
list manipulation and pointers to pointers.
So get rid of the dummy element, and do things right instead - by
passing a *pointer* to the list, instead of the list. And then when
traversing the list and looking for a place to insert things, don't go
to the next entry - just update the "pointer to pointer" to point to
the address of the next entry. Each entry in a C linked list is no
different than the list itself, so you can use the pointer to the
pointer to the next entry as a pointer to the list.
This is a pet peeve of mine. The real beauty of pointers can never be
understood unless you understand the indirection they allow. People
who grew up with Pascal and were corrupted by that mindset are
mentally stunted. Niklaus Wirth has a lot to answer for!
But never fear. You too can overcome that mental limitation, it just
needs some brain exercise. Reading this patch may help. In particular,
contemplate the new "taglist_add_divetag()".
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2014-03-10 17:18:13 +00:00
|
|
|
void taglist_free(struct tag_entry *tag_list);
|
2013-11-02 01:12:42 +00:00
|
|
|
|
2014-11-11 10:20:13 +00:00
|
|
|
bool taglist_contains(struct tag_entry *tag_list, const char *tag);
|
2015-02-10 14:31:37 +00:00
|
|
|
bool taglist_equal(struct tag_entry *tl1, struct tag_entry *tl2);
|
2014-11-11 10:20:13 +00:00
|
|
|
int count_dives_with_tag(const char *tag);
|
2014-11-13 00:01:58 +00:00
|
|
|
int count_dives_with_person(const char *person);
|
|
|
|
int count_dives_with_location(const char *location);
|
2014-11-13 20:35:12 +00:00
|
|
|
int count_dives_with_suit(const char *suit);
|
2014-11-11 10:20:13 +00:00
|
|
|
|
2014-11-06 18:32:48 +00:00
|
|
|
struct extra_data {
|
|
|
|
const char *key;
|
|
|
|
const char *value;
|
|
|
|
struct extra_data *next;
|
|
|
|
};
|
|
|
|
|
2012-11-25 19:44:27 +00:00
|
|
|
/*
|
|
|
|
* NOTE! The deviceid and diveid are model-specific *hashes* of
|
|
|
|
* whatever device identification that model may have. Different
|
|
|
|
* dive computers will have different identifying data, it could
|
|
|
|
* be a firmware number or a serial ID (in either string or in
|
|
|
|
* numeric format), and we do not care.
|
|
|
|
*
|
|
|
|
* The only thing we care about is that subsurface will hash
|
|
|
|
* that information the same way. So then you can check the ID
|
|
|
|
* of a dive computer by comparing the hashes for equality.
|
|
|
|
*
|
|
|
|
* A deviceid or diveid of zero is assumed to be "no ID".
|
|
|
|
*/
|
2012-11-24 02:51:27 +00:00
|
|
|
struct divecomputer {
|
2012-11-25 02:50:21 +00:00
|
|
|
timestamp_t when;
|
2013-01-23 18:25:31 +00:00
|
|
|
duration_t duration, surfacetime;
|
|
|
|
depth_t maxdepth, meandepth;
|
|
|
|
temperature_t airtemp, watertemp;
|
|
|
|
pressure_t surface_pressure;
|
2015-01-10 23:01:15 +00:00
|
|
|
enum dive_comp_type divemode; // dive computer type: OC(default) or CCR
|
2014-06-11 17:48:48 +00:00
|
|
|
uint8_t no_o2sensors; // rebreathers: number of O2 sensors used
|
|
|
|
int salinity; // kg per 10000 l
|
2014-10-22 19:11:12 +00:00
|
|
|
const char *model, *serial, *fw_version;
|
2012-11-25 19:44:27 +00:00
|
|
|
uint32_t deviceid, diveid;
|
2012-11-24 02:51:27 +00:00
|
|
|
int samples, alloc_samples;
|
|
|
|
struct sample *sample;
|
|
|
|
struct event *events;
|
2014-11-06 18:32:48 +00:00
|
|
|
struct extra_data *extra_data;
|
2012-11-25 02:50:21 +00:00
|
|
|
struct divecomputer *next;
|
2012-11-24 02:51:27 +00:00
|
|
|
};
|
|
|
|
|
2017-02-02 14:31:52 +00:00
|
|
|
#define MAX_CYLINDERS (20)
|
2013-12-28 15:33:09 +00:00
|
|
|
#define MAX_WEIGHTSYSTEMS (6)
|
2017-06-13 22:45:18 +00:00
|
|
|
#define MAX_TANK_INFO (100)
|
2012-08-15 22:21:34 +00:00
|
|
|
#define W_IDX_PRIMARY 0
|
|
|
|
#define W_IDX_SECONDARY 1
|
Start parsing gas mixes
The suunto xml is just completely crazy. What's the helium percentage
companion to "o2pct"? Would it be "hepct"? No. It's "hepct_0".
Ok, so they didn't number the first o2pct, which could be seen as sane:
that's the only mix value that should always exist. And they clearly
started their indexing with 0. So with multiple mixes, you'd then
expect "o2pct_1" and "hepct_1", right?
Wrong! Because XML people are crazy, the second O2 mix percentage is
obviously "o2pct_2". So the O2 percentages are one-based, with an
implicit one. But the He percentages are zero-based with an explicit
zero. So the second mix is "o2pct_2" and "hepct_1".
I'd like to ask what drugs Suunto people are on, but hey, it's a Finnish
company. No need to ask. Vodka explains everything. LOTS AND LOTS OF
VODKA.
In comparison, the libdivecomputer output is nice and sane, and uses a
'gasmix' node. Of course, now we have so many different XML nesting
nodes to check that I just made it an array of different noces. That
also allows me to mark the suunto case, so that we only do the "check
for crazy alcoholic xml entries" when it's a suunto file.
The "type of file" thing is probably a good idea for deciding on default
units too. Some day.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-01 20:32:52 +00:00
|
|
|
|
2014-02-28 04:09:57 +00:00
|
|
|
typedef enum {
|
|
|
|
TF_NONE,
|
|
|
|
NO_TRIP,
|
|
|
|
IN_TRIP,
|
|
|
|
ASSIGNED_TRIP,
|
|
|
|
NUM_TRIPFLAGS
|
|
|
|
} tripflag_t;
|
2012-08-22 05:04:24 +00:00
|
|
|
|
2014-02-28 04:09:57 +00:00
|
|
|
typedef struct dive_trip
|
|
|
|
{
|
2012-09-20 19:30:58 +00:00
|
|
|
timestamp_t when;
|
2012-09-20 03:42:11 +00:00
|
|
|
char *location;
|
|
|
|
char *notes;
|
2012-11-26 02:53:15 +00:00
|
|
|
struct dive *dives;
|
2012-11-10 18:51:03 +00:00
|
|
|
int nrdives;
|
Allow overlapping (and disjoint) dive trips
We used to have the rule that a dive trip has to have all dives in it in
sequential order, even though our XML file really is much more flexible,
and allows arbitrary nesting of dives within a dive trip.
Put another way, the old model had fairly inflexible rules:
- the dive array is sorted by time
- a dive trip is always a contiguous slice of this sorted array
which makes perfect sense when you think of the dive and trip list as a
physical activity by one person, but leads to various very subtle issues
in the general case when there are no guarantees that the user then uses
subsurface that way.
In particular, if you load the XML files of two divers that have
overlapping dive trips, the end result is incredibly messy, and does not
conform to the above model at all.
There's two ways to enforce such conformance:
- disallow that kind of behavior entirely.
This is actually hard. Our XML files aren't date-based, they are
based on XML nesting rules, and even a single XML file can have
nesting that violates the date ordering. With multiple XML files,
it's trivial to do in practice, and while we could just fail at
loading, the failure would have to be a hard failure that leaves the
user no way to use the data at all.
- try to "fix it up" by sorting, splitting, and combining dive trips
automatically.
Dirk had a patch to do this, but it really does destroy the actual
dive data: if you load both mine and Dirk's dive trips, you ended up
with a result that followed the above two technical rules, but that
didn't actually make any *sense*.
So this patch doesn't try to enforce the rules, and instead just changes
them to be more generic:
- the dive array is still sorted by dive time
- a dive trip is just an arbitrary collection of dives.
The relaxed rules means that mixing dives and dive trips for two people
is trivial, and we can easily handle any XML file. The dive trip is
defined by the XML nesting level, and is totally independent of any
date-based sorting.
It does require a few things:
- when we save our dive data, we have to do it hierarchically by dive
trip, not just by walking the dive array linearly.
- similarly, when we create the dive tree model, we can't just blindly
walk the array of dives one by one, we have to look up the correct
trip (parent)
- when we try to merge two dives that are adjacent (by date sorting),
we can't do it if they are in different trips.
but apart from that, nothing else really changes.
NOTE! Despite the new relaxed model, creating totally disjoing dive
trips is not all that easy (nor is there any *reason* for it to be
easty). Our GUI interfaces still are "add dive to trip above" etc, and
the automatic adding of dives to dive trips is obviously still based on
date.
So this does not really change the expected normal usage, the relaxed
data structure rules just mean that we don't need to worry about the odd
cases as much, because we can just let them be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
|
|
|
int index;
|
2014-02-28 04:09:57 +00:00
|
|
|
unsigned expanded : 1, selected : 1, autogen : 1, fixup : 1;
|
2012-11-26 04:06:54 +00:00
|
|
|
struct dive_trip *next;
|
2012-09-20 03:42:11 +00:00
|
|
|
} dive_trip_t;
|
|
|
|
|
2012-11-26 04:06:54 +00:00
|
|
|
/* List of dive trips (sorted by date) */
|
|
|
|
extern dive_trip_t *dive_trip_list;
|
2014-06-02 19:56:02 +00:00
|
|
|
struct picture;
|
2011-08-31 01:23:59 +00:00
|
|
|
struct dive {
|
2011-09-11 18:36:33 +00:00
|
|
|
int number;
|
2012-08-22 05:04:24 +00:00
|
|
|
tripflag_t tripflag;
|
2012-09-20 03:42:11 +00:00
|
|
|
dive_trip_t *divetrip;
|
2012-11-26 02:53:15 +00:00
|
|
|
struct dive *next, **pprev;
|
2014-11-11 21:34:12 +00:00
|
|
|
bool selected;
|
|
|
|
bool hidden_by_filter;
|
2013-10-05 07:29:09 +00:00
|
|
|
bool downloaded;
|
2012-09-20 00:35:52 +00:00
|
|
|
timestamp_t when;
|
2015-02-11 19:22:00 +00:00
|
|
|
uint32_t dive_site_uuid;
|
2011-09-02 02:56:04 +00:00
|
|
|
char *notes;
|
2011-09-13 21:58:06 +00:00
|
|
|
char *divemaster, *buddy;
|
2011-12-07 19:58:16 +00:00
|
|
|
int rating;
|
2012-10-28 22:49:02 +00:00
|
|
|
int visibility; /* 0 - 5 star rating */
|
2011-09-04 03:31:18 +00:00
|
|
|
cylinder_t cylinder[MAX_CYLINDERS];
|
2011-12-24 03:41:16 +00:00
|
|
|
weightsystem_t weightsystem[MAX_WEIGHTSYSTEMS];
|
2012-08-14 23:07:25 +00:00
|
|
|
char *suit;
|
2012-12-11 05:18:48 +00:00
|
|
|
int sac, otu, cns, maxcns;
|
2013-02-09 00:15:18 +00:00
|
|
|
|
|
|
|
/* Calculated based on dive computer data */
|
2013-02-09 15:41:15 +00:00
|
|
|
temperature_t mintemp, maxtemp, watertemp, airtemp;
|
2013-02-09 14:50:53 +00:00
|
|
|
depth_t maxdepth, meandepth;
|
2013-02-09 00:15:18 +00:00
|
|
|
pressure_t surface_pressure;
|
2013-02-09 15:12:30 +00:00
|
|
|
duration_t duration;
|
2013-02-09 00:15:18 +00:00
|
|
|
int salinity; // kg per 10000 l
|
2012-11-24 02:51:27 +00:00
|
|
|
|
2014-01-07 01:30:01 +00:00
|
|
|
struct tag_entry *tag_list;
|
2012-11-24 02:51:27 +00:00
|
|
|
struct divecomputer dc;
|
2014-01-07 01:30:01 +00:00
|
|
|
int id; // unique ID for this dive
|
2014-06-02 19:56:02 +00:00
|
|
|
struct picture *picture_list;
|
2016-04-03 22:31:59 +00:00
|
|
|
unsigned char git_id[20];
|
2014-06-02 19:56:02 +00:00
|
|
|
};
|
|
|
|
|
2016-04-03 22:31:59 +00:00
|
|
|
static inline void invalidate_dive_cache(struct dive *dive)
|
|
|
|
{
|
|
|
|
memset(dive->git_id, 0, 20);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool dive_cache_is_valid(const struct dive *dive)
|
|
|
|
{
|
|
|
|
static const unsigned char null_id[20] = { 0, };
|
|
|
|
return !!memcmp(dive->git_id, null_id, 20);
|
|
|
|
}
|
|
|
|
|
2014-11-17 00:09:59 +00:00
|
|
|
extern int get_cylinder_idx_by_use(struct dive *dive, enum cylinderuse cylinder_use_type);
|
2017-10-09 21:34:04 +00:00
|
|
|
extern void cylinder_renumber(struct dive *dive, int mapping[]);
|
2017-10-08 03:14:57 +00:00
|
|
|
extern int same_gasmix_cylinder(cylinder_t *cyl, int cylid, struct dive *dive, bool check_unused);
|
Calculate nitrogen and helium gas pressures for CCR after import from CSV
Currently the gas pressures stored in structures of pressure are
calculated using the gasmix composition of the currently selected
cylinder. But with CCR dives the default cylinder is the oxygen
cylinder (here, index 0). However, the gas pressures need to
be calculated using gasmix data from cylinder 1 (the diluent
cylinder). This patch allows setting the appropriate cylinder
for calculating the values in the structures of pressure. It
also allows for correctly calculating gas pressures for any
open circuit cylinders (e.g. bailout) that a CCR diver may
use. This is performed as follows:
1) In dive.h create an enum variable {oxygen, diluent, bailout}
2) Within the definition of cylinder_t, add a member: cylinder_use_type
This stores an enum variable, one of the above.
3) In file.c where the Poseidon CSV data are read in, assign
the appropriate enum values to each of the cylinders.
4) Within the definition of structure dive, add two members:
int oxygen_cylinder_index
int diluent_cylinder_index
This will keep the indices of the two main CCR cylinders.
5) In dive.c create a function get_cylinder_use(). This scans the
cylinders for that dive, looking for a cylinder that has a
particular cylinder_use_type and returns that cylinder index.
6) In dive.c create a function fixup_cylinder_use() that stores the
indices of the oxygen and diluent cylinders in the variables
dive->oxygen_cylinder_index and dive->diluent_cylinder_index,
making use of the function in 4) above.
7) In profile.c, modify function calculate_gas_information_new()
to use the above functions for CCR dives to find the oxygen and
diluent cylinders and to calculate partail gas pressures based
on the diluent cylinder gas mix.
This results in the correct calculation of gas partial pressures
in the case of CCR dives, displaying the correct partial pressure
graphs in the dive profile widget.
Signed-off-by: willem ferguson <willemferguson@zoology.up.ac.za>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2014-11-03 20:11:00 +00:00
|
|
|
|
2014-08-16 13:55:31 +00:00
|
|
|
/* when selectively copying dive information, which parts should be copied? */
|
|
|
|
struct dive_components {
|
2015-02-13 04:58:03 +00:00
|
|
|
unsigned int divesite : 1;
|
2014-08-16 13:55:31 +00:00
|
|
|
unsigned int notes : 1;
|
|
|
|
unsigned int divemaster : 1;
|
|
|
|
unsigned int buddy : 1;
|
|
|
|
unsigned int suit : 1;
|
|
|
|
unsigned int rating : 1;
|
|
|
|
unsigned int visibility : 1;
|
|
|
|
unsigned int tags : 1;
|
|
|
|
unsigned int cylinders : 1;
|
|
|
|
unsigned int weights : 1;
|
|
|
|
};
|
|
|
|
|
2014-06-02 19:56:02 +00:00
|
|
|
/* picture list and methods related to dive picture handling */
|
|
|
|
struct picture {
|
|
|
|
char *filename;
|
2015-02-26 13:39:42 +00:00
|
|
|
char *hash;
|
2014-07-08 19:29:06 +00:00
|
|
|
offset_t offset;
|
2014-06-02 21:28:02 +00:00
|
|
|
degrees_t latitude;
|
|
|
|
degrees_t longitude;
|
2014-06-02 19:56:02 +00:00
|
|
|
struct picture *next;
|
2011-08-31 01:23:59 +00:00
|
|
|
};
|
|
|
|
|
2014-06-03 14:48:35 +00:00
|
|
|
#define FOR_EACH_PICTURE(_dive) \
|
|
|
|
if (_dive) \
|
|
|
|
for (struct picture *picture = (_dive)->picture_list; picture; picture = picture->next)
|
2014-06-02 20:07:26 +00:00
|
|
|
|
2014-10-28 10:13:07 +00:00
|
|
|
#define FOR_EACH_PICTURE_NON_PTR(_divestruct) \
|
|
|
|
for (struct picture *picture = (_divestruct).picture_list; picture; picture = picture->next)
|
2014-06-02 21:28:02 +00:00
|
|
|
|
|
|
|
extern struct picture *alloc_picture();
|
2016-03-15 20:31:59 +00:00
|
|
|
extern struct picture *clone_picture(struct picture *src);
|
2015-04-24 15:10:55 +00:00
|
|
|
extern bool dive_check_picture_time(struct dive *d, int shift_time, timestamp_t timestamp);
|
2017-02-21 09:00:16 +00:00
|
|
|
extern void dive_create_picture(struct dive *d, const char *filename, int shift_time, bool match_all);
|
2014-06-08 19:34:18 +00:00
|
|
|
extern void dive_add_picture(struct dive *d, struct picture *newpic);
|
2014-08-05 19:37:14 +00:00
|
|
|
extern void dive_remove_picture(char *filename);
|
2014-06-03 07:10:39 +00:00
|
|
|
extern unsigned int dive_get_picture_count(struct dive *d);
|
2017-02-21 09:00:16 +00:00
|
|
|
extern bool picture_check_valid(const char *filename, int shift_time);
|
2015-03-14 14:35:47 +00:00
|
|
|
extern void picture_load_exif_data(struct picture *p);
|
2017-02-21 09:00:16 +00:00
|
|
|
extern timestamp_t picture_get_timestamp(const char *filename);
|
2014-06-02 21:28:02 +00:00
|
|
|
extern void dive_set_geodata_from_picture(struct dive *d, struct picture *pic);
|
2016-03-15 20:31:59 +00:00
|
|
|
extern void picture_free(struct picture *picture);
|
2014-06-02 19:56:02 +00:00
|
|
|
|
2014-10-28 20:48:15 +00:00
|
|
|
extern int explicit_first_cylinder(struct dive *dive, struct divecomputer *dc);
|
2016-03-10 02:18:58 +00:00
|
|
|
extern int get_depth_at_time(struct divecomputer *dc, unsigned int time);
|
2014-06-02 19:56:02 +00:00
|
|
|
|
2016-05-21 09:32:07 +00:00
|
|
|
extern fraction_t best_o2(depth_t depth, struct dive *dive);
|
2016-07-06 12:40:36 +00:00
|
|
|
extern fraction_t best_he(depth_t depth, struct dive *dive);
|
2016-05-21 09:32:07 +00:00
|
|
|
|
2013-10-05 07:29:09 +00:00
|
|
|
static inline int get_surface_pressure_in_mbar(const struct dive *dive, bool non_null)
|
2013-02-09 00:15:18 +00:00
|
|
|
{
|
|
|
|
int mbar = dive->surface_pressure.mbar;
|
|
|
|
if (!mbar && non_null)
|
|
|
|
mbar = SURFACE_PRESSURE;
|
|
|
|
return mbar;
|
|
|
|
}
|
2013-02-08 20:49:12 +00:00
|
|
|
|
2012-11-10 22:11:40 +00:00
|
|
|
/* Pa = N/m^2 - so we determine the weight (in N) of the mass of 10m
|
|
|
|
* of water (and use standard salt water at 1.03kg per liter if we don't know salinity)
|
|
|
|
* and add that to the surface pressure (or to 1013 if that's unknown) */
|
2014-09-16 20:23:01 +00:00
|
|
|
static inline int calculate_depth_to_mbar(int depth, pressure_t surface_pressure, int salinity)
|
2012-11-10 22:11:40 +00:00
|
|
|
{
|
2013-02-09 00:15:18 +00:00
|
|
|
double specific_weight;
|
|
|
|
int mbar = surface_pressure.mbar;
|
|
|
|
|
|
|
|
if (!mbar)
|
|
|
|
mbar = SURFACE_PRESSURE;
|
|
|
|
if (!salinity)
|
|
|
|
salinity = SEAWATER_SALINITY;
|
2016-02-26 14:16:36 +00:00
|
|
|
if (salinity < 500)
|
|
|
|
salinity += FRESHWATER_SALINITY;
|
2013-02-09 00:15:18 +00:00
|
|
|
specific_weight = salinity / 10000.0 * 0.981;
|
2017-03-08 06:41:41 +00:00
|
|
|
mbar += lrint(depth / 10.0 * specific_weight);
|
2013-02-09 00:15:18 +00:00
|
|
|
return mbar;
|
|
|
|
}
|
|
|
|
|
2014-09-16 20:23:01 +00:00
|
|
|
static inline int depth_to_mbar(int depth, struct dive *dive)
|
2013-02-09 00:15:18 +00:00
|
|
|
{
|
|
|
|
return calculate_depth_to_mbar(depth, dive->surface_pressure, dive->salinity);
|
2012-11-10 22:11:40 +00:00
|
|
|
}
|
|
|
|
|
2015-08-31 21:39:43 +00:00
|
|
|
static inline double depth_to_bar(int depth, struct dive *dive)
|
|
|
|
{
|
|
|
|
return depth_to_mbar(depth, dive) / 1000.0;
|
|
|
|
}
|
|
|
|
|
2014-02-11 21:08:29 +00:00
|
|
|
static inline double depth_to_atm(int depth, struct dive *dive)
|
|
|
|
{
|
|
|
|
return mbar_to_atm(depth_to_mbar(depth, dive));
|
|
|
|
}
|
|
|
|
|
2012-11-12 20:17:52 +00:00
|
|
|
/* for the inverse calculation we use just the relative pressure
|
|
|
|
* (that's the one that some dive computers like the Uemis Zurich
|
|
|
|
* provide - for the other models that do this libdivecomputer has to
|
|
|
|
* take care of this, but the Uemis we support natively */
|
|
|
|
static inline int rel_mbar_to_depth(int mbar, struct dive *dive)
|
|
|
|
{
|
|
|
|
int cm;
|
|
|
|
double specific_weight = 1.03 * 0.981;
|
2013-01-23 18:25:31 +00:00
|
|
|
if (dive->dc.salinity)
|
|
|
|
specific_weight = dive->dc.salinity / 10000.0 * 0.981;
|
2012-11-12 20:17:52 +00:00
|
|
|
/* whole mbar gives us cm precision */
|
2017-03-08 06:41:41 +00:00
|
|
|
cm = lrint(mbar / specific_weight);
|
2012-11-12 20:17:52 +00:00
|
|
|
return cm * 10;
|
|
|
|
}
|
|
|
|
|
2015-07-05 22:07:39 +00:00
|
|
|
static inline int mbar_to_depth(int mbar, struct dive *dive)
|
|
|
|
{
|
|
|
|
pressure_t surface_pressure;
|
|
|
|
if (dive->surface_pressure.mbar)
|
|
|
|
surface_pressure = dive->surface_pressure;
|
|
|
|
else
|
|
|
|
surface_pressure.mbar = SURFACE_PRESSURE;
|
|
|
|
return rel_mbar_to_depth(mbar - surface_pressure.mbar, dive);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* MOD rounded to multiples of roundto mm */
|
|
|
|
static inline depth_t gas_mod(struct gasmix *mix, pressure_t po2_limit, struct dive *dive, int roundto) {
|
|
|
|
depth_t rounded_depth;
|
|
|
|
|
|
|
|
double depth = (double) mbar_to_depth(po2_limit.mbar * 1000 / get_o2(mix), dive);
|
2017-03-08 06:41:41 +00:00
|
|
|
rounded_depth.mm = lrint(depth / roundto) * roundto;
|
2015-07-05 22:07:39 +00:00
|
|
|
return rounded_depth;
|
|
|
|
}
|
|
|
|
|
2016-07-06 12:40:31 +00:00
|
|
|
/* Maximum narcotic depth rounded to multiples of roundto mm */
|
|
|
|
static inline depth_t gas_mnd(struct gasmix *mix, depth_t end, struct dive *dive, int roundto) {
|
|
|
|
depth_t rounded_depth;
|
|
|
|
pressure_t ppo2n2;
|
|
|
|
ppo2n2.mbar = depth_to_mbar(end.mm, dive);
|
|
|
|
|
2017-03-09 16:07:30 +00:00
|
|
|
int maxambient = lrint(ppo2n2.mbar / (1 - get_he(mix) / 1000.0));
|
2017-03-08 06:41:41 +00:00
|
|
|
rounded_depth.mm = lrint(((double)mbar_to_depth(maxambient, dive)) / roundto) * roundto;
|
2016-07-06 12:40:31 +00:00
|
|
|
return rounded_depth;
|
|
|
|
}
|
|
|
|
|
2012-11-11 09:36:46 +00:00
|
|
|
#define SURFACE_THRESHOLD 750 /* somewhat arbitrary: only below 75cm is it really diving */
|
|
|
|
|
2012-09-11 20:37:06 +00:00
|
|
|
/* this is a global spot for a temporary dive structure that we use to
|
|
|
|
* be able to edit a dive without unintended side effects */
|
|
|
|
extern struct dive edit_dive;
|
|
|
|
|
2013-04-07 03:49:06 +00:00
|
|
|
extern short autogroup;
|
2012-08-22 05:04:24 +00:00
|
|
|
/* random threashold: three days without diving -> new trip
|
|
|
|
* this works very well for people who usually dive as part of a trip and don't
|
|
|
|
* regularly dive at a local facility; this is why trips are an optional feature */
|
2014-02-28 04:09:57 +00:00
|
|
|
#define TRIP_THRESHOLD 3600 * 24 * 3
|
2012-08-22 05:04:24 +00:00
|
|
|
|
|
|
|
#define UNGROUPED_DIVE(_dive) ((_dive)->tripflag == NO_TRIP)
|
2012-09-20 03:42:11 +00:00
|
|
|
#define DIVE_IN_TRIP(_dive) ((_dive)->tripflag == IN_TRIP || (_dive)->tripflag == ASSIGNED_TRIP)
|
2012-09-07 17:12:31 +00:00
|
|
|
#define DIVE_NEEDS_TRIP(_dive) ((_dive)->tripflag == TF_NONE)
|
2012-08-22 05:04:24 +00:00
|
|
|
|
2012-11-10 18:51:03 +00:00
|
|
|
extern void add_dive_to_trip(struct dive *, dive_trip_t *);
|
|
|
|
|
2012-11-11 06:49:19 +00:00
|
|
|
extern void delete_single_dive(int idx);
|
|
|
|
extern void add_single_dive(int idx, struct dive *dive);
|
|
|
|
|
2012-09-20 16:56:48 +00:00
|
|
|
extern void insert_trip(dive_trip_t **trip);
|
2012-08-22 05:04:24 +00:00
|
|
|
|
2011-09-07 02:07:17 +00:00
|
|
|
|
|
|
|
extern const struct units SI_units, IMPERIAL_units;
|
2013-01-11 01:26:10 +00:00
|
|
|
extern struct units xml_parsing_units;
|
2011-09-07 02:07:17 +00:00
|
|
|
|
2013-01-11 01:26:10 +00:00
|
|
|
extern struct units *get_units(void);
|
2016-03-25 08:21:45 +00:00
|
|
|
extern int run_survey, verbose, quit, force_root;
|
2011-08-31 01:40:25 +00:00
|
|
|
|
|
|
|
struct dive_table {
|
2011-10-05 15:31:31 +00:00
|
|
|
int nr, allocated, preexisting;
|
2011-08-31 01:40:25 +00:00
|
|
|
struct dive **dives;
|
|
|
|
};
|
|
|
|
|
2015-09-20 04:09:58 +00:00
|
|
|
extern struct dive_table dive_table, downloadTable;
|
2014-07-02 18:50:28 +00:00
|
|
|
extern struct dive displayed_dive;
|
2015-02-13 20:38:56 +00:00
|
|
|
extern struct dive_site displayed_dive_site;
|
2011-09-11 19:53:59 +00:00
|
|
|
extern int selected_dive;
|
2014-05-19 05:39:34 +00:00
|
|
|
extern unsigned int dc_number;
|
2011-09-11 19:53:59 +00:00
|
|
|
#define current_dive (get_dive(selected_dive))
|
2013-03-18 01:07:59 +00:00
|
|
|
#define current_dc (get_dive_dc(current_dive, dc_number))
|
2017-10-19 13:29:59 +00:00
|
|
|
#define displayed_dc (get_dive_dc(&displayed_dive, dc_number))
|
2011-09-11 19:53:59 +00:00
|
|
|
|
2012-09-18 23:51:48 +00:00
|
|
|
static inline struct dive *get_dive(int nr)
|
2011-08-31 23:33:20 +00:00
|
|
|
{
|
2012-08-15 22:21:34 +00:00
|
|
|
if (nr >= dive_table.nr || nr < 0)
|
2011-08-31 23:33:20 +00:00
|
|
|
return NULL;
|
|
|
|
return dive_table.dives[nr];
|
|
|
|
}
|
|
|
|
|
2015-01-09 22:35:31 +00:00
|
|
|
static inline struct dive *get_dive_from_table(int nr, struct dive_table *dt)
|
|
|
|
{
|
|
|
|
if (nr >= dt->nr || nr < 0)
|
|
|
|
return NULL;
|
|
|
|
return dt->dives[nr];
|
|
|
|
}
|
|
|
|
|
2015-02-12 09:19:07 +00:00
|
|
|
static inline struct dive_site *get_dive_site_for_dive(struct dive *dive)
|
|
|
|
{
|
|
|
|
if (dive)
|
|
|
|
return get_dive_site_by_uuid(dive->dive_site_uuid);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2017-10-03 06:03:44 +00:00
|
|
|
static inline const char *get_dive_country(struct dive *dive)
|
2017-10-02 15:49:49 +00:00
|
|
|
{
|
|
|
|
struct dive_site *ds = get_dive_site_by_uuid(dive->dive_site_uuid);
|
2017-10-03 06:03:44 +00:00
|
|
|
if (ds) {
|
|
|
|
int idx = taxonomy_index_for_category(&ds->taxonomy, TC_COUNTRY);
|
|
|
|
if (idx >= 0)
|
|
|
|
return ds->taxonomy.category[idx].value;
|
|
|
|
}
|
2017-10-02 15:49:49 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2015-02-12 20:49:25 +00:00
|
|
|
static inline char *get_dive_location(struct dive *dive)
|
|
|
|
{
|
|
|
|
struct dive_site *ds = get_dive_site_by_uuid(dive->dive_site_uuid);
|
|
|
|
if (ds && ds->name)
|
|
|
|
return ds->name;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2014-03-17 15:19:09 +00:00
|
|
|
static inline unsigned int number_of_computers(struct dive *dive)
|
|
|
|
{
|
|
|
|
unsigned int total_number = 0;
|
|
|
|
struct divecomputer *dc = &dive->dc;
|
|
|
|
|
|
|
|
if (!dive)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
do {
|
|
|
|
total_number++;
|
|
|
|
dc = dc->next;
|
|
|
|
} while (dc);
|
|
|
|
return total_number;
|
|
|
|
}
|
|
|
|
|
2013-03-18 01:07:59 +00:00
|
|
|
static inline struct divecomputer *get_dive_dc(struct dive *dive, int nr)
|
|
|
|
{
|
2017-10-20 01:22:32 +00:00
|
|
|
struct divecomputer *dc;
|
|
|
|
if (!dive)
|
|
|
|
return NULL;
|
|
|
|
dc = &dive->dc;
|
2014-03-17 15:19:09 +00:00
|
|
|
|
|
|
|
while (nr-- > 0) {
|
2013-03-18 01:07:59 +00:00
|
|
|
dc = dc->next;
|
2014-03-17 15:19:09 +00:00
|
|
|
if (!dc)
|
|
|
|
return &dive->dc;
|
|
|
|
}
|
2013-03-18 01:07:59 +00:00
|
|
|
return dc;
|
|
|
|
}
|
|
|
|
|
2015-09-22 19:32:27 +00:00
|
|
|
extern timestamp_t dive_endtime(const struct dive *dive);
|
|
|
|
|
2014-05-19 05:39:34 +00:00
|
|
|
extern void make_first_dc(void);
|
2016-03-10 02:18:58 +00:00
|
|
|
extern unsigned int count_divecomputers(void);
|
2014-06-11 20:56:33 +00:00
|
|
|
extern void delete_current_divecomputer(void);
|
2014-05-19 05:39:34 +00:00
|
|
|
|
2012-08-21 22:51:34 +00:00
|
|
|
/*
|
|
|
|
* Iterate over each dive, with the first parameter being the index
|
|
|
|
* iterator variable, and the second one being the dive one.
|
|
|
|
*
|
|
|
|
* I don't think anybody really wants the index, and we could make
|
|
|
|
* it local to the for-loop, but that would make us requires C99.
|
|
|
|
*/
|
2014-02-28 04:09:57 +00:00
|
|
|
#define for_each_dive(_i, _x) \
|
2014-03-05 20:19:45 +00:00
|
|
|
for ((_i) = 0; ((_x) = get_dive(_i)) != NULL; (_i)++)
|
2012-08-21 22:51:34 +00:00
|
|
|
|
2014-02-28 04:09:57 +00:00
|
|
|
#define for_each_dc(_dive, _dc) \
|
2014-03-05 20:19:45 +00:00
|
|
|
for (_dc = &_dive->dc; _dc; _dc = _dc->next)
|
2013-02-09 00:15:18 +00:00
|
|
|
|
2014-02-28 04:09:57 +00:00
|
|
|
#define for_each_gps_location(_i, _x) \
|
2014-03-05 20:19:45 +00:00
|
|
|
for ((_i) = 0; ((_x) = get_gps_location(_i, &gps_location_table)) != NULL; (_i)++)
|
2013-01-31 03:09:16 +00:00
|
|
|
|
2014-05-18 21:38:37 +00:00
|
|
|
static inline struct dive *get_dive_by_uniq_id(int id)
|
2014-01-07 01:30:01 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct dive *dive = NULL;
|
|
|
|
|
2014-05-22 18:40:22 +00:00
|
|
|
for_each_dive (i, dive) {
|
2014-01-07 01:30:01 +00:00
|
|
|
if (dive->id == id)
|
|
|
|
break;
|
|
|
|
}
|
2014-05-12 17:22:46 +00:00
|
|
|
#ifdef DEBUG
|
2014-05-22 18:40:22 +00:00
|
|
|
if (dive == NULL) {
|
2014-05-12 17:22:46 +00:00
|
|
|
fprintf(stderr, "Invalid id %x passed to get_dive_by_diveid, try to fix the code\n", id);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
#endif
|
2014-01-07 01:30:01 +00:00
|
|
|
return dive;
|
|
|
|
}
|
2014-01-27 13:44:26 +00:00
|
|
|
|
2014-05-19 05:23:29 +00:00
|
|
|
static inline int get_idx_by_uniq_id(int id)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct dive *dive = NULL;
|
|
|
|
|
2014-05-22 18:40:22 +00:00
|
|
|
for_each_dive (i, dive) {
|
2014-05-19 05:23:29 +00:00
|
|
|
if (dive->id == id)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#ifdef DEBUG
|
2014-05-22 18:40:22 +00:00
|
|
|
if (dive == NULL) {
|
2014-05-19 05:23:29 +00:00
|
|
|
fprintf(stderr, "Invalid id %x passed to get_dive_by_diveid, try to fix the code\n", id);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
2015-02-12 05:46:02 +00:00
|
|
|
static inline bool dive_site_has_gps_location(struct dive_site *ds)
|
|
|
|
{
|
|
|
|
return ds && (ds->latitude.udeg || ds->longitude.udeg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int dive_has_gps_location(struct dive *dive)
|
|
|
|
{
|
2015-06-07 10:55:53 +00:00
|
|
|
if (!dive)
|
|
|
|
return false;
|
2015-02-12 05:46:02 +00:00
|
|
|
return dive_site_has_gps_location(get_dive_site_by_uuid(dive->dive_site_uuid));
|
|
|
|
}
|
|
|
|
|
2014-01-27 13:44:26 +00:00
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
2014-03-07 03:27:28 +00:00
|
|
|
extern int report_error(const char *fmt, ...);
|
2015-11-19 02:52:44 +00:00
|
|
|
extern void report_message(const char *msg);
|
2014-03-14 17:35:09 +00:00
|
|
|
extern const char *get_error_string(void);
|
2017-10-26 12:37:29 +00:00
|
|
|
extern void set_error_cb(void(*cb)(void));
|
2014-03-07 03:27:28 +00:00
|
|
|
|
2013-01-31 03:09:16 +00:00
|
|
|
extern struct dive *find_dive_including(timestamp_t when);
|
2013-10-05 07:29:09 +00:00
|
|
|
extern bool dive_within_time_range(struct dive *dive, timestamp_t when, timestamp_t offset);
|
2015-06-25 05:38:44 +00:00
|
|
|
extern bool time_during_dive_with_offset(struct dive *dive, timestamp_t when, timestamp_t offset);
|
2013-01-31 03:09:16 +00:00
|
|
|
struct dive *find_dive_n_near(timestamp_t when, int n, timestamp_t offset);
|
2013-01-29 22:25:09 +00:00
|
|
|
|
|
|
|
/* Check if two dive computer entries are the exact same dive (-1=no/0=maybe/1=yes) */
|
|
|
|
extern int match_one_dc(struct divecomputer *a, struct divecomputer *b);
|
|
|
|
|
2011-08-31 17:20:46 +00:00
|
|
|
extern void parse_xml_init(void);
|
2014-12-08 19:26:03 +00:00
|
|
|
extern int parse_xml_buffer(const char *url, const char *buf, int size, struct dive_table *table, const char **params);
|
2012-09-18 15:33:55 +00:00
|
|
|
extern void parse_xml_exit(void);
|
2013-10-05 07:29:09 +00:00
|
|
|
extern void set_filename(const char *filename, bool force);
|
2011-08-31 01:40:25 +00:00
|
|
|
|
2014-03-14 18:26:07 +00:00
|
|
|
extern int parse_dm4_buffer(sqlite3 *handle, const char *url, const char *buf, int size, struct dive_table *table);
|
2014-11-15 15:34:20 +00:00
|
|
|
extern int parse_dm5_buffer(sqlite3 *handle, const char *url, const char *buf, int size, struct dive_table *table);
|
2014-03-14 18:26:07 +00:00
|
|
|
extern int parse_shearwater_buffer(sqlite3 *handle, const char *url, const char *buf, int size, struct dive_table *table);
|
2014-12-20 16:19:43 +00:00
|
|
|
extern int parse_cobalt_buffer(sqlite3 *handle, const char *url, const char *buf, int size, struct dive_table *table);
|
2015-07-12 17:46:48 +00:00
|
|
|
extern int parse_divinglog_buffer(sqlite3 *handle, const char *url, const char *buf, int size, struct dive_table *table);
|
2014-12-28 22:38:41 +00:00
|
|
|
extern int parse_dlf_buffer(unsigned char *buffer, size_t size);
|
2013-03-05 05:10:39 +00:00
|
|
|
|
2014-03-14 18:26:07 +00:00
|
|
|
extern int parse_file(const char *filename);
|
2015-08-27 14:36:23 +00:00
|
|
|
extern int parse_csv_file(const char *filename, char **params, int pnr, const char *csvtemplate);
|
2017-05-07 10:41:09 +00:00
|
|
|
extern int parse_seabear_log(const char *filename);
|
2015-08-23 17:56:20 +00:00
|
|
|
extern int parse_seabear_csv_file(const char *filename, char **params, int pnr, const char *csvtemplate);
|
2014-05-28 06:55:46 +00:00
|
|
|
extern int parse_txt_file(const char *filename, const char *csv);
|
2015-08-23 17:56:18 +00:00
|
|
|
extern int parse_manual_file(const char *filename, char **params, int pnr);
|
2014-03-14 17:11:26 +00:00
|
|
|
extern int save_dives(const char *filename);
|
|
|
|
extern int save_dives_logic(const char *filename, bool select_only);
|
|
|
|
extern int save_dive(FILE *f, struct dive *dive);
|
2014-12-31 20:09:34 +00:00
|
|
|
extern int export_dives_xslt(const char *filename, const bool selected, const int units, const char *export_xslt);
|
2014-03-12 21:12:58 +00:00
|
|
|
|
2015-04-28 18:27:36 +00:00
|
|
|
struct membuffer;
|
|
|
|
extern void save_one_dive_to_mb(struct membuffer *b, struct dive *dive);
|
|
|
|
|
2014-11-17 13:51:19 +00:00
|
|
|
int cylinderuse_from_text(const char *text);
|
|
|
|
|
2013-03-10 08:24:49 +00:00
|
|
|
|
2014-04-14 21:33:46 +00:00
|
|
|
struct user_info {
|
|
|
|
const char *name;
|
|
|
|
const char *email;
|
|
|
|
};
|
|
|
|
|
|
|
|
extern void subsurface_user_info(struct user_info *);
|
2014-02-16 21:25:02 +00:00
|
|
|
extern int subsurface_rename(const char *path, const char *newpath);
|
2015-09-26 16:35:21 +00:00
|
|
|
extern int subsurface_dir_rename(const char *path, const char *newpath);
|
2013-12-19 13:00:50 +00:00
|
|
|
extern int subsurface_open(const char *path, int oflags, mode_t mode);
|
|
|
|
extern FILE *subsurface_fopen(const char *path, const char *mode);
|
|
|
|
extern void *subsurface_opendir(const char *path);
|
2014-11-13 17:36:08 +00:00
|
|
|
extern int subsurface_access(const char *path, int mode);
|
2017-02-24 07:06:48 +00:00
|
|
|
extern int subsurface_stat(const char* path, struct stat* buf);
|
2013-12-19 13:00:50 +00:00
|
|
|
extern struct zip *subsurface_zip_open_readonly(const char *path, int flags, int *errorp);
|
|
|
|
extern int subsurface_zip_close(struct zip *zip);
|
2017-02-02 19:50:47 +00:00
|
|
|
extern void subsurface_console_init(bool dedicated, bool logfile);
|
2014-03-25 14:55:56 +00:00
|
|
|
extern void subsurface_console_exit(void);
|
2016-03-25 08:21:45 +00:00
|
|
|
extern bool subsurface_user_is_root(void);
|
2013-12-19 13:00:50 +00:00
|
|
|
|
2013-11-18 13:53:05 +00:00
|
|
|
extern void shift_times(const timestamp_t amount);
|
2014-03-20 20:57:49 +00:00
|
|
|
extern timestamp_t get_times();
|
2013-11-18 13:53:05 +00:00
|
|
|
|
2013-03-10 08:24:49 +00:00
|
|
|
extern xsltStylesheetPtr get_stylesheet(const char *name);
|
2011-09-01 23:27:52 +00:00
|
|
|
|
2012-09-20 00:35:52 +00:00
|
|
|
extern timestamp_t utc_mktime(struct tm *tm);
|
|
|
|
extern void utc_mkdate(timestamp_t, struct tm *tm);
|
2011-09-12 20:25:05 +00:00
|
|
|
|
2011-09-12 19:56:34 +00:00
|
|
|
extern struct dive *alloc_dive(void);
|
2015-01-09 22:35:31 +00:00
|
|
|
extern void record_dive_to_table(struct dive *dive, struct dive_table *table);
|
2011-09-12 19:56:34 +00:00
|
|
|
extern void record_dive(struct dive *dive);
|
2014-07-02 22:29:02 +00:00
|
|
|
extern void clear_dive(struct dive *dive);
|
|
|
|
extern void copy_dive(struct dive *s, struct dive *d);
|
2014-08-17 00:33:09 +00:00
|
|
|
extern void selective_copy_dive(struct dive *s, struct dive *d, struct dive_components what, bool clear);
|
2014-07-03 20:34:27 +00:00
|
|
|
extern struct dive *clone_dive(struct dive *s);
|
2011-09-12 19:56:34 +00:00
|
|
|
|
2015-01-09 22:35:31 +00:00
|
|
|
extern void clear_table(struct dive_table *table);
|
|
|
|
|
2012-11-24 02:51:27 +00:00
|
|
|
extern struct sample *prepare_sample(struct divecomputer *dc);
|
|
|
|
extern void finish_sample(struct divecomputer *dc);
|
2017-07-26 01:33:10 +00:00
|
|
|
extern void add_sample_pressure(struct sample *sample, int sensor, int mbar);
|
|
|
|
extern int legacy_format_o2pressures(struct dive *dive, struct divecomputer *dc);
|
2011-09-12 19:56:34 +00:00
|
|
|
|
2014-04-24 20:58:39 +00:00
|
|
|
extern bool has_hr_data(struct divecomputer *dc);
|
|
|
|
|
2013-01-31 03:09:16 +00:00
|
|
|
extern void sort_table(struct dive_table *table);
|
2011-09-03 20:19:26 +00:00
|
|
|
extern struct dive *fixup_dive(struct dive *dive);
|
2014-08-04 14:36:07 +00:00
|
|
|
extern void fixup_dc_duration(struct divecomputer *dc);
|
2014-05-11 01:18:37 +00:00
|
|
|
extern int dive_getUniqID(struct dive *d);
|
2013-02-14 23:18:48 +00:00
|
|
|
extern unsigned int dc_airtemp(struct divecomputer *dc);
|
2013-11-29 20:05:21 +00:00
|
|
|
extern unsigned int dc_watertemp(struct divecomputer *dc);
|
2015-10-02 01:17:37 +00:00
|
|
|
extern int split_dive(struct dive *);
|
2013-10-05 07:29:09 +00:00
|
|
|
extern struct dive *merge_dives(struct dive *a, struct dive *b, int offset, bool prefer_downloaded);
|
|
|
|
extern struct dive *try_to_merge(struct dive *a, struct dive *b, bool prefer_downloaded);
|
2015-12-04 05:42:23 +00:00
|
|
|
extern struct event *clone_event(const struct event *src_ev);
|
2014-07-02 22:29:02 +00:00
|
|
|
extern void copy_events(struct divecomputer *s, struct divecomputer *d);
|
2015-04-23 22:24:02 +00:00
|
|
|
extern void free_events(struct event *ev);
|
2014-06-04 06:09:12 +00:00
|
|
|
extern void copy_cylinders(struct dive *s, struct dive *d, bool used_only);
|
2014-07-02 22:29:02 +00:00
|
|
|
extern void copy_samples(struct divecomputer *s, struct divecomputer *d);
|
2017-02-03 15:31:03 +00:00
|
|
|
extern bool is_cylinder_used(struct dive *dive, int idx);
|
2013-11-13 12:44:18 +00:00
|
|
|
extern void fill_default_cylinder(cylinder_t *cyl);
|
First step in cleaning up cylinder pressure sensor logic
This clarifies/changes the meaning of our "cylinderindex" entry in our
samples. It has been rather confused, because different dive computers
have done things differently, and the naming really hasn't helped.
There are two totally different - and independent - cylinder "indexes":
- the pressure sensor index, which indicates which cylinder the sensor
data is from.
- the "active cylinder" index, which indicates which cylinder we actually
breathe from.
These two values really are totally independent, and have nothing
what-so-ever to do with each other. The sensor index may well be fixed:
many dive computers only support a single pressure sensor (whether
wireless or wired), and the sensor index is thus always zero.
Other dive computers may support multiple pressure sensors, and the gas
switch event may - or may not - indicate that the sensor changed too. A
dive computer might give the sensor data for *all* cylinders it can read,
regardless of which one is the one we're actively breathing. In fact, some
dive computers might give sensor data for not just *your* cylinder, but
your buddies.
This patch renames "cylinderindex" in the samples as "sensor", making it
quite clear that it's about which sensor index the pressure data in the
sample is about.
The way we figure out which is the currently active gas is with an
explicit has change event. If a computer (like the Uemis Zurich) joins the
two concepts together, then a sensor change should also create a gas
switch event. This patch also changes the Uemis importer to do that.
Finally, it should be noted that the plot info works totally separately
from the sample data, and is about what we actually *display*, not about
the sample pressures etc. In the plot info, the "cylinderindex" does in
fact mean the currently active cylinder, and while it is initially set to
match the sensor information from the samples, we then walk the gas change
events and fix it up - and if the active cylinder differs from the sensor
cylinder, we clear the sensor data.
[Dirk Hohndel: this conflicted with some of my recent changes - I think
I merged things correctly...]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
|
|
|
extern void add_gas_switch_event(struct dive *dive, struct divecomputer *dc, int time, int idx);
|
2016-03-10 02:18:58 +00:00
|
|
|
extern struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const char *name);
|
2014-05-22 18:40:22 +00:00
|
|
|
extern void remove_event(struct event *event);
|
2014-07-12 19:48:27 +00:00
|
|
|
extern void update_event_name(struct dive *d, struct event* event, char *name);
|
2014-11-07 06:02:22 +00:00
|
|
|
extern void add_extra_data(struct divecomputer *dc, const char *key, const char *value);
|
2013-11-20 06:50:02 +00:00
|
|
|
extern void per_cylinder_mean_depth(struct dive *dive, struct divecomputer *dc, int *mean, int *duration);
|
2013-11-20 18:52:17 +00:00
|
|
|
extern int get_cylinder_index(struct dive *dive, struct event *ev);
|
2016-04-02 20:06:54 +00:00
|
|
|
extern struct gasmix *get_gasmix_from_event(struct dive *, struct event *ev);
|
Initial implementation of git save format
This saves the dive data into a git object repository instead of a
single XML file.
We create a git object tree with each dive as a separate file,
hierarchically by trip and date.
NOTE 1: This largely duplicates the XML saving code, because trying to
share it seemed just too painful: the logic is very similar, but the
details of the actual strings end up differing sufficiently that there
are tons of trivial differences.
The git save format is line-based with minimal quoting, while XML quotes
everything with either "<..\>" or using single quotes around attributes.
NOTE 2: You currently need a dummy "file" to save to, which points to
the real save location: the git repository and branch to be used. We
should make this a config thing, but for testing, do something like
this:
echo git /home/torvalds/scuba:linus > git-test
to create that git information file, and when you use "Save To" and
specify "git-test" as the file to save to, subsurface will use the new
git save logic to save to the branch "linus" in the repository found at
"/home/torvalds/scuba".
NOTE 3: The git save format uses just the git object directory, it does
*not* check out the result in any git working tree or index. So after
you do a save, you can do
git log -p linus
to see what actually happened in that branch, but it will not affect any
actual checked-out state in the repository.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2014-03-06 21:28:39 +00:00
|
|
|
extern int nr_cylinders(struct dive *dive);
|
|
|
|
extern int nr_weightsystems(struct dive *dive);
|
2011-09-23 01:02:54 +00:00
|
|
|
|
2011-09-20 19:40:34 +00:00
|
|
|
/* UI related protopypes */
|
|
|
|
|
2013-10-05 07:29:09 +00:00
|
|
|
// extern void report_error(GError* error);
|
2011-09-20 19:40:34 +00:00
|
|
|
|
2011-10-22 15:12:30 +00:00
|
|
|
extern void add_cylinder_description(cylinder_type_t *);
|
2012-08-06 21:03:24 +00:00
|
|
|
extern void add_weightsystem_description(weightsystem_t *);
|
2011-10-25 07:29:19 +00:00
|
|
|
extern void remember_event(const char *eventname);
|
2016-04-03 22:31:59 +00:00
|
|
|
extern void invalidate_dive_cache(struct dive *dc);
|
2013-10-09 07:14:39 +00:00
|
|
|
|
|
|
|
#if WE_DONT_USE_THIS /* this is a missing feature in Qt - selecting which events to display */
|
|
|
|
extern int evn_foreach(void (*callback)(const char *, bool *, void *), void *data);
|
|
|
|
#endif /* WE_DONT_USE_THIS */
|
|
|
|
|
2013-01-31 13:07:04 +00:00
|
|
|
extern void clear_events(void);
|
2011-10-23 06:47:19 +00:00
|
|
|
|
2012-12-13 06:26:29 +00:00
|
|
|
extern void set_dc_nickname(struct dive *dive);
|
2013-10-05 07:29:09 +00:00
|
|
|
extern void set_autogroup(bool value);
|
2013-01-02 20:16:42 +00:00
|
|
|
extern int total_weight(struct dive *);
|
2012-12-13 06:26:29 +00:00
|
|
|
|
2014-01-27 13:44:26 +00:00
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2011-09-05 20:14:53 +00:00
|
|
|
#define DIVE_ERROR_PARSE 1
|
2013-02-13 23:03:25 +00:00
|
|
|
#define DIVE_ERROR_PLAN 2
|
2011-09-05 20:14:53 +00:00
|
|
|
|
2011-09-20 05:09:47 +00:00
|
|
|
const char *weekday(int wday);
|
|
|
|
const char *monthname(int mon);
|
|
|
|
|
2011-09-21 00:52:04 +00:00
|
|
|
#define UTF8_DEGREE "\xc2\xb0"
|
2013-09-25 00:07:07 +00:00
|
|
|
#define UTF8_DELTA "\xce\x94"
|
|
|
|
#define UTF8_UPWARDS_ARROW "\xE2\x86\x91"
|
|
|
|
#define UTF8_DOWNWARDS_ARROW "\xE2\x86\x93"
|
|
|
|
#define UTF8_AVERAGE "\xc3\xb8"
|
2011-09-21 00:52:04 +00:00
|
|
|
#define UTF8_SUBSCRIPT_2 "\xe2\x82\x82"
|
2011-12-07 19:58:16 +00:00
|
|
|
#define UTF8_WHITESTAR "\xe2\x98\x86"
|
|
|
|
#define UTF8_BLACKSTAR "\xe2\x98\x85"
|
2011-09-21 00:52:04 +00:00
|
|
|
|
2012-09-16 03:51:06 +00:00
|
|
|
extern const char *existing_filename;
|
2013-10-05 07:29:09 +00:00
|
|
|
extern void subsurface_command_line_init(int *, char ***);
|
|
|
|
extern void subsurface_command_line_exit(int *, char ***);
|
2011-12-31 16:15:59 +00:00
|
|
|
|
2014-02-28 04:09:57 +00:00
|
|
|
#define FRACTION(n, x) ((unsigned)(n) / (x)), ((unsigned)(n) % (x))
|
2012-09-10 19:17:28 +00:00
|
|
|
|
2017-08-23 20:43:33 +00:00
|
|
|
#define DECOTIMESTEP 60 /* seconds. Unit of deco stop times */
|
|
|
|
|
2017-05-25 20:29:25 +00:00
|
|
|
struct deco_state {
|
|
|
|
double tissue_n2_sat[16];
|
|
|
|
double tissue_he_sat[16];
|
|
|
|
double tolerated_by_tissue[16];
|
|
|
|
double tissue_inertgas_saturation[16];
|
|
|
|
double buehlmann_inertgas_a[16];
|
|
|
|
double buehlmann_inertgas_b[16];
|
|
|
|
|
|
|
|
double max_n2_crushing_pressure[16];
|
|
|
|
double max_he_crushing_pressure[16];
|
|
|
|
|
|
|
|
double crushing_onset_tension[16]; // total inert gas tension in the t* moment
|
|
|
|
double n2_regen_radius[16]; // rs
|
|
|
|
double he_regen_radius[16];
|
|
|
|
double max_ambient_pressure; // last moment we were descending
|
|
|
|
|
|
|
|
double bottom_n2_gradient[16];
|
|
|
|
double bottom_he_gradient[16];
|
|
|
|
|
|
|
|
double initial_n2_gradient[16];
|
|
|
|
double initial_he_gradient[16];
|
2017-09-17 19:06:44 +00:00
|
|
|
pressure_t first_ceiling_pressure;
|
|
|
|
pressure_t max_bottom_ceiling_pressure;
|
2017-05-25 20:29:25 +00:00
|
|
|
int ci_pointing_to_guiding_tissue;
|
|
|
|
double gf_low_pressure_this_dive;
|
|
|
|
|
|
|
|
};
|
|
|
|
|
2015-08-31 21:25:28 +00:00
|
|
|
extern void add_segment(double pressure, const struct gasmix *gasmix, int period_in_seconds, int setpoint, const struct dive *dive, int sac);
|
2013-01-04 04:45:20 +00:00
|
|
|
extern void clear_deco(double surface_pressure);
|
|
|
|
extern void dump_tissues(void);
|
2017-09-19 12:38:38 +00:00
|
|
|
extern void set_gf(short gflow, short gfhigh);
|
2016-09-24 08:02:08 +00:00
|
|
|
extern void set_vpmb_conservatism(short conservatism);
|
2017-05-25 22:45:53 +00:00
|
|
|
extern void cache_deco_state(struct deco_state **datap);
|
|
|
|
extern void restore_deco_state(struct deco_state *data, bool keep_vpmb_state);
|
2015-07-03 20:45:29 +00:00
|
|
|
extern void nuclear_regeneration(double time);
|
2015-07-03 21:19:57 +00:00
|
|
|
extern void vpmb_start_gradient();
|
2015-08-15 12:28:44 +00:00
|
|
|
extern void vpmb_next_gradient(double deco_time, double surface_pressure);
|
2015-08-31 21:25:28 +00:00
|
|
|
extern double tissue_tolerance_calc(const struct dive *dive, double pressure);
|
2013-01-05 07:11:42 +00:00
|
|
|
|
2014-06-01 22:25:19 +00:00
|
|
|
/* this should be converted to use our types */
|
2013-01-05 20:56:45 +00:00
|
|
|
struct divedatapoint {
|
|
|
|
int time;
|
2017-03-10 12:37:54 +00:00
|
|
|
depth_t depth;
|
2016-07-06 12:40:28 +00:00
|
|
|
int cylinderid;
|
2017-03-15 21:28:36 +00:00
|
|
|
pressure_t minimum_gas;
|
2014-10-19 14:07:07 +00:00
|
|
|
int setpoint;
|
2013-10-05 07:29:09 +00:00
|
|
|
bool entered;
|
2013-01-05 20:56:45 +00:00
|
|
|
struct divedatapoint *next;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct diveplan {
|
|
|
|
timestamp_t when;
|
2014-02-28 04:09:57 +00:00
|
|
|
int surface_pressure; /* mbar */
|
|
|
|
int bottomsac; /* ml/min */
|
|
|
|
int decosac; /* ml/min */
|
2014-11-12 22:33:40 +00:00
|
|
|
int salinity;
|
2013-06-24 04:27:52 +00:00
|
|
|
short gflow;
|
|
|
|
short gfhigh;
|
2016-09-24 08:02:08 +00:00
|
|
|
short vpmb_conservatism;
|
2013-01-05 20:56:45 +00:00
|
|
|
struct divedatapoint *dp;
|
2016-11-23 10:50:50 +00:00
|
|
|
int eff_gflow, eff_gfhigh;
|
2017-10-02 09:17:10 +00:00
|
|
|
int surface_interval;
|
2013-01-05 20:56:45 +00:00
|
|
|
};
|
|
|
|
|
2016-07-06 12:40:28 +00:00
|
|
|
struct divedatapoint *plan_add_segment(struct diveplan *diveplan, int duration, int depth, int cylinderid, int po2, bool entered);
|
|
|
|
struct divedatapoint *create_dp(int time_incr, int depth, int cylinderid, int po2);
|
2014-04-17 02:56:42 +00:00
|
|
|
#if DEBUG_PLAN
|
2013-06-24 01:04:35 +00:00
|
|
|
void dump_plan(struct diveplan *diveplan);
|
2014-04-17 02:56:42 +00:00
|
|
|
#endif
|
2017-08-27 20:49:41 +00:00
|
|
|
struct decostop {
|
|
|
|
int depth;
|
|
|
|
int time;
|
|
|
|
};
|
|
|
|
bool plan(struct diveplan *diveplan, struct dive *dive, int timestep, struct decostop *decostoptable, struct deco_state **cached_datap, bool is_planner, bool show_disclaimer);
|
2015-08-23 14:04:59 +00:00
|
|
|
void calc_crushing_pressure(double pressure);
|
|
|
|
void vpmb_start_gradient();
|
2017-02-07 08:18:19 +00:00
|
|
|
void clear_vpmb_state();
|
2017-08-28 21:59:58 +00:00
|
|
|
void printdecotable(struct decostop *table);
|
2015-08-23 14:04:59 +00:00
|
|
|
|
2013-07-05 21:42:35 +00:00
|
|
|
void delete_single_dive(int idx);
|
2013-01-05 07:11:42 +00:00
|
|
|
|
2015-03-11 18:15:03 +00:00
|
|
|
struct event *get_next_event(struct event *event, const char *name);
|
2013-03-28 02:04:46 +00:00
|
|
|
|
Add "get_gasmix()" helper function to iterate over gas changes
We have a few places that used to get the gasmix by looking at the
sensor index in the plot data, which really doesn't work any more.
To make it easier for those users to convert to the new world order,
this adds a "get_gasmix()" function. The gasmix function takes as its
argument the dive, the dive computer, and the time.
In addition, for good performance (to avoid looping over the event list
over and over and over again) it maintains a pointer to the next gas
switch event, and the previous gas. Those need to be initialized to
NULL by the caller, so the standard use-case pattern basically looks
like this:
struct gasmix *gasmix = NULL;
struct event *ev = NULL;
loop over samples or plot events in increasing time order: {
...
gasmix = get_gasmix(dive, dc, time, &ev, gasmix);
...
}
and then you can see what the currently breathing gas is at that time.
If for some reason you need to walk backwards in time, you can just pass
in a NULL gasmix again, which will reset the event iterator (at the cost
of now having to walk all the events again).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2017-07-28 17:22:17 +00:00
|
|
|
static inline struct gasmix *get_gasmix(struct dive *dive, struct divecomputer *dc, int time, struct event **evp, struct gasmix *gasmix)
|
|
|
|
{
|
|
|
|
struct event *ev = *evp;
|
|
|
|
|
|
|
|
if (!gasmix) {
|
|
|
|
int cyl = explicit_first_cylinder(dive, dc);
|
|
|
|
gasmix = &dive->cylinder[cyl].gasmix;
|
2017-10-20 01:22:32 +00:00
|
|
|
ev = dc ? dc->events : NULL;
|
Add "get_gasmix()" helper function to iterate over gas changes
We have a few places that used to get the gasmix by looking at the
sensor index in the plot data, which really doesn't work any more.
To make it easier for those users to convert to the new world order,
this adds a "get_gasmix()" function. The gasmix function takes as its
argument the dive, the dive computer, and the time.
In addition, for good performance (to avoid looping over the event list
over and over and over again) it maintains a pointer to the next gas
switch event, and the previous gas. Those need to be initialized to
NULL by the caller, so the standard use-case pattern basically looks
like this:
struct gasmix *gasmix = NULL;
struct event *ev = NULL;
loop over samples or plot events in increasing time order: {
...
gasmix = get_gasmix(dive, dc, time, &ev, gasmix);
...
}
and then you can see what the currently breathing gas is at that time.
If for some reason you need to walk backwards in time, you can just pass
in a NULL gasmix again, which will reset the event iterator (at the cost
of now having to walk all the events again).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2017-07-28 17:22:17 +00:00
|
|
|
}
|
2017-08-26 16:26:54 +00:00
|
|
|
while (ev && ev->time.seconds < (unsigned int)time) {
|
Add "get_gasmix()" helper function to iterate over gas changes
We have a few places that used to get the gasmix by looking at the
sensor index in the plot data, which really doesn't work any more.
To make it easier for those users to convert to the new world order,
this adds a "get_gasmix()" function. The gasmix function takes as its
argument the dive, the dive computer, and the time.
In addition, for good performance (to avoid looping over the event list
over and over and over again) it maintains a pointer to the next gas
switch event, and the previous gas. Those need to be initialized to
NULL by the caller, so the standard use-case pattern basically looks
like this:
struct gasmix *gasmix = NULL;
struct event *ev = NULL;
loop over samples or plot events in increasing time order: {
...
gasmix = get_gasmix(dive, dc, time, &ev, gasmix);
...
}
and then you can see what the currently breathing gas is at that time.
If for some reason you need to walk backwards in time, you can just pass
in a NULL gasmix again, which will reset the event iterator (at the cost
of now having to walk all the events again).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2017-07-28 17:22:17 +00:00
|
|
|
gasmix = get_gasmix_from_event(dive, ev);
|
|
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
|
|
}
|
|
|
|
*evp = ev;
|
|
|
|
return gasmix;
|
|
|
|
}
|
|
|
|
|
2013-04-15 18:04:35 +00:00
|
|
|
|
2013-05-24 01:38:45 +00:00
|
|
|
/* these structs holds the information that
|
|
|
|
* describes the cylinders / weight systems.
|
|
|
|
* they are global variables initialized in equipment.c
|
2013-04-15 18:04:35 +00:00
|
|
|
* used to fill the combobox in the add/edit cylinder
|
|
|
|
* dialog
|
|
|
|
*/
|
|
|
|
|
2013-09-10 18:44:49 +00:00
|
|
|
struct tank_info_t {
|
2013-04-15 18:04:35 +00:00
|
|
|
const char *name;
|
|
|
|
int cuft, ml, psi, bar;
|
|
|
|
};
|
2017-06-13 22:45:18 +00:00
|
|
|
extern struct tank_info_t tank_info[MAX_TANK_INFO];
|
2013-05-24 01:38:45 +00:00
|
|
|
|
2013-09-10 18:44:49 +00:00
|
|
|
struct ws_info_t {
|
2013-05-24 01:38:45 +00:00
|
|
|
const char *name;
|
|
|
|
int grams;
|
|
|
|
};
|
2013-09-10 18:44:49 +00:00
|
|
|
extern struct ws_info_t ws_info[100];
|
2013-04-15 18:04:35 +00:00
|
|
|
|
2016-04-02 18:50:17 +00:00
|
|
|
extern bool cylinder_nodata(const cylinder_t *cyl);
|
2013-05-22 17:02:28 +00:00
|
|
|
extern bool cylinder_none(void *_data);
|
|
|
|
extern bool weightsystem_none(void *_data);
|
|
|
|
extern bool no_weightsystems(weightsystem_t *ws);
|
|
|
|
extern bool weightsystems_equal(weightsystem_t *ws1, weightsystem_t *ws2);
|
|
|
|
extern void remove_cylinder(struct dive *dive, int idx);
|
|
|
|
extern void remove_weightsystem(struct dive *dive, int idx);
|
2014-07-04 18:40:02 +00:00
|
|
|
extern void reset_cylinders(struct dive *dive, bool track_gas);
|
2013-05-22 17:02:28 +00:00
|
|
|
|
2014-01-03 04:35:35 +00:00
|
|
|
/*
|
|
|
|
* String handling.
|
|
|
|
*/
|
2014-02-28 04:09:57 +00:00
|
|
|
#define STRTOD_NO_SIGN 0x01
|
|
|
|
#define STRTOD_NO_DOT 0x02
|
|
|
|
#define STRTOD_NO_COMMA 0x04
|
|
|
|
#define STRTOD_NO_EXPONENT 0x08
|
2014-01-08 06:51:22 +00:00
|
|
|
extern double strtod_flags(const char *str, const char **ptr, unsigned int flags);
|
2014-01-03 04:35:35 +00:00
|
|
|
|
|
|
|
#define STRTOD_ASCII (STRTOD_NO_COMMA)
|
|
|
|
|
2014-02-28 04:09:57 +00:00
|
|
|
#define ascii_strtod(str, ptr) strtod_flags(str, ptr, STRTOD_ASCII)
|
2014-01-03 04:35:35 +00:00
|
|
|
|
2014-04-11 06:17:35 +00:00
|
|
|
extern void set_save_userid_local(short value);
|
2014-05-22 18:40:22 +00:00
|
|
|
extern void set_userid(char *user_id);
|
2015-06-17 03:28:42 +00:00
|
|
|
extern void set_informational_units(char *units);
|
2017-02-04 09:13:58 +00:00
|
|
|
extern void set_git_prefs(char *prefs);
|
2014-04-11 06:17:35 +00:00
|
|
|
|
2014-08-03 20:02:32 +00:00
|
|
|
extern const char *get_dive_date_c_string(timestamp_t when);
|
2016-04-02 20:06:54 +00:00
|
|
|
extern void update_setpoint_events(struct dive *dive, struct divecomputer *dc);
|
2013-04-01 10:51:49 +00:00
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2014-01-08 06:55:47 +00:00
|
|
|
extern weight_t string_to_weight(const char *str);
|
|
|
|
extern depth_t string_to_depth(const char *str);
|
2014-01-09 00:49:21 +00:00
|
|
|
extern pressure_t string_to_pressure(const char *str);
|
2014-01-09 02:34:25 +00:00
|
|
|
extern volume_t string_to_volume(const char *str, pressure_t workp);
|
2014-01-09 02:43:28 +00:00
|
|
|
extern fraction_t string_to_fraction(const char *str);
|
2016-03-23 16:53:44 +00:00
|
|
|
extern void average_max_depth(struct diveplan *dive, int *avg_depth, int *max_depth);
|
2014-01-08 06:55:47 +00:00
|
|
|
|
2017-04-18 17:14:03 +00:00
|
|
|
extern struct dive_table downloadTable;
|
|
|
|
|
2013-01-11 01:26:10 +00:00
|
|
|
#include "pref.h"
|
|
|
|
|
2014-02-11 18:14:46 +00:00
|
|
|
#endif // DIVE_H
|