subsurface/profile.c

1972 lines
56 KiB
C
Raw Normal View History

/* profile.c */
/* creates all the necessary data for drawing the dive profile
* uses cairo to draw it
*/
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
#include <glib/gi18n.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "dive.h"
#include "display.h"
#include "display-gtk.h"
#include "divelist.h"
#include "color.h"
#include "libdivecomputer/parser.h"
#include "libdivecomputer/version.h"
int selected_dive = 0;
char zoomed_plot = 0;
static double plot_scale = SCALE_SCREEN;
static struct plot_data *last_pi_entry = NULL;
#define cairo_set_line_width_scaled(cr, w) \
cairo_set_line_width((cr), (w) * plot_scale);
typedef enum { STABLE, SLOW, MODERATE, FAST, CRAZY } velocity_t;
struct plot_data {
unsigned int same_cylinder:1;
unsigned int cylinderindex;
int sec;
/* pressure[0] is sensor pressure
* pressure[1] is interpolated pressure */
int pressure[2];
int temperature;
/* Depth info */
int depth;
int ndl;
int stoptime;
int stopdepth;
int cns;
int smoothed;
double po2, pn2, phe;
velocity_t velocity;
struct plot_data *min[3];
struct plot_data *max[3];
int avg[3];
};
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
#define SENSOR_PR 0
#define INTERPOLATED_PR 1
#define SENSOR_PRESSURE(_entry) (_entry)->pressure[SENSOR_PR]
#define INTERPOLATED_PRESSURE(_entry) (_entry)->pressure[INTERPOLATED_PR]
#define GET_PRESSURE(_entry) (SENSOR_PRESSURE(_entry) ? : INTERPOLATED_PRESSURE(_entry))
#define SAC_COLORS_START_IDX SAC_1
#define SAC_COLORS 9
#define VELOCITY_COLORS_START_IDX VELO_STABLE
#define VELOCITY_COLORS 5
typedef enum {
/* SAC colors. Order is important, the SAC_COLORS_START_IDX define above. */
SAC_1, SAC_2, SAC_3, SAC_4, SAC_5, SAC_6, SAC_7, SAC_8, SAC_9,
/* Velocity colors. Order is still important, ref VELOCITY_COLORS_START_IDX. */
VELO_STABLE, VELO_SLOW, VELO_MODERATE, VELO_FAST, VELO_CRAZY,
/* gas colors */
PO2, PO2_ALERT, PN2, PN2_ALERT, PHE, PHE_ALERT, PP_LINES,
/* Other colors */
TEXT_BACKGROUND, ALERT_BG, ALERT_FG, EVENTS, SAMPLE_DEEP, SAMPLE_SHALLOW,
SMOOTHED, MINUTE, TIME_GRID, TIME_TEXT, DEPTH_GRID, MEAN_DEPTH, DEPTH_TOP,
DEPTH_BOTTOM, TEMP_TEXT, TEMP_PLOT, SAC_DEFAULT, BOUNDING_BOX, PRESSURE_TEXT, BACKGROUND,
CEILING_SHALLOW, CEILING_DEEP
} color_indice_t;
typedef struct {
/* media[0] is screen, and media[1] is printer */
struct rgba {
double r,g,b,a;
} media[2];
} color_t;
/* [color indice] = {{screen color, printer color}} */
static const color_t profile_color[] = {
[SAC_1] = {{FUNGREEN1, BLACK1_LOW_TRANS}},
[SAC_2] = {{APPLE1, BLACK1_LOW_TRANS}},
[SAC_3] = {{ATLANTIS1, BLACK1_LOW_TRANS}},
[SAC_4] = {{ATLANTIS2, BLACK1_LOW_TRANS}},
[SAC_5] = {{EARLSGREEN1, BLACK1_LOW_TRANS}},
[SAC_6] = {{HOKEYPOKEY1, BLACK1_LOW_TRANS}},
[SAC_7] = {{TUSCANY1, BLACK1_LOW_TRANS}},
[SAC_8] = {{CINNABAR1, BLACK1_LOW_TRANS}},
[SAC_9] = {{REDORANGE1, BLACK1_LOW_TRANS}},
[VELO_STABLE] = {{CAMARONE1, BLACK1_LOW_TRANS}},
[VELO_SLOW] = {{LIMENADE1, BLACK1_LOW_TRANS}},
[VELO_MODERATE] = {{RIOGRANDE1, BLACK1_LOW_TRANS}},
[VELO_FAST] = {{PIRATEGOLD1, BLACK1_LOW_TRANS}},
[VELO_CRAZY] = {{RED1, BLACK1_LOW_TRANS}},
[PO2] = {{APPLE1, APPLE1_MED_TRANS}},
[PO2_ALERT] = {{RED1, APPLE1_MED_TRANS}},
[PN2] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}},
[PN2_ALERT] = {{RED1, BLACK1_LOW_TRANS}},
[PHE] = {{PEANUT, PEANUT_MED_TRANS}},
[PHE_ALERT] = {{RED1, PEANUT_MED_TRANS}},
[PP_LINES] = {{BLACK1_HIGH_TRANS, BLACK1_HIGH_TRANS}},
[TEXT_BACKGROUND] = {{CONCRETE1_LOWER_TRANS, WHITE1}},
[ALERT_BG] = {{BROOM1_LOWER_TRANS, BLACK1_LOW_TRANS}},
[ALERT_FG] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}},
[EVENTS] = {{REDORANGE1, BLACK1_LOW_TRANS}},
[SAMPLE_DEEP] = {{PERSIANRED1, BLACK1_LOW_TRANS}},
[SAMPLE_SHALLOW] = {{PERSIANRED1, BLACK1_LOW_TRANS}},
[SMOOTHED] = {{REDORANGE1_HIGH_TRANS, BLACK1_LOW_TRANS}},
[MINUTE] = {{MEDIUMREDVIOLET1_HIGHER_TRANS, BLACK1_LOW_TRANS}},
[TIME_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}},
[TIME_TEXT] = {{FORESTGREEN1, BLACK1_LOW_TRANS}},
[DEPTH_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}},
[MEAN_DEPTH] = {{REDORANGE1_MED_TRANS, BLACK1_LOW_TRANS}},
[DEPTH_BOTTOM] = {{GOVERNORBAY1_MED_TRANS, TUNDORA1_MED_TRANS}},
[DEPTH_TOP] = {{MERCURY1_MED_TRANS, WHITE1_MED_TRANS}},
[TEMP_TEXT] = {{GOVERNORBAY2, BLACK1_LOW_TRANS}},
[TEMP_PLOT] = {{ROYALBLUE2_LOW_TRANS, BLACK1_LOW_TRANS}},
[SAC_DEFAULT] = {{WHITE1, BLACK1_LOW_TRANS}},
[BOUNDING_BOX] = {{WHITE1, BLACK1_LOW_TRANS}},
[PRESSURE_TEXT] = {{KILLARNEY1, BLACK1_LOW_TRANS}},
[BACKGROUND] = {{SPRINGWOOD1, BLACK1_LOW_TRANS}},
[CEILING_SHALLOW] = {{REDORANGE1_HIGH_TRANS, REDORANGE1_HIGH_TRANS}},
[CEILING_DEEP] = {{RED1_MED_TRANS, RED1_MED_TRANS}},
};
/* Scale to 0,0 -> maxx,maxy */
#define SCALEX(gc,x) (((x)-gc->leftx)/(gc->rightx-gc->leftx)*gc->maxx)
#define SCALEY(gc,y) (((y)-gc->topy)/(gc->bottomy-gc->topy)*gc->maxy)
#define SCALE(gc,x,y) SCALEX(gc,x),SCALEY(gc,y)
static void move_to(struct graphics_context *gc, double x, double y)
{
cairo_move_to(gc->cr, SCALE(gc, x, y));
}
static void line_to(struct graphics_context *gc, double x, double y)
{
cairo_line_to(gc->cr, SCALE(gc, x, y));
}
static void set_source_rgba(struct graphics_context *gc, color_indice_t c)
{
const color_t *col = &profile_color[c];
struct rgba rgb = col->media[gc->printer];
double r = rgb.r;
double g = rgb.g;
double b = rgb.b;
double a = rgb.a;
cairo_set_source_rgba(gc->cr, r, g, b, a);
}
void init_profile_background(struct graphics_context *gc)
{
set_source_rgba(gc, BACKGROUND);
}
void pattern_add_color_stop_rgba(struct graphics_context *gc, cairo_pattern_t *pat, double o, color_indice_t c)
{
const color_t *col = &profile_color[c];
struct rgba rgb = col->media[gc->printer];
cairo_pattern_add_color_stop_rgba(pat, o, rgb.r, rgb.g, rgb.b, rgb.a);
}
#define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y))
/* debugging tool - not normally used */
static void dump_pi (struct plot_info *pi)
{
int i;
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
" maxpressure:%d mintemp:%d maxtemp:%d\n",
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
pi->maxpressure, pi->mintemp, pi->maxtemp);
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = &pi->entry[i];
printf(" entry[%d]:{same_cylinder:%d cylinderindex:%d sec:%d pressure:{%d,%d}\n"
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
i, entry->same_cylinder, entry->cylinderindex, entry->sec,
entry->pressure[0], entry->pressure[1],
entry->sec / 60, entry->sec % 60,
entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
entry->po2, entry->phe, entry->pn2,
entry->po2 + entry->phe + entry->pn2);
}
printf(" }\n");
}
/*
* When showing dive profiles, we scale things to the
* current dive. However, we don't scale past less than
* 30 minutes or 90 ft, just so that small dives show
* up as such unless zoom is enabled.
* We also need to add 180 seconds at the end so the min/max
* plots correctly
*/
static int get_maxtime(struct plot_info *pi)
{
int seconds = pi->maxtime;
if (zoomed_plot) {
/* Rounded up to one minute, with at least 2.5 minutes to
* spare.
* For dive times shorter than 10 minutes, we use seconds/4 to
* calculate the space dynamically.
* This is seamless since 600/4 = 150.
*/
if ( seconds < 600 )
return ROUND_UP(seconds+seconds/4, 60);
else
return ROUND_UP(seconds+150, 60);
} else {
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
return MAX(30*60, ROUND_UP(seconds+150, 60*5));
}
}
/* get the maximum depth to which we want to plot
* take into account the additional verical space needed to plot
* partial pressure graphs */
static int get_maxdepth(struct plot_info *pi)
{
unsigned mm = pi->maxdepth;
int md;
if (zoomed_plot) {
/* Rounded up to 10m, with at least 3m to spare */
md = ROUND_UP(mm+3000, 10000);
} else {
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
md = MAX(30000, ROUND_UP(mm+3000, 10000));
}
if (PP_GRAPHS_ENABLED) {
if (md <= 20000)
md += 10000;
else
md += ROUND_UP(md / 2, 10000);
}
return md;
}
typedef struct {
int size;
color_indice_t color;
double hpos, vpos;
} text_render_options_t;
#define RIGHT (-1.0)
#define CENTER (-0.5)
#define LEFT (0.0)
#define TOP (1)
#define MIDDLE (0)
#define BOTTOM (-1)
static void plot_text(struct graphics_context *gc, const text_render_options_t *tro,
double x, double y, const char *fmt, ...)
{
cairo_t *cr = gc->cr;
cairo_font_extents_t fe;
cairo_text_extents_t extents;
double dx, dy;
char buffer[80];
va_list args;
va_start(args, fmt);
vsnprintf(buffer, sizeof(buffer), fmt, args);
va_end(args);
cairo_set_font_size(cr, tro->size * plot_scale);
cairo_font_extents(cr, &fe);
cairo_text_extents(cr, buffer, &extents);
dx = tro->hpos * (extents.width + extents.x_bearing);
dy = tro->vpos * (extents.height + fe.descent);
move_to(gc, x, y);
cairo_rel_move_to(cr, dx, dy);
cairo_text_path(cr, buffer);
set_source_rgba(gc, TEXT_BACKGROUND);
cairo_stroke(cr);
move_to(gc, x, y);
cairo_rel_move_to(cr, dx, dy);
set_source_rgba(gc, tro->color);
cairo_show_text(cr, buffer);
}
/* collect all event names and whether we display them */
struct ev_select {
char *ev_name;
gboolean plot_ev;
};
static struct ev_select *ev_namelist;
static int evn_allocated;
static int evn_used;
void evn_foreach(void (*callback)(const char *, int *, void *), void *data)
{
int i;
for (i = 0; i < evn_used; i++) {
/* here we display an event name on screen - so translate */
callback(_(ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
}
}
void remember_event(const char *eventname)
{
int i = 0, len;
if (!eventname || (len = strlen(eventname)) == 0)
return;
while (i < evn_used) {
if (!strncmp(eventname, ev_namelist[i].ev_name, len))
return;
i++;
}
if (evn_used == evn_allocated) {
evn_allocated += 10;
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
if (! ev_namelist)
/* we are screwed, but let's just bail out */
return;
}
ev_namelist[evn_used].ev_name = strdup(eventname);
ev_namelist[evn_used].plot_ev = TRUE;
evn_used++;
}
static void plot_one_event(struct graphics_context *gc, struct plot_info *pi, struct event *event, const text_render_options_t *tro)
{
int i, depth = 0;
int x,y;
char buffer[80];
/* is plotting this event disabled? */
if (event->name) {
for (i = 0; i < evn_used; i++) {
if (! strcmp(event->name, ev_namelist[i].ev_name)) {
if (ev_namelist[i].plot_ev)
break;
else
return;
}
}
}
if (event->time.seconds < 30 && !strcmp(event->name, "gaschange"))
/* a gas change in the first 30 seconds is the way of some dive computers
* to tell us the gas that is used; let's not plot a marker for that */
return;
for (i = 0; i < pi->nr; i++) {
struct plot_data *data = pi->entry + i;
if (event->time.seconds < data->sec)
break;
depth = data->depth;
}
/* draw a little triangular marker and attach tooltip */
x = SCALEX(gc, event->time.seconds);
y = SCALEY(gc, depth);
set_source_rgba(gc, ALERT_BG);
cairo_move_to(gc->cr, x-15, y+6);
cairo_line_to(gc->cr, x-3 , y+6);
cairo_line_to(gc->cr, x-9, y-6);
cairo_line_to(gc->cr, x-15, y+6);
cairo_stroke_preserve(gc->cr);
cairo_fill(gc->cr);
set_source_rgba(gc, ALERT_FG);
cairo_move_to(gc->cr, x-9, y-3);
cairo_line_to(gc->cr, x-9, y+1);
cairo_move_to(gc->cr, x-9, y+4);
cairo_line_to(gc->cr, x-9, y+4);
cairo_stroke(gc->cr);
/* we display the event on screen - so translate */
if (event->value)
snprintf(buffer, sizeof(buffer), "%s: %d", _(event->name), event->value);
else
snprintf(buffer, sizeof(buffer), "%s", _(event->name));
attach_tooltip(x-15, y-6, 12, 12, buffer);
}
static void plot_events(struct graphics_context *gc, struct plot_info *pi, struct divecomputer *dc)
{
static const text_render_options_t tro = {14, EVENTS, CENTER, TOP};
struct event *event = dc->events;
if (gc->printer)
return;
while (event) {
if (event->flags != SAMPLE_FLAGS_BEGIN && event->flags != SAMPLE_FLAGS_END)
plot_one_event(gc, pi, event, &tro);
event = event->next;
}
}
static void render_depth_sample(struct graphics_context *gc, struct plot_data *entry, const text_render_options_t *tro)
{
int sec = entry->sec, decimals;
double d;
d = get_depth_units(entry->depth, &decimals, NULL);
plot_text(gc, tro, sec, entry->depth, "%.*f", decimals, d);
}
static void plot_text_samples(struct graphics_context *gc, struct plot_info *pi)
{
static const text_render_options_t deep = {14, SAMPLE_DEEP, CENTER, TOP};
static const text_render_options_t shallow = {14, SAMPLE_SHALLOW, CENTER, BOTTOM};
int i;
int last = -1;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
if (entry->depth < 2000)
continue;
if ((entry == entry->max[2]) && entry->depth != last) {
render_depth_sample(gc, entry, &deep);
last = entry->depth;
}
if ((entry == entry->min[2]) && entry->depth != last) {
render_depth_sample(gc, entry, &shallow);
last = entry->depth;
}
if (entry->depth != last)
last = -1;
}
}
static void plot_depth_text(struct graphics_context *gc, struct plot_info *pi)
{
int maxtime, maxdepth;
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
maxdepth = get_maxdepth(pi);
gc->leftx = 0; gc->rightx = maxtime;
gc->topy = 0; gc->bottomy = maxdepth;
plot_text_samples(gc, pi);
}
static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i;
struct plot_data *entry = pi->entry;
set_source_rgba(gc, SMOOTHED);
move_to(gc, entry->sec, entry->smoothed);
for (i = 1; i < pi->nr; i++) {
entry++;
line_to(gc, entry->sec, entry->smoothed);
}
cairo_stroke(gc->cr);
}
static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi,
int index)
{
int i;
struct plot_data *entry = pi->entry;
set_source_rgba(gc, MINUTE);
move_to(gc, entry->sec, entry->min[index]->depth);
for (i = 1; i < pi->nr; i++) {
entry++;
line_to(gc, entry->sec, entry->min[index]->depth);
}
for (i = 1; i < pi->nr; i++) {
line_to(gc, entry->sec, entry->max[index]->depth);
entry--;
}
cairo_close_path(gc->cr);
cairo_fill(gc->cr);
}
static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi)
{
if (gc->printer)
return;
plot_minmax_profile_minute(gc, pi, 2);
plot_minmax_profile_minute(gc, pi, 1);
plot_minmax_profile_minute(gc, pi, 0);
}
static void plot_depth_scale(struct graphics_context *gc, struct plot_info *pi)
{
int i, maxdepth, marker;
static const text_render_options_t tro = {10, SAMPLE_DEEP, RIGHT, MIDDLE};
/* Depth markers: every 30 ft or 10 m*/
maxdepth = get_maxdepth(pi);
gc->topy = 0; gc->bottomy = maxdepth;
switch (prefs.output_units.length) {
case METERS: marker = 10000; break;
case FEET: marker = 9144; break; /* 30 ft */
}
set_source_rgba(gc, DEPTH_GRID);
/* don't write depth labels all the way to the bottom as
* there may be other graphs below the depth plot (like
* partial pressure graphs) where this would look out
* of place - so we only make sure that we print the next
* marker below the actual maxdepth of the dive */
for (i = marker; i <= pi->maxdepth + marker; i += marker) {
double d = get_depth_units(i, NULL, NULL);
plot_text(gc, &tro, -0.002, i, "%.0f", d);
}
}
static void setup_pp_limits(struct graphics_context *gc, struct plot_info *pi)
{
int maxdepth;
gc->leftx = 0;
gc->rightx = get_maxtime(pi);
/* the maxdepth already includes extra vertical space - and if
* we use 1.5 times the corresponding pressure as maximum partial
* pressure the graph seems to look fine*/
maxdepth = get_maxdepth(pi);
gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * 1.01325;
gc->bottomy = -gc->topy / 20;
}
static void plot_pp_text(struct graphics_context *gc, struct plot_info *pi)
{
double pp, dpp, m;
int hpos;
static const text_render_options_t tro = {11, PP_LINES, LEFT, MIDDLE};
setup_pp_limits(gc, pi);
pp = floor(pi->maxpp * 10.0) / 10.0 + 0.2;
dpp = floor(2.0 * pp) / 10.0;
hpos = pi->entry[pi->nr - 1].sec;
set_source_rgba(gc, PP_LINES);
for (m = 0.0; m <= pp; m += dpp) {
move_to(gc, 0, m);
line_to(gc, hpos, m);
cairo_stroke(gc->cr);
plot_text(gc, &tro, hpos + 30, m, "%.1f", m);
}
}
static void plot_pp_gas_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i;
struct plot_data *entry;
setup_pp_limits(gc, pi);
if (prefs.pp_graphs.pn2) {
set_source_rgba(gc, PN2);
entry = pi->entry;
move_to(gc, entry->sec, entry->pn2);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->pn2 < prefs.pp_graphs.pn2_threshold)
line_to(gc, entry->sec, entry->pn2);
else
move_to(gc, entry->sec, entry->pn2);
}
cairo_stroke(gc->cr);
set_source_rgba(gc, PN2_ALERT);
entry = pi->entry;
move_to(gc, entry->sec, entry->pn2);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->pn2 >= prefs.pp_graphs.pn2_threshold)
line_to(gc, entry->sec, entry->pn2);
else
move_to(gc, entry->sec, entry->pn2);
}
cairo_stroke(gc->cr);
}
if (prefs.pp_graphs.phe) {
set_source_rgba(gc, PHE);
entry = pi->entry;
move_to(gc, entry->sec, entry->phe);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->phe < prefs.pp_graphs.phe_threshold)
line_to(gc, entry->sec, entry->phe);
else
move_to(gc, entry->sec, entry->phe);
}
cairo_stroke(gc->cr);
set_source_rgba(gc, PHE_ALERT);
entry = pi->entry;
move_to(gc, entry->sec, entry->phe);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->phe >= prefs.pp_graphs.phe_threshold)
line_to(gc, entry->sec, entry->phe);
else
move_to(gc, entry->sec, entry->phe);
}
cairo_stroke(gc->cr);
}
if (prefs.pp_graphs.po2) {
set_source_rgba(gc, PO2);
entry = pi->entry;
move_to(gc, entry->sec, entry->po2);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->po2 < prefs.pp_graphs.po2_threshold)
line_to(gc, entry->sec, entry->po2);
else
move_to(gc, entry->sec, entry->po2);
}
cairo_stroke(gc->cr);
set_source_rgba(gc, PO2_ALERT);
entry = pi->entry;
move_to(gc, entry->sec, entry->po2);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->po2 >= prefs.pp_graphs.po2_threshold)
line_to(gc, entry->sec, entry->po2);
else
move_to(gc, entry->sec, entry->po2);
}
cairo_stroke(gc->cr);
}
}
static void plot_depth_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i, incr;
cairo_t *cr = gc->cr;
int sec, depth;
struct plot_data *entry;
int maxtime, maxdepth, marker;
int increments[8] = { 10, 20, 30, 60, 5*60, 10*60, 15*60, 30*60 };
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
maxdepth = get_maxdepth(pi);
gc->maxtime = maxtime;
/* Time markers: at most every 10 seconds, but no more than 12 markers.
* We start out with 10 seconds and increment up to 30 minutes,
* depending on the dive time.
* This allows for 6h dives - enough (I hope) for even the craziest
* divers - but just in case, for those 8h depth-record-breaking dives,
* we double the interval if this still doesn't get us to 12 or fewer
* time markers */
i = 0;
while (maxtime / increments[i] > 12 && i < 7)
i++;
incr = increments[i];
while (maxtime / incr > 12)
incr *= 2;
gc->leftx = 0; gc->rightx = maxtime;
gc->topy = 0; gc->bottomy = 1.0;
set_source_rgba(gc, TIME_GRID);
cairo_set_line_width_scaled(gc->cr, 2);
for (i = incr; i < maxtime; i += incr) {
move_to(gc, i, 0);
line_to(gc, i, 1);
}
cairo_stroke(cr);
/* now the text on the time markers */
text_render_options_t tro = {10, TIME_TEXT, CENTER, TOP};
if (maxtime < 600) {
/* Be a bit more verbose with shorter dives */
for (i = incr; i < maxtime; i += incr)
plot_text(gc, &tro, i, 1, "%02d:%02d", i/60, i%60);
} else {
/* Only render the time on every second marker for normal dives */
for (i = incr; i < maxtime; i += 2 * incr)
plot_text(gc, &tro, i, 1, "%d", i/60);
}
/* Depth markers: every 30 ft or 10 m*/
gc->leftx = 0; gc->rightx = 1.0;
gc->topy = 0; gc->bottomy = maxdepth;
switch (prefs.output_units.length) {
case METERS: marker = 10000; break;
case FEET: marker = 9144; break; /* 30 ft */
}
set_source_rgba(gc, DEPTH_GRID);
for (i = marker; i < maxdepth; i += marker) {
move_to(gc, 0, i);
line_to(gc, 1, i);
}
cairo_stroke(cr);
gc->leftx = 0; gc->rightx = maxtime;
/* Show mean depth */
if (! gc->printer) {
set_source_rgba(gc, MEAN_DEPTH);
move_to(gc, 0, pi->meandepth);
line_to(gc, pi->entry[pi->nr - 1].sec, pi->meandepth);
cairo_stroke(cr);
}
/*
* These are good for debugging text placement etc,
* but not for actual display..
*/
if (0) {
plot_smoothed_profile(gc, pi);
plot_minmax_profile(gc, pi);
}
/* Do the depth profile for the neat fill */
gc->topy = 0; gc->bottomy = maxdepth;
cairo_pattern_t *pat;
pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale);
pattern_add_color_stop_rgba (gc, pat, 1, DEPTH_BOTTOM);
pattern_add_color_stop_rgba (gc, pat, 0, DEPTH_TOP);
cairo_set_source(gc->cr, pat);
cairo_pattern_destroy(pat);
cairo_set_line_width_scaled(gc->cr, 2);
entry = pi->entry;
move_to(gc, 0, 0);
for (i = 0; i < pi->nr; i++, entry++)
line_to(gc, entry->sec, entry->depth);
/* Show any ceiling we may have encountered */
for (i = pi->nr - 1; i >= 0; i--, entry--) {
if (entry->ndl) {
/* non-zero NDL implies this is a safety stop, no ceiling */
line_to(gc, entry->sec, 0);
} else if (entry->stopdepth < entry->depth) {
line_to(gc, entry->sec, entry->stopdepth);
} else {
line_to(gc, entry->sec, entry->depth);
}
}
cairo_close_path(gc->cr);
cairo_fill(gc->cr);
/* if the user wants the deco ceiling more visible, do that here (this
* basically draws over the background that we had allowed to shine
* through so far) */
if (prefs.profile_red_ceiling) {
pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale);
pattern_add_color_stop_rgba (gc, pat, 0, CEILING_SHALLOW);
pattern_add_color_stop_rgba (gc, pat, 1, CEILING_DEEP);
cairo_set_source(gc->cr, pat);
cairo_pattern_destroy(pat);
entry = pi->entry;
move_to(gc, 0, 0);
for (i = 0; i < pi->nr; i++, entry++) {
if (entry->ndl == 0 && entry->stopdepth) {
if (entry->ndl == 0 && entry->stopdepth < entry->depth) {
line_to(gc, entry->sec, entry->stopdepth);
} else {
line_to(gc, entry->sec, entry->depth);
}
} else {
line_to(gc, entry->sec, 0);
}
}
cairo_close_path(gc->cr);
cairo_fill(gc->cr);
}
/* next show where we have been bad and crossed the ceiling */
pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale);
pattern_add_color_stop_rgba (gc, pat, 0, CEILING_SHALLOW);
pattern_add_color_stop_rgba (gc, pat, 1, CEILING_DEEP);
cairo_set_source(gc->cr, pat);
cairo_pattern_destroy(pat);
entry = pi->entry;
move_to(gc, 0, 0);
for (i = 0; i < pi->nr; i++, entry++)
line_to(gc, entry->sec, entry->depth);
for (i = pi->nr - 1; i >= 0; i--, entry--) {
if (entry->ndl == 0 && entry->stopdepth > entry->depth) {
line_to(gc, entry->sec, entry->stopdepth);
} else {
line_to(gc, entry->sec, entry->depth);
}
}
cairo_close_path(gc->cr);
cairo_fill(gc->cr);
/* Now do it again for the velocity colors */
entry = pi->entry;
for (i = 1; i < pi->nr; i++) {
entry++;
sec = entry->sec;
/* we want to draw the segments in different colors
* representing the vertical velocity, so we need to
* chop this into short segments */
depth = entry->depth;
set_source_rgba(gc, VELOCITY_COLORS_START_IDX + entry->velocity);
move_to(gc, entry[-1].sec, entry[-1].depth);
line_to(gc, sec, depth);
cairo_stroke(cr);
}
}
static int setup_temperature_limits(struct graphics_context *gc, struct plot_info *pi)
{
int maxtime, mintemp, maxtemp, delta;
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
mintemp = pi->mintemp;
maxtemp = pi->maxtemp;
gc->leftx = 0; gc->rightx = maxtime;
/* Show temperatures in roughly the lower third, but make sure the scale
is at least somewhat reasonable */
delta = maxtemp - mintemp;
if (delta < 3000) /* less than 3K in fluctuation */
delta = 3000;
gc->topy = maxtemp + delta*2;
if (PP_GRAPHS_ENABLED)
gc->bottomy = mintemp - delta * 2;
else
gc->bottomy = mintemp - delta / 3;
pi->endtempcoord = SCALEY(gc, pi->mintemp);
return maxtemp > mintemp;
}
static void plot_single_temp_text(struct graphics_context *gc, int sec, int mkelvin)
{
double deg;
const char *unit;
static const text_render_options_t tro = {12, TEMP_TEXT, LEFT, TOP};
deg = get_temp_units(mkelvin, &unit);
plot_text(gc, &tro, sec, mkelvin, "%d%s", (int)(deg + 0.5), unit);
}
static void plot_temperature_text(struct graphics_context *gc, struct plot_info *pi)
{
int i;
int last = -300, sec = 0;
int last_temperature = 0, last_printed_temp = 0;
if (!setup_temperature_limits(gc, pi))
return;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry+i;
int mkelvin = entry->temperature;
if (!mkelvin)
continue;
last_temperature = mkelvin;
sec = entry->sec;
/* don't print a temperature
* if it's been less than 5min and less than a 2K change OR
* if it's been less than 2min OR if the change from the
* last print is less than .4K (and therefore less than 1F */
if (((sec < last + 300) && (abs(mkelvin - last_printed_temp) < 2000)) ||
(sec < last + 120) ||
(abs(mkelvin - last_printed_temp) < 400))
continue;
last = sec;
plot_single_temp_text(gc,sec,mkelvin);
last_printed_temp = mkelvin;
}
/* it would be nice to print the end temperature, if it's
* different or if the last temperature print has been more
* than a quarter of the dive back */
if ((abs(last_temperature - last_printed_temp) > 500) ||
((double)last / (double)sec < 0.75))
plot_single_temp_text(gc, sec, last_temperature);
}
static void plot_temperature_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i;
cairo_t *cr = gc->cr;
int last = 0;
if (!setup_temperature_limits(gc, pi))
return;
cairo_set_line_width_scaled(gc->cr, 2);
set_source_rgba(gc, TEMP_PLOT);
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
int mkelvin = entry->temperature;
int sec = entry->sec;
if (!mkelvin) {
if (!last)
continue;
mkelvin = last;
}
if (last)
line_to(gc, sec, mkelvin);
else
move_to(gc, sec, mkelvin);
last = mkelvin;
}
cairo_stroke(cr);
}
/* gets both the actual start and end pressure as well as the scaling factors */
static int get_cylinder_pressure_range(struct graphics_context *gc, struct plot_info *pi)
{
gc->leftx = 0;
gc->rightx = get_maxtime(pi);
if (PP_GRAPHS_ENABLED)
gc->bottomy = -pi->maxpressure * 0.75;
else
gc->bottomy = 0;
gc->topy = pi->maxpressure * 1.5;
if (!pi->maxpressure)
return FALSE;
while (pi->endtempcoord <= SCALEY(gc, pi->minpressure - (gc->topy) * 0.1))
gc->bottomy -= gc->topy * 0.1;
return TRUE;
}
/* set the color for the pressure plot according to temporary sac rate
* as compared to avg_sac; the calculation simply maps the delta between
* sac and avg_sac to indexes 0 .. (SAC_COLORS - 1) with everything
* more than 6000 ml/min below avg_sac mapped to 0 */
static void set_sac_color(struct graphics_context *gc, int sac, int avg_sac)
{
int sac_index = 0;
int delta = sac - avg_sac + 7000;
if (!gc->printer) {
sac_index = delta / 2000;
if (sac_index < 0)
sac_index = 0;
if (sac_index > SAC_COLORS - 1)
sac_index = SAC_COLORS - 1;
set_source_rgba(gc, SAC_COLORS_START_IDX + sac_index);
} else {
set_source_rgba(gc, SAC_DEFAULT);
}
}
/* calculate the current SAC in ml/min and convert to int */
#define GET_LOCAL_SAC(_entry1, _entry2, _dive) (int) \
((GET_PRESSURE((_entry1)) - GET_PRESSURE((_entry2))) * \
(_dive)->cylinder[(_entry1)->cylinderindex].type.size.mliter / \
(((_entry2)->sec - (_entry1)->sec) / 60.0) / \
depth_to_mbar(((_entry1)->depth + (_entry2)->depth) / 2.0, (_dive)))
#define SAC_WINDOW 45 /* sliding window in seconds for current SAC calculation */
static void plot_cylinder_pressure(struct graphics_context *gc, struct plot_info *pi,
struct dive *dive)
{
int i;
int last = -1;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
int lift_pen = FALSE;
int first_plot = TRUE;
int sac = 0;
struct plot_data *last_entry = NULL;
if (!get_cylinder_pressure_range(gc, pi))
return;
cairo_set_line_width_scaled(gc->cr, 2);
for (i = 0; i < pi->nr; i++) {
int mbar;
struct plot_data *entry = pi->entry + i;
mbar = GET_PRESSURE(entry);
if (!entry->same_cylinder) {
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
lift_pen = TRUE;
last_entry = NULL;
}
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
if (!mbar) {
lift_pen = TRUE;
continue;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
}
if (!last_entry) {
last = i;
last_entry = entry;
sac = GET_LOCAL_SAC(entry, pi->entry + i + 1, dive);
} else {
int j;
sac = 0;
for (j = last; j < i; j++)
sac += GET_LOCAL_SAC(pi->entry + j, pi->entry + j + 1, dive);
sac /= (i - last);
if (entry->sec - last_entry->sec >= SAC_WINDOW) {
last++;
last_entry = pi->entry + last;
}
}
set_sac_color(gc, sac, dive->sac);
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
if (lift_pen) {
if (!first_plot && entry->same_cylinder) {
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
/* if we have a previous event from the same tank,
* draw at least a short line */
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
int prev_pr;
prev_pr = GET_PRESSURE(entry - 1);
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
move_to(gc, (entry-1)->sec, prev_pr);
line_to(gc, entry->sec, mbar);
} else {
first_plot = FALSE;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
move_to(gc, entry->sec, mbar);
}
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
lift_pen = FALSE;
} else {
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
line_to(gc, entry->sec, mbar);
}
cairo_stroke(gc->cr);
move_to(gc, entry->sec, mbar);
}
}
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
static void plot_pressure_value(struct graphics_context *gc, int mbar, int sec,
int xalign, int yalign)
{
int pressure;
const char *unit;
pressure = get_pressure_units(mbar, &unit);
text_render_options_t tro = {10, PRESSURE_TEXT, xalign, yalign};
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
plot_text(gc, &tro, sec, mbar, "%d %s", pressure, unit);
}
static void plot_cylinder_pressure_text(struct graphics_context *gc, struct plot_info *pi)
{
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
int i;
int mbar, cyl;
int seen_cyl[MAX_CYLINDERS] = { FALSE, };
int last_pressure[MAX_CYLINDERS] = { 0, };
int last_time[MAX_CYLINDERS] = { 0, };
struct plot_data *entry;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
if (!get_cylinder_pressure_range(gc, pi))
return;
/* only loop over the actual events from the dive computer
* plus the second synthetic event at the start (to make sure
* we get "time=0" right)
* sadly with a recent change that first entry may no longer
* have any pressure reading - in that case just grab the
* pressure from the second entry */
if (GET_PRESSURE(pi->entry + 1) == 0 && GET_PRESSURE(pi->entry + 2) !=0)
INTERPOLATED_PRESSURE(pi->entry + 1) = GET_PRESSURE(pi->entry + 2);
for (i = 1; i < pi->nr; i++) {
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
entry = pi->entry + i;
if (!entry->same_cylinder) {
cyl = entry->cylinderindex;
if (!seen_cyl[cyl]) {
mbar = GET_PRESSURE(entry);
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
plot_pressure_value(gc, mbar, entry->sec, LEFT, BOTTOM);
seen_cyl[cyl] = TRUE;
}
if (i > 2) {
/* remember the last pressure and time of
* the previous cylinder */
cyl = (entry - 1)->cylinderindex;
last_pressure[cyl] = GET_PRESSURE(entry - 1);
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
last_time[cyl] = (entry - 1)->sec;
}
}
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
}
cyl = entry->cylinderindex;
if (GET_PRESSURE(entry))
last_pressure[cyl] = GET_PRESSURE(entry);
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
last_time[cyl] = entry->sec;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
if (last_time[cyl]) {
plot_pressure_value(gc, last_pressure[cyl], last_time[cyl], CENTER, TOP);
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
}
}
}
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
{
struct plot_data *p = entry;
int time = entry->sec;
int seconds = 90*(index+1);
struct plot_data *min, *max;
int avg, nr;
/* Go back 'seconds' in time */
while (p > first) {
if (p[-1].sec < time - seconds)
break;
p--;
}
/* Then go forward until we hit an entry past the time */
min = max = p;
avg = p->depth;
nr = 1;
while (++p < last) {
int depth = p->depth;
if (p->sec > time + seconds)
break;
avg += depth;
nr ++;
if (depth < min->depth)
min = p;
if (depth > max->depth)
max = p;
}
entry->min[index] = min;
entry->max[index] = max;
entry->avg[index] = (avg + nr/2) / nr;
}
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
{
analyze_plot_info_minmax_minute(entry, first, last, 0);
analyze_plot_info_minmax_minute(entry, first, last, 1);
analyze_plot_info_minmax_minute(entry, first, last, 2);
}
static velocity_t velocity(int speed)
{
velocity_t v;
if (speed < -304) /* ascent faster than -60ft/min */
v = CRAZY;
else if (speed < -152) /* above -30ft/min */
v = FAST;
else if (speed < -76) /* -15ft/min */
v = MODERATE;
else if (speed < -25) /* -5ft/min */
v = SLOW;
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
for descent are usually about 2x ascent rate; still, we want
stable to mean stable */
v = STABLE;
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
v = SLOW;
else if (speed < 304) /* up to 60ft/min is moderate */
v = MODERATE;
else if (speed < 507) /* up to 100ft/min is fast */
v = FAST;
else /* more than that is just crazy - you'll blow your ears out */
v = CRAZY;
return v;
}
static struct plot_info *analyze_plot_info(struct plot_info *pi)
{
int i;
int nr = pi->nr;
/* Smoothing function: 5-point triangular smooth */
for (i = 2; i < nr; i++) {
struct plot_data *entry = pi->entry+i;
int depth;
if (i < nr-2) {
depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth;
entry->smoothed = (depth+4) / 9;
}
/* vertical velocity in mm/sec */
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
if (entry[0].sec - entry[-1].sec) {
entry->velocity = velocity((entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec));
/* if our samples are short and we aren't too FAST*/
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
int past = -2;
while (i+past > 0 && entry[0].sec - entry[past].sec < 15)
past--;
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
(entry[0].sec - entry[past].sec));
}
} else
entry->velocity = STABLE;
}
/* One-, two- and three-minute minmax data */
for (i = 0; i < nr; i++) {
struct plot_data *entry = pi->entry +i;
analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr);
}
return pi;
}
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
/*
* simple structure to track the beginning and end tank pressure as
* well as the integral of depth over time spent while we have no
* pressure reading from the tank */
typedef struct pr_track_struct pr_track_t;
struct pr_track_struct {
int start;
int end;
int t_start;
int t_end;
double pressure_time;
pr_track_t *next;
};
static pr_track_t *pr_track_alloc(int start, int t_start) {
pr_track_t *pt = malloc(sizeof(pr_track_t));
pt->start = start;
pt->t_start = t_start;
pt->end = 0;
pt->t_end = 0;
pt->pressure_time = 0.0;
pt->next = NULL;
return pt;
}
/* poor man's linked list */
static pr_track_t *list_last(pr_track_t *list)
{
pr_track_t *tail = list;
if (!tail)
return NULL;
while (tail->next) {
tail = tail->next;
}
return tail;
}
static pr_track_t *list_add(pr_track_t *list, pr_track_t *element)
{
pr_track_t *tail = list_last(list);
if (!tail)
return element;
tail->next = element;
return list;
}
static void list_free(pr_track_t *list)
{
if (!list)
return;
list_free(list->next);
free(list);
}
static void dump_pr_track(pr_track_t **track_pr)
{
int cyl;
pr_track_t *list;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
list = track_pr[cyl];
while (list) {
printf("cyl%d: start %d end %d t_start %d t_end %d pt %6.3f\n", cyl,
list->start, list->end, list->t_start, list->t_end, list->pressure_time);
list = list->next;
}
}
}
static void fill_missing_tank_pressures(struct plot_info *pi, pr_track_t **track_pr)
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
{
pr_track_t *list = NULL;
pr_track_t *nlist = NULL;
double pt, magic;
int cyl, i;
struct plot_data *entry;
int cur_pr[MAX_CYLINDERS];
if (0) {
/* another great debugging tool */
dump_pr_track(track_pr);
}
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
cur_pr[cyl] = track_pr[cyl]->start;
}
/* The first two are "fillers", but in case we don't have a sample
* at time 0 we need to process the second of them here */
for (i = 1; i < pi->nr; i++) {
entry = pi->entry + i;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
if (SENSOR_PRESSURE(entry)) {
cur_pr[entry->cylinderindex] = SENSOR_PRESSURE(entry);
} else {
if(!list || list->t_end < entry->sec) {
nlist = track_pr[entry->cylinderindex];
list = NULL;
while (nlist && nlist->t_start <= entry->sec) {
list = nlist;
nlist = list->next;
}
/* there may be multiple segments - so
* let's assemble the length */
nlist = list;
if (list) {
pt = list->pressure_time;
while (!nlist->end) {
nlist = nlist->next;
if (!nlist) {
/* oops - we have no end pressure,
* so this means this is a tank without
* gas consumption information */
break;
}
pt += nlist->pressure_time;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
}
}
if (!nlist) {
/* just continue without calculating
* interpolated values */
INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex];
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
list = NULL;
continue;
}
magic = (nlist->end - cur_pr[entry->cylinderindex]) / pt;
}
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
if (pt != 0.0) {
double cur_pt = (entry->sec - (entry-1)->sec) *
(1 + (entry->depth + (entry-1)->depth) / 20000.0);
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
INTERPOLATED_PRESSURE(entry) =
cur_pr[entry->cylinderindex] + cur_pt * magic + 0.5;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
cur_pr[entry->cylinderindex] = INTERPOLATED_PRESSURE(entry);
} else
INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex];
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
}
}
}
static int get_cylinder_index(struct dive *dive, struct event *ev)
{
int i;
/*
* Try to find a cylinder that matches the O2 percentage
* in the gas change event 'value' field.
*
* Crazy suunto gas change events. We really should do
* this in libdivecomputer or something.
*
* There are two different gas change events that can get
* us here - GASCHANGE2 has the He value in the high 16
* bits; looking at the possible values we can actually
* handle them with the same code since the high 16 bits
* will be 0 with the GASCHANGE event - and that means no He
*/
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder+i;
int o2 = (cyl->gasmix.o2.permille + 5) / 10;
int he = (cyl->gasmix.he.permille + 5) / 10;
if (o2 == (ev->value & 0xFFFF) && he == (ev->value >> 16))
return i;
}
return 0;
}
static struct event *get_next_event(struct event *event, char *name)
{
if (!name || !*name)
return NULL;
while (event) {
if (!strcmp(event->name, name))
return event;
event = event->next;
}
return event;
}
static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
{
while (i < pi->nr) {
struct plot_data *entry = pi->entry+i;
if (entry->sec > end)
break;
if (entry->cylinderindex != cylinderindex) {
entry->cylinderindex = cylinderindex;
entry->pressure[0] = 0;
}
i++;
}
return i;
}
static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int i = 0, cylinderindex = 0;
struct event *ev = get_next_event(dc->events, "gaschange");
if (!ev)
return;
do {
i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
cylinderindex = get_cylinder_index(dive, ev);
ev = get_next_event(ev->next, "gaschange");
} while (ev);
set_cylinder_index(pi, i, cylinderindex, ~0u);
}
/* for computers that track gas changes through events */
static int count_gas_change_events(struct divecomputer *dc)
{
int count = 0;
struct event *ev = get_next_event(dc->events, "gaschange");
while (ev) {
count++;
ev = get_next_event(ev->next, "gaschange");
}
return count;
}
static void calculate_max_limits(struct dive *dive, struct graphics_context *gc)
{
struct divecomputer *dc;
struct plot_info *pi;
int maxdepth = 0;
int maxtime = 0;
int maxpressure = 0, minpressure = INT_MAX;
int mintemp = 0, maxtemp = 0;
int cyl;
/* The plot-info is embedded in the graphics context */
pi = &gc->pi;
memset(pi, 0, sizeof(*pi));
/* This should probably have been per-dive-computer */
maxdepth = dive->maxdepth.mm;
mintemp = maxtemp = dive->watertemp.mkelvin;
/* Get the per-cylinder maximum pressure if they are manual */
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
unsigned int mbar = dive->cylinder[cyl].start.mbar;
if (mbar > maxpressure)
maxpressure = mbar;
}
/* Then do all the samples from all the dive computers */
dc = &dive->dc;
do {
int i = dc->samples;
int lastdepth = 0;
struct sample *s = dc->sample;
while (--i >= 0) {
int depth = s->depth.mm;
int pressure = s->cylinderpressure.mbar;
int temperature = s->temperature.mkelvin;
if (!mintemp && temperature < mintemp)
mintemp = temperature;
if (temperature > maxtemp)
maxtemp = temperature;
if (pressure && pressure < minpressure)
minpressure = pressure;
if (pressure > maxpressure)
maxpressure = pressure;
if (depth > maxdepth)
maxdepth = s->depth.mm;
if ((depth || lastdepth) && s->time.seconds > maxtime)
maxtime = s->time.seconds;
lastdepth = depth;
s++;
}
} while ((dc = dc->next) != NULL);
if (minpressure > maxpressure)
minpressure = 0;
pi->maxdepth = maxdepth;
pi->maxtime = maxtime;
pi->maxpressure = maxpressure;
pi->minpressure = minpressure;
pi->mintemp = mintemp;
pi->maxtemp = maxtemp;
}
/*
* Create a plot-info with smoothing and ranged min/max
*
* This also makes sure that we have extra empty events on both
* sides, so that you can do end-points without having to worry
* about it.
*/
static struct plot_info *create_plot_info(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc)
{
int cylinderindex = -1;
int lastdepth, lastindex;
int i, pi_idx, nr, sec, cyl, stoptime, ndl, stopdepth, cns;
struct plot_info *pi;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, };
pr_track_t *pr_track, *current;
gboolean missing_pr = FALSE;
struct plot_data *entry = NULL;
struct event *ev;
double amb_pressure, po2;
/* The plot-info is embedded in the graphics context */
pi = &gc->pi;
/* we want to potentially add synthetic plot_info elements for the gas changes */
nr = dc->samples + 4 + 2 * count_gas_change_events(dc);
if (last_pi_entry)
free((void *)last_pi_entry);
last_pi_entry = pi->entry = calloc(nr, sizeof(struct plot_data));
if (!pi->entry)
return NULL;
pi->nr = nr;
pi_idx = 2; /* the two extra events at the start */
/* check for gas changes before the samples start */
ev = get_next_event(dc->events, "gaschange");
while (ev && ev->time.seconds < dc->sample->time.seconds) {
entry = pi->entry + pi_idx;
entry->sec = ev->time.seconds;
entry->depth = 0; /* is that always correct ? */
pi_idx++;
ev = get_next_event(ev->next, "gaschange");
}
if (ev && ev->time.seconds == dc->sample->time.seconds) {
/* we already have a sample at the time of the event */
ev = get_next_event(ev->next, "gaschange");
}
sec = 0;
lastindex = 0;
lastdepth = -1;
for (i = 0; i < dc->samples; i++) {
int depth;
int delay = 0;
struct sample *sample = dc->sample+i;
if ((dive->start > -1 && sample->time.seconds < dive->start) ||
(dive->end > -1 && sample->time.seconds > dive->end)) {
pi_idx--;
continue;
}
entry = pi->entry + i + pi_idx;
ndl = sample->ndl.seconds;
pi->has_ndl |= ndl;
stopdepth = sample->stopdepth.mm;
stoptime = sample->stoptime.seconds;
po2 = sample->po2 / 1000.0;
cns = sample->cns;
while (ev && ev->time.seconds < sample->time.seconds) {
/* insert two fake plot info structures for the end of
* the old tank and the start of the new tank */
if (ev->time.seconds == sample->time.seconds - 1) {
entry->sec = ev->time.seconds - 1;
(entry+1)->sec = ev->time.seconds;
} else {
entry->sec = ev->time.seconds;
(entry+1)->sec = ev->time.seconds + 1;
}
/* we need a fake depth - let's interpolate */
if (i) {
entry->depth = sample->depth.mm -
(sample->depth.mm - (sample-1)->depth.mm) / 2;
} else
entry->depth = sample->depth.mm;
(entry + 1)->depth = entry->depth;
entry->stopdepth = stopdepth;
entry->stoptime = stoptime;
entry->ndl = ndl;
entry->cns = cns;
entry->po2 = po2;
(entry + 1)->stopdepth = stopdepth;
(entry + 1)->stoptime = stoptime;
(entry + 1)->ndl = ndl;
(entry + 1)->cns = cns;
(entry + 1)->po2 = po2;
pi_idx += 2;
entry = pi->entry + i + pi_idx;
ev = get_next_event(ev->next, "gaschange");
}
if (ev && ev->time.seconds == sample->time.seconds) {
/* we already have a sample at the time of the event
* just add a new one for the old tank and delay the
* real even by one second (to keep time monotonous) */
entry->sec = ev->time.seconds;
entry->depth = sample->depth.mm;
entry->stopdepth = stopdepth;
entry->stoptime = stoptime;
entry->ndl = ndl;
entry->cns = cns;
entry->po2 = po2;
pi_idx++;
entry = pi->entry + i + pi_idx;
ev = get_next_event(ev->next, "gaschange");
delay = 1;
}
sec = entry->sec = sample->time.seconds + delay;
depth = entry->depth = sample->depth.mm;
entry->stopdepth = stopdepth;
entry->stoptime = stoptime;
entry->ndl = ndl;
entry->cns = cns;
entry->po2 = po2;
entry->cylinderindex = sample->cylinderindex;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
entry->temperature = sample->temperature.mkelvin;
if (depth || lastdepth)
lastindex = i + pi_idx;
lastdepth = depth;
}
entry = pi->entry + i + pi_idx;
/* are there still unprocessed gas changes? that would be very strange */
while (ev) {
entry->sec = ev->time.seconds;
entry->depth = 0; /* why are there gas changes after the dive is over? */
pi_idx++;
entry = pi->entry + i + pi_idx;
ev = get_next_event(ev->next, "gaschange");
}
nr = dc->samples + pi_idx - 2;
check_gas_change_events(dive, dc, pi);
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) /* initialize the start pressures */
track_pr[cyl] = pr_track_alloc(dive->cylinder[cyl].start.mbar, -1);
current = track_pr[pi->entry[2].cylinderindex];
for (i = 0; i < nr + 1; i++) {
int fo2, fhe;
entry = pi->entry + i + 1;
entry->same_cylinder = entry->cylinderindex == cylinderindex;
cylinderindex = entry->cylinderindex;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
/* track the segments per cylinder and their pressure/time integral */
if (!entry->same_cylinder) {
current->end = SENSOR_PRESSURE(entry-1);
current->t_end = (entry-1)->sec;
current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec);
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
} else { /* same cylinder */
if ((!SENSOR_PRESSURE(entry) && SENSOR_PRESSURE(entry-1)) ||
(SENSOR_PRESSURE(entry) && !SENSOR_PRESSURE(entry-1))) {
/* transmitter changed its working status */
current->end = SENSOR_PRESSURE(entry-1);
current->t_end = (entry-1)->sec;
current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec);
track_pr[cylinderindex] =
list_add(track_pr[cylinderindex], current);
}
}
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
fo2 = dive->cylinder[cylinderindex].gasmix.o2.permille;
fhe = dive->cylinder[cylinderindex].gasmix.he.permille;
if (!fo2)
fo2 = AIR_PERMILLE;
if (entry->po2) {
/* we have an O2 partial pressure in the sample - so this
* is likely a CC dive... use that instead of the value
* from the cylinder info */
double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2;
double ratio = (double)fhe / (1000.0 - fo2);
entry->phe = (amb_pressure - po2) * ratio;
entry->pn2 = amb_pressure - po2 - entry->phe;
entry->po2 = po2;
} else {
entry->po2 = fo2 / 1000.0 * amb_pressure;
entry->phe = fhe / 1000.0 * amb_pressure;
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
}
if (entry->po2 > pi->maxpp)
pi->maxpp = entry->po2;
if (entry->phe > pi->maxpp)
pi->maxpp = entry->phe;
if (entry->pn2 > pi->maxpp)
pi->maxpp = entry->pn2;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
/* finally, do the discrete integration to get the SAC rate equivalent */
current->pressure_time += (entry->sec - (entry-1)->sec) *
depth_to_mbar((entry->depth + (entry-1)->depth) / 2, dive) / 1000.0;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
missing_pr |= !SENSOR_PRESSURE(entry);
}
if (entry)
current->t_end = entry->sec;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { /* initialize the end pressures */
int pr = dive->cylinder[cyl].end.mbar;
if (pr && track_pr[cyl]) {
pr_track = list_last(track_pr[cyl]);
pr_track->end = pr;
}
}
/* Fill in the last two entries with empty values but valid times
* without creating a false cylinder change event */
i = nr + 2;
pi->entry[i].sec = sec + 20;
pi->entry[i].same_cylinder = 1;
pi->entry[i].cylinderindex = pi->entry[i-1].cylinderindex;
INTERPOLATED_PRESSURE(pi->entry + i) = GET_PRESSURE(pi->entry + i - 1);
amb_pressure = depth_to_mbar(pi->entry[i - 1].depth, dive) / 1000.0;
pi->entry[i].po2 = pi->entry[i-1].po2 / amb_pressure;
pi->entry[i].phe = pi->entry[i-1].phe / amb_pressure;
pi->entry[i].pn2 = 1.01325 - pi->entry[i].po2 - pi->entry[i].phe;
pi->entry[i+1].sec = sec + 40;
pi->entry[i+1].same_cylinder = 1;
pi->entry[i+1].cylinderindex = pi->entry[i-1].cylinderindex;
INTERPOLATED_PRESSURE(pi->entry + i + 1) = GET_PRESSURE(pi->entry + i - 1);
pi->entry[i+1].po2 = pi->entry[i].po2;
pi->entry[i+1].phe = pi->entry[i].phe;
pi->entry[i+1].pn2 = pi->entry[i].pn2;
/* make sure the first two pi entries have a sane po2 / phe / pn2 */
amb_pressure = depth_to_mbar(pi->entry[2].depth, dive) / 1000.0;
if (pi->entry[1].po2 < 0.01)
pi->entry[1].po2 = pi->entry[2].po2 / amb_pressure;
if (pi->entry[1].phe < 0.01)
pi->entry[1].phe = pi->entry[2].phe / amb_pressure;
pi->entry[1].pn2 = 1.01325 - pi->entry[1].po2 - pi->entry[1].phe;
amb_pressure = depth_to_mbar(pi->entry[1].depth, dive) / 1000.0;
if (pi->entry[0].po2 < 0.01)
pi->entry[0].po2 = pi->entry[1].po2 / amb_pressure;
if (pi->entry[0].phe < 0.01)
pi->entry[0].phe = pi->entry[1].phe / amb_pressure;
pi->entry[0].pn2 = 1.01325 - pi->entry[0].po2 - pi->entry[0].phe;
/* the number of actual entries - some computers have lots of
* depth 0 samples at the end of a dive, we want to make sure
* we have exactly one of them at the end */
pi->nr = lastindex+1;
while (pi->nr <= i+2 && pi->entry[pi->nr-1].depth > 0)
pi->nr++;
pi->meandepth = dive->meandepth.mm;
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
if (missing_pr) {
fill_missing_tank_pressures(pi, track_pr);
Plot tank pressures for multiple tanks The code keeps track of the segments of time when a specific tank was used and interpolates the pressure values for that tank based on a simulated average SAC rate for the times in which no pressure readings are available. This changes the way we used to plot the pressure when only beginning and end pressure of a tank are known; it used to be a straight line, now it is a sloped line where the steepness of the slope is proportional to the depth at that point - which is much more realistic. We also plot the pressures in two colors now. The old green for pressure data that came from the input file (that is not the same thing as saying it came from the computer - divelog for example appear to create pressure readings in the samples even if it only has beginning and end pressure). Interpolated values are plotted in yellow. If you have a sub-standard dive computer which has a frequently failing pressure sensor, you can now tell the parts of the plot where data was missing and we are filling in. The function that prints the pressure text labels had to be completely redone as it previously assumed one tank for the whole dive and simplisticly printed that tank's start and end pressure at the beginning and end of the profile plot with the y-values being the maximum and minimum pressure... This commit introduces a custom simplistic single linked list data structure to keep track of the pressure information per segment - Linus hated the idea of using GList for this purpose, and I have to admit that in the end this was very straight forward to implement and made the code easier to read and debug. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2011-10-22 02:04:44 +00:00
}
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++)
list_free(track_pr[cyl]);
if (0) /* awesome for debugging - not useful otherwise */
dump_pi(pi);
return analyze_plot_info(pi);
}
static void plot_set_scale(scale_mode_t scale)
{
switch (scale) {
default:
case SC_SCREEN:
plot_scale = SCALE_SCREEN;
break;
case SC_PRINT:
plot_scale = SCALE_PRINT;
break;
}
}
void plot(struct graphics_context *gc, struct dive *dive, scale_mode_t scale)
{
struct plot_info *pi;
struct divecomputer *dc = &dive->dc;
cairo_rectangle_t *drawing_area = &gc->drawing_area;
plot_set_scale(scale);
if (!dc->samples) {
static struct sample fake[4];
static struct divecomputer fakedc = {
.sample = fake,
.samples = 4
};
/* The dive has no samples, so create a few fake ones. This assumes an
ascent/descent rate of 9 m/min, which is just below the limit for FAST. */
int duration = dive->duration.seconds;
int maxdepth = dive->maxdepth.mm;
int asc_desc_time = dive->maxdepth.mm*60/9000;
if (asc_desc_time * 2 >= duration)
asc_desc_time = duration / 2;
fake[1].time.seconds = asc_desc_time;
fake[1].depth.mm = maxdepth;
fake[2].time.seconds = duration - asc_desc_time;
fake[2].depth.mm = maxdepth;
fake[3].time.seconds = duration * 1.00;
fakedc.events = dc->events;
dc = &fakedc;
}
/*
* Set up limits that are independent of
* the dive computer
*/
calculate_max_limits(dive, gc);
/* shift the drawing area so we have a nice margin around it */
cairo_translate(gc->cr, drawing_area->x, drawing_area->y);
cairo_set_line_width_scaled(gc->cr, 1);
cairo_set_line_cap(gc->cr, CAIRO_LINE_CAP_ROUND);
cairo_set_line_join(gc->cr, CAIRO_LINE_JOIN_ROUND);
/*
* We don't use "cairo_translate()" because that doesn't
* scale line width etc. But the actual scaling we need
* do set up ourselves..
*
* Snif. What a pity.
*/
gc->maxx = (drawing_area->width - 2*drawing_area->x);
gc->maxy = (drawing_area->height - 2*drawing_area->y);
/* This is per-dive-computer. Right now we just do the first one */
pi = create_plot_info(dive, dc, gc);
/* Depth profile */
plot_depth_profile(gc, pi);
plot_events(gc, pi, dc);
/* Temperature profile */
plot_temperature_profile(gc, pi);
/* Cylinder pressure plot */
plot_cylinder_pressure(gc, pi, dive);
/* Text on top of all graphs.. */
plot_temperature_text(gc, pi);
plot_depth_text(gc, pi);
plot_cylinder_pressure_text(gc, pi);
/* Bounding box last */
gc->leftx = 0; gc->rightx = 1.0;
gc->topy = 0; gc->bottomy = 1.0;
set_source_rgba(gc, BOUNDING_BOX);
cairo_set_line_width_scaled(gc->cr, 1);
move_to(gc, 0, 0);
line_to(gc, 0, 1);
line_to(gc, 1, 1);
line_to(gc, 1, 0);
cairo_close_path(gc->cr);
cairo_stroke(gc->cr);
/* Put the dive computer name in the lower left corner */
if (dc->nickname || dc->model) {
static const text_render_options_t computer = {10, TIME_TEXT, LEFT, MIDDLE};
plot_text(gc, &computer, 0, 1, "%s",
dc->nickname && *dc->nickname ? dc->nickname : dc->model);
}
if (PP_GRAPHS_ENABLED) {
plot_pp_gas_profile(gc, pi);
plot_pp_text(gc, pi);
}
/* now shift the translation back by half the margin;
* this way we can draw the vertical scales on both sides */
cairo_translate(gc->cr, -drawing_area->x / 2.0, 0);
gc->maxx += drawing_area->x;
gc->leftx = -(drawing_area->x / drawing_area->width) / 2.0;
gc->rightx = 1.0 - gc->leftx;
plot_depth_scale(gc, pi);
if (gc->printer) {
free(pi->entry);
last_pi_entry = pi->entry = NULL;
pi->nr = 0;
}
}
static void plot_string(struct plot_data *entry, char *buf, size_t bufsize,
int depth, int pressure, int temp, gboolean has_ndl)
{
int pressurevalue;
const char *depth_unit, *pressure_unit, *temp_unit;
char *buf2 = malloc(bufsize);
double depthvalue, tempvalue;
depthvalue = get_depth_units(depth, NULL, &depth_unit);
snprintf(buf, bufsize, "D:%.1f %s", depthvalue, depth_unit);
if (pressure) {
pressurevalue = get_pressure_units(pressure, &pressure_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, "%s\nP:%d %s", buf2, pressurevalue, pressure_unit);
}
if (temp) {
tempvalue = get_temp_units(temp, &temp_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, "%s\nT:%.1f %s", buf2, tempvalue, temp_unit);
}
if (entry->stopdepth) {
depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
memcpy(buf2, buf, bufsize);
if (entry->ndl) {
/* this is a safety stop as we still have ndl */
if (entry->stoptime)
snprintf(buf, bufsize, "%s\nSafetystop:%umin @ %.0f %s", buf2, entry->stoptime / 60,
depthvalue, depth_unit);
else
snprintf(buf, bufsize, "%s\nSafetystop:unkn time @ %.0f %s", buf2,
depthvalue, depth_unit);
} else {
/* actual deco stop */
if (entry->stoptime)
snprintf(buf, bufsize, "%s\nDeco:%umin @ %.0f %s", buf2, entry->stoptime / 60,
depthvalue, depth_unit);
else
snprintf(buf, bufsize, "%s\nDeco:unkn time @ %.0f %s", buf2,
depthvalue, depth_unit);
}
} else if (has_ndl) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, "%s\nNDL:%umin", buf2, entry->ndl / 60);
}
if (entry->cns) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, "%s\nCNS:%u%%", buf2, entry->cns);
}
if (prefs.pp_graphs.po2) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, "%s\npO" UTF8_SUBSCRIPT_2 ":%.2f", buf2, entry->po2);
}
if (prefs.pp_graphs.pn2) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, "%s\npN" UTF8_SUBSCRIPT_2 ":%.2f", buf2, entry->pn2);
}
if (prefs.pp_graphs.phe) {
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, "%s\npHe:%.2f", buf2, entry->phe);
}
free(buf2);
}
void get_plot_details(struct graphics_context *gc, int time, char *buf, size_t bufsize)
{
struct plot_info *pi = &gc->pi;
int pressure = 0, temp = 0;
struct plot_data *entry = NULL;
int i;
for (i = 0; i < pi->nr; i++) {
entry = pi->entry + i;
if (entry->temperature)
temp = entry->temperature;
if (GET_PRESSURE(entry))
pressure = GET_PRESSURE(entry);
if (entry->sec >= time)
break;
}
if (entry)
plot_string(entry, buf, bufsize, entry->depth, pressure, temp, pi->has_ndl);
}