2011-09-20 19:40:34 +00:00
|
|
|
/* divelist.c */
|
2011-09-22 15:21:32 +00:00
|
|
|
/* this creates the UI for the dive list -
|
2011-09-20 19:40:34 +00:00
|
|
|
* controlled through the following interfaces:
|
2011-09-22 15:21:32 +00:00
|
|
|
*
|
2011-09-20 19:40:34 +00:00
|
|
|
* void flush_divelist(struct dive *dive)
|
|
|
|
* GtkWidget dive_list_create(void)
|
|
|
|
* void dive_list_update_dives(void)
|
|
|
|
* void update_dive_list_units(void)
|
|
|
|
* void set_divelist_font(const char *font)
|
2011-09-21 04:29:09 +00:00
|
|
|
* void mark_divelist_changed(int changed)
|
|
|
|
* int unsaved_changes()
|
2011-09-20 19:40:34 +00:00
|
|
|
*/
|
2011-08-31 17:27:58 +00:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
2011-09-04 18:14:33 +00:00
|
|
|
#include <string.h>
|
2011-08-31 17:27:58 +00:00
|
|
|
#include <time.h>
|
2011-09-22 20:45:53 +00:00
|
|
|
#include <math.h>
|
2012-10-11 00:42:59 +00:00
|
|
|
#include <glib/gi18n.h>
|
2012-11-10 18:51:03 +00:00
|
|
|
#include <assert.h>
|
2011-08-31 17:27:58 +00:00
|
|
|
|
2011-09-05 19:12:58 +00:00
|
|
|
#include "divelist.h"
|
2011-08-31 17:27:58 +00:00
|
|
|
#include "dive.h"
|
|
|
|
#include "display.h"
|
2011-09-20 19:40:34 +00:00
|
|
|
#include "display-gtk.h"
|
2011-08-31 17:27:58 +00:00
|
|
|
|
2013-01-23 03:52:07 +00:00
|
|
|
#include <gdk-pixbuf/gdk-pixdata.h>
|
|
|
|
#include "satellite.h"
|
|
|
|
|
2011-09-20 17:06:24 +00:00
|
|
|
struct DiveList {
|
|
|
|
GtkWidget *tree_view;
|
|
|
|
GtkWidget *container_widget;
|
2012-08-13 21:42:55 +00:00
|
|
|
GtkTreeStore *model, *listmodel, *treemodel;
|
2011-12-07 19:58:16 +00:00
|
|
|
GtkTreeViewColumn *nr, *date, *stars, *depth, *duration, *location;
|
2012-12-11 05:18:48 +00:00
|
|
|
GtkTreeViewColumn *temperature, *cylinder, *totalweight, *suit, *nitrox, *sac, *otu, *maxcns;
|
2011-09-21 04:29:09 +00:00
|
|
|
int changed;
|
2011-09-20 17:06:24 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static struct DiveList dive_list;
|
2012-09-03 04:46:48 +00:00
|
|
|
#define MODEL(_dl) GTK_TREE_MODEL((_dl).model)
|
2012-08-30 00:24:15 +00:00
|
|
|
#define TREEMODEL(_dl) GTK_TREE_MODEL((_dl).treemodel)
|
|
|
|
#define LISTMODEL(_dl) GTK_TREE_MODEL((_dl).listmodel)
|
2012-09-03 04:46:48 +00:00
|
|
|
#define STORE(_dl) GTK_TREE_STORE((_dl).model)
|
|
|
|
#define TREESTORE(_dl) GTK_TREE_STORE((_dl).treemodel)
|
2012-08-30 00:24:15 +00:00
|
|
|
#define LISTSTORE(_dl) GTK_TREE_STORE((_dl).listmodel)
|
|
|
|
|
2012-11-26 04:06:54 +00:00
|
|
|
dive_trip_t *dive_trip_list;
|
2012-08-22 05:04:24 +00:00
|
|
|
gboolean autogroup = FALSE;
|
2013-02-20 07:50:55 +00:00
|
|
|
static gboolean in_set_cursor = FALSE;
|
|
|
|
static gboolean set_selected(GtkTreeModel *model, GtkTreePath *path,
|
|
|
|
GtkTreeIter *iter, gpointer data);
|
2012-08-22 05:04:24 +00:00
|
|
|
|
2011-09-19 19:25:16 +00:00
|
|
|
/*
|
|
|
|
* The dive list has the dive data in both string format (for showing)
|
|
|
|
* and in "raw" format (for sorting purposes)
|
|
|
|
*/
|
|
|
|
enum {
|
|
|
|
DIVE_INDEX = 0,
|
2011-10-23 15:50:14 +00:00
|
|
|
DIVE_NR, /* int: dive->nr */
|
2012-09-20 00:35:52 +00:00
|
|
|
DIVE_DATE, /* timestamp_t: dive->when */
|
2011-12-07 19:58:16 +00:00
|
|
|
DIVE_RATING, /* int: 0-5 stars */
|
2013-02-09 04:44:04 +00:00
|
|
|
DIVE_DEPTH, /* int: dive->maxdepth in mm */
|
2011-09-19 19:25:16 +00:00
|
|
|
DIVE_DURATION, /* int: in seconds */
|
2011-09-20 02:13:36 +00:00
|
|
|
DIVE_TEMPERATURE, /* int: in mkelvin */
|
2012-08-07 18:24:40 +00:00
|
|
|
DIVE_TOTALWEIGHT, /* int: in grams */
|
2012-08-14 23:07:25 +00:00
|
|
|
DIVE_SUIT, /* "wet, 3mm" */
|
2011-09-20 03:06:54 +00:00
|
|
|
DIVE_CYLINDER,
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
DIVE_NITROX, /* int: dummy */
|
2011-09-20 02:13:36 +00:00
|
|
|
DIVE_SAC, /* int: in ml/min */
|
2011-09-22 21:02:26 +00:00
|
|
|
DIVE_OTU, /* int: in OTUs */
|
2012-12-11 05:18:48 +00:00
|
|
|
DIVE_MAXCNS, /* int: in % */
|
2011-09-22 18:02:28 +00:00
|
|
|
DIVE_LOCATION, /* "2nd Cathedral, Lanai" */
|
2013-01-23 03:52:07 +00:00
|
|
|
DIVE_LOC_ICON, /* pixbuf for gps icon */
|
2011-09-19 19:56:37 +00:00
|
|
|
DIVELIST_COLUMNS
|
2011-09-19 19:25:16 +00:00
|
|
|
};
|
|
|
|
|
2012-09-07 17:12:31 +00:00
|
|
|
static void merge_dive_into_trip_above_cb(GtkWidget *menuitem, GtkTreePath *path);
|
|
|
|
|
2012-08-08 16:35:38 +00:00
|
|
|
#ifdef DEBUG_MODEL
|
|
|
|
static gboolean dump_model_entry(GtkTreeModel *model, GtkTreePath *path,
|
|
|
|
GtkTreeIter *iter, gpointer data)
|
|
|
|
{
|
|
|
|
char *location;
|
2012-08-22 05:04:24 +00:00
|
|
|
int idx, nr, duration;
|
|
|
|
struct dive *dive;
|
2012-09-20 00:35:52 +00:00
|
|
|
timestamp_t when;
|
|
|
|
struct tm tm;
|
2012-08-22 05:04:24 +00:00
|
|
|
|
2012-08-30 00:24:15 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_NR, &nr, DIVE_DATE, &when,
|
|
|
|
DIVE_DURATION, &duration, DIVE_LOCATION, &location, -1);
|
2012-09-20 00:35:52 +00:00
|
|
|
utc_mkdate(when, &tm);
|
2012-08-30 00:24:15 +00:00
|
|
|
printf("iter %x:%x entry #%d : nr %d @ %04d-%02d-%02d %02d:%02d:%02d duration %d location %s ",
|
|
|
|
iter->stamp, iter->user_data, idx, nr,
|
2012-09-20 00:35:52 +00:00
|
|
|
tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
|
|
|
|
tm.tm_hour, tm.tm_min, tm.tm_sec,
|
2012-08-30 00:24:15 +00:00
|
|
|
duration, location);
|
2012-08-22 05:04:24 +00:00
|
|
|
dive = get_dive(idx);
|
|
|
|
if (dive)
|
|
|
|
printf("tripflag %d\n", dive->tripflag);
|
|
|
|
else
|
|
|
|
printf("without matching dive\n");
|
2012-08-08 16:35:38 +00:00
|
|
|
|
|
|
|
free(location);
|
|
|
|
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dump_model(GtkListStore *store)
|
|
|
|
{
|
|
|
|
gtk_tree_model_foreach(GTK_TREE_MODEL(store), dump_model_entry, NULL);
|
2012-08-30 00:24:15 +00:00
|
|
|
printf("\n---\n\n");
|
2012-08-08 16:35:38 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-08-16 23:31:53 +00:00
|
|
|
#if DEBUG_SELECTION_TRACKING
|
|
|
|
void dump_selection(void)
|
|
|
|
{
|
|
|
|
int i;
|
2012-08-20 12:48:07 +00:00
|
|
|
struct dive *dive;
|
2012-08-16 23:31:53 +00:00
|
|
|
|
2012-09-18 23:51:48 +00:00
|
|
|
printf("currently selected are %u dives:", amount_selected);
|
2012-08-21 22:51:34 +00:00
|
|
|
for_each_dive(i, dive) {
|
2012-08-20 12:48:07 +00:00
|
|
|
if (dive->selected)
|
|
|
|
printf(" %d", i);
|
|
|
|
}
|
2012-08-16 23:31:53 +00:00
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-08-14 04:11:09 +00:00
|
|
|
/* when subsurface starts we want to have the last dive selected. So we simply
|
|
|
|
walk to the first leaf (and skip the summary entries - which have negative
|
|
|
|
DIVE_INDEX) */
|
2012-08-13 22:07:38 +00:00
|
|
|
static void first_leaf(GtkTreeModel *model, GtkTreeIter *iter, int *diveidx)
|
|
|
|
{
|
|
|
|
GtkTreeIter parent;
|
|
|
|
GtkTreePath *tpath;
|
|
|
|
|
|
|
|
while (*diveidx < 0) {
|
|
|
|
memcpy(&parent, iter, sizeof(parent));
|
|
|
|
tpath = gtk_tree_model_get_path(model, &parent);
|
2012-12-22 21:34:19 +00:00
|
|
|
if (!gtk_tree_model_iter_children(model, iter, &parent)) {
|
2012-08-13 22:07:38 +00:00
|
|
|
/* we should never have a parent without child */
|
2012-12-22 21:34:19 +00:00
|
|
|
gtk_tree_path_free(tpath);
|
2012-08-13 22:07:38 +00:00
|
|
|
return;
|
2012-12-22 21:34:19 +00:00
|
|
|
}
|
2013-01-29 21:10:46 +00:00
|
|
|
if (!gtk_tree_view_row_expanded(GTK_TREE_VIEW(dive_list.tree_view), tpath))
|
2012-08-13 22:07:38 +00:00
|
|
|
gtk_tree_view_expand_row(GTK_TREE_VIEW(dive_list.tree_view), tpath, FALSE);
|
2012-12-22 21:34:19 +00:00
|
|
|
gtk_tree_path_free(tpath);
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, diveidx, -1);
|
2012-08-13 22:07:38 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-09-07 17:58:36 +00:00
|
|
|
static struct dive *dive_from_path(GtkTreePath *path)
|
|
|
|
{
|
|
|
|
GtkTreeIter iter;
|
|
|
|
int idx;
|
|
|
|
|
2012-09-18 23:13:59 +00:00
|
|
|
if (gtk_tree_model_get_iter(MODEL(dive_list), &iter, path)) {
|
|
|
|
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
|
|
|
|
return get_dive(idx);
|
|
|
|
} else {
|
|
|
|
return NULL;
|
|
|
|
}
|
2012-09-07 17:58:36 +00:00
|
|
|
|
|
|
|
}
|
|
|
|
|
2013-02-19 21:46:37 +00:00
|
|
|
static dive_trip_t *find_trip_by_idx(int idx)
|
|
|
|
{
|
|
|
|
dive_trip_t *trip = dive_trip_list;
|
|
|
|
|
|
|
|
if (idx >= 0)
|
|
|
|
return NULL;
|
|
|
|
idx = -idx;
|
|
|
|
while (trip) {
|
|
|
|
if (trip->index == idx)
|
|
|
|
return trip;
|
|
|
|
trip = trip->next;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int get_path_index(GtkTreePath *path)
|
|
|
|
{
|
|
|
|
GtkTreeIter iter;
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
|
|
|
|
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
|
|
|
|
return idx;
|
|
|
|
}
|
|
|
|
|
2012-08-16 23:31:53 +00:00
|
|
|
/* make sure that if we expand a summary row that is selected, the children show
|
|
|
|
up as selected, too */
|
2013-01-29 21:10:46 +00:00
|
|
|
static void row_expanded_cb(GtkTreeView *tree_view, GtkTreeIter *iter, GtkTreePath *path, gpointer data)
|
2012-08-16 23:31:53 +00:00
|
|
|
{
|
2012-08-20 12:48:07 +00:00
|
|
|
GtkTreeIter child;
|
2012-09-03 04:46:48 +00:00
|
|
|
GtkTreeModel *model = MODEL(dive_list);
|
2012-08-16 23:31:53 +00:00
|
|
|
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
|
2013-02-19 21:46:37 +00:00
|
|
|
dive_trip_t *trip;
|
|
|
|
|
|
|
|
trip = find_trip_by_idx(get_path_index(path));
|
|
|
|
if (!trip)
|
|
|
|
return;
|
2012-08-16 23:31:53 +00:00
|
|
|
|
2013-02-19 21:46:37 +00:00
|
|
|
trip->expanded = 1;
|
2012-08-20 12:48:07 +00:00
|
|
|
if (!gtk_tree_model_iter_children(model, &child, iter))
|
|
|
|
return;
|
|
|
|
|
|
|
|
do {
|
|
|
|
int idx;
|
|
|
|
struct dive *dive;
|
|
|
|
|
|
|
|
gtk_tree_model_get(model, &child, DIVE_INDEX, &idx, -1);
|
|
|
|
dive = get_dive(idx);
|
|
|
|
|
|
|
|
if (dive->selected)
|
|
|
|
gtk_tree_selection_select_iter(selection, &child);
|
|
|
|
else
|
|
|
|
gtk_tree_selection_unselect_iter(selection, &child);
|
|
|
|
} while (gtk_tree_model_iter_next(model, &child));
|
2012-08-14 04:11:09 +00:00
|
|
|
}
|
|
|
|
|
2013-02-19 21:46:37 +00:00
|
|
|
static int trip_has_selected_dives(dive_trip_t *trip)
|
2012-08-20 13:27:04 +00:00
|
|
|
{
|
2013-02-19 21:46:37 +00:00
|
|
|
struct dive *dive;
|
|
|
|
for (dive = trip->dives; dive; dive = dive->next) {
|
2012-08-20 13:27:04 +00:00
|
|
|
if (dive->selected)
|
2013-02-19 21:46:37 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
2012-08-20 13:27:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Make sure that if we collapse a summary row with any selected children, the row
|
|
|
|
shows up as selected too */
|
2013-01-29 21:10:46 +00:00
|
|
|
static void row_collapsed_cb(GtkTreeView *tree_view, GtkTreeIter *iter, GtkTreePath *path, gpointer data)
|
2012-08-20 13:27:04 +00:00
|
|
|
{
|
2013-02-19 21:46:37 +00:00
|
|
|
dive_trip_t *trip;
|
2012-08-20 13:27:04 +00:00
|
|
|
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
|
|
|
|
|
2013-02-19 21:46:37 +00:00
|
|
|
trip = find_trip_by_idx(get_path_index(path));
|
|
|
|
if (!trip)
|
|
|
|
return;
|
|
|
|
|
|
|
|
trip->expanded = 0;
|
|
|
|
if (trip_has_selected_dives(trip)) {
|
2012-08-20 13:27:04 +00:00
|
|
|
gtk_tree_selection_select_iter(selection, iter);
|
2013-02-19 21:46:37 +00:00
|
|
|
trip->selected = 1;
|
|
|
|
}
|
2012-08-20 13:27:04 +00:00
|
|
|
}
|
|
|
|
|
2011-12-07 19:58:16 +00:00
|
|
|
const char *star_strings[] = {
|
|
|
|
ZERO_STARS,
|
|
|
|
ONE_STARS,
|
|
|
|
TWO_STARS,
|
|
|
|
THREE_STARS,
|
|
|
|
FOUR_STARS,
|
|
|
|
FIVE_STARS
|
|
|
|
};
|
|
|
|
|
|
|
|
static void star_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
|
|
|
{
|
2012-08-08 16:35:38 +00:00
|
|
|
int nr_stars, idx;
|
2011-12-07 19:58:16 +00:00
|
|
|
char buffer[40];
|
|
|
|
|
2012-08-08 16:35:38 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_RATING, &nr_stars, -1);
|
2012-08-13 20:09:40 +00:00
|
|
|
if (idx < 0) {
|
2012-08-08 16:35:38 +00:00
|
|
|
*buffer = '\0';
|
|
|
|
} else {
|
|
|
|
if (nr_stars < 0 || nr_stars > 5)
|
|
|
|
nr_stars = 0;
|
|
|
|
snprintf(buffer, sizeof(buffer), "%s", star_strings[nr_stars]);
|
|
|
|
}
|
2011-12-07 19:58:16 +00:00
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
|
|
|
}
|
|
|
|
|
2011-09-20 01:44:47 +00:00
|
|
|
static void date_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
2011-09-19 22:39:29 +00:00
|
|
|
{
|
2012-09-20 04:44:54 +00:00
|
|
|
int idx, nr;
|
2012-09-20 00:35:52 +00:00
|
|
|
struct tm tm;
|
|
|
|
timestamp_t when;
|
2012-10-17 21:43:47 +00:00
|
|
|
/* this should be enought for most languages. if not increase the value. */
|
|
|
|
char buffer[256];
|
2011-09-19 22:39:29 +00:00
|
|
|
|
2012-09-20 04:44:54 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_DATE, &when, -1);
|
2012-08-30 05:01:06 +00:00
|
|
|
nr = gtk_tree_model_iter_n_children(model, iter);
|
2011-09-19 22:39:29 +00:00
|
|
|
|
2012-09-20 00:35:52 +00:00
|
|
|
utc_mkdate(when, &tm);
|
2012-08-22 05:04:24 +00:00
|
|
|
if (idx < 0) {
|
2012-08-08 16:35:38 +00:00
|
|
|
snprintf(buffer, sizeof(buffer),
|
2012-10-17 08:21:03 +00:00
|
|
|
/*++GETTEXT 60 char buffer weekday, monthname, day of month, year, nr dives */
|
|
|
|
ngettext("Trip %1$s, %2$s %3$d, %4$d (%5$d dive)",
|
|
|
|
"Trip %1$s, %2$s %3$d, %4$d (%5$d dives)", nr),
|
2012-09-20 00:35:52 +00:00
|
|
|
weekday(tm.tm_wday),
|
|
|
|
monthname(tm.tm_mon),
|
|
|
|
tm.tm_mday, tm.tm_year + 1900,
|
2012-10-17 08:21:03 +00:00
|
|
|
nr);
|
2012-08-22 05:04:24 +00:00
|
|
|
} else {
|
2012-08-08 16:35:38 +00:00
|
|
|
snprintf(buffer, sizeof(buffer),
|
2012-10-17 08:21:03 +00:00
|
|
|
/*++GETTEXT 60 char buffer weekday, monthname, day of month, year, hour:min */
|
|
|
|
_("%1$s, %2$s %3$d, %4$d %5$02d:%6$02d"),
|
2012-09-20 00:35:52 +00:00
|
|
|
weekday(tm.tm_wday),
|
|
|
|
monthname(tm.tm_mon),
|
|
|
|
tm.tm_mday, tm.tm_year + 1900,
|
|
|
|
tm.tm_hour, tm.tm_min);
|
2012-08-13 20:09:40 +00:00
|
|
|
}
|
2011-09-20 01:44:47 +00:00
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
2011-09-19 22:39:29 +00:00
|
|
|
}
|
|
|
|
|
2011-09-20 01:52:23 +00:00
|
|
|
static void depth_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
2011-09-19 22:39:29 +00:00
|
|
|
{
|
2012-08-08 16:35:38 +00:00
|
|
|
int depth, integer, frac, len, idx;
|
2011-09-20 01:52:23 +00:00
|
|
|
char buffer[40];
|
|
|
|
|
2012-08-08 16:35:38 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_DEPTH, &depth, -1);
|
2011-09-19 22:39:29 +00:00
|
|
|
|
2012-08-13 20:09:40 +00:00
|
|
|
if (idx < 0) {
|
2012-08-08 16:35:38 +00:00
|
|
|
*buffer = '\0';
|
|
|
|
} else {
|
2013-01-11 01:26:10 +00:00
|
|
|
switch (prefs.units.length) {
|
2012-08-08 16:35:38 +00:00
|
|
|
case METERS:
|
|
|
|
/* To tenths of meters */
|
|
|
|
depth = (depth + 49) / 100;
|
|
|
|
integer = depth / 10;
|
|
|
|
frac = depth % 10;
|
|
|
|
if (integer < 20)
|
|
|
|
break;
|
|
|
|
if (frac >= 5)
|
|
|
|
integer++;
|
|
|
|
frac = -1;
|
2011-09-19 22:39:29 +00:00
|
|
|
break;
|
2012-08-08 16:35:38 +00:00
|
|
|
case FEET:
|
|
|
|
integer = mm_to_feet(depth) + 0.5;
|
|
|
|
frac = -1;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
len = snprintf(buffer, sizeof(buffer), "%d", integer);
|
|
|
|
if (frac >= 0)
|
|
|
|
len += snprintf(buffer+len, sizeof(buffer)-len, ".%d", frac);
|
2011-09-19 22:39:29 +00:00
|
|
|
}
|
2011-09-20 01:52:23 +00:00
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
2011-09-19 22:39:29 +00:00
|
|
|
}
|
|
|
|
|
2011-09-20 02:13:36 +00:00
|
|
|
static void duration_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
2011-09-19 22:39:29 +00:00
|
|
|
{
|
2011-09-20 02:13:36 +00:00
|
|
|
unsigned int sec;
|
2012-08-13 20:09:40 +00:00
|
|
|
int idx;
|
2011-09-19 22:39:29 +00:00
|
|
|
char buffer[16];
|
|
|
|
|
2012-08-08 16:35:38 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_DURATION, &sec, -1);
|
2012-08-13 20:09:40 +00:00
|
|
|
if (idx < 0)
|
2012-08-08 16:35:38 +00:00
|
|
|
*buffer = '\0';
|
|
|
|
else
|
|
|
|
snprintf(buffer, sizeof(buffer), "%d:%02d", sec / 60, sec % 60);
|
2011-09-19 22:39:29 +00:00
|
|
|
|
2011-09-20 02:13:36 +00:00
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
2011-09-19 22:52:42 +00:00
|
|
|
}
|
|
|
|
|
2011-09-20 02:13:36 +00:00
|
|
|
static void temperature_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
2011-09-19 20:32:10 +00:00
|
|
|
{
|
2012-08-08 16:35:38 +00:00
|
|
|
int value, idx;
|
2011-09-19 20:32:10 +00:00
|
|
|
char buffer[80];
|
|
|
|
|
2012-08-08 16:35:38 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_TEMPERATURE, &value, -1);
|
2011-09-20 02:13:36 +00:00
|
|
|
|
|
|
|
*buffer = 0;
|
2012-08-13 20:09:40 +00:00
|
|
|
if (idx >= 0 && value) {
|
2011-09-19 20:32:10 +00:00
|
|
|
double deg;
|
2013-01-11 01:26:10 +00:00
|
|
|
switch (prefs.units.temperature) {
|
2011-09-19 20:32:10 +00:00
|
|
|
case CELSIUS:
|
|
|
|
deg = mkelvin_to_C(value);
|
|
|
|
break;
|
|
|
|
case FAHRENHEIT:
|
|
|
|
deg = mkelvin_to_F(value);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
snprintf(buffer, sizeof(buffer), "%.1f", deg);
|
|
|
|
}
|
2011-09-20 02:13:36 +00:00
|
|
|
|
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
2011-09-19 20:32:10 +00:00
|
|
|
}
|
|
|
|
|
2013-01-23 03:52:07 +00:00
|
|
|
static void gpsicon_data_func(GtkTreeViewColumn *col,
|
2013-01-21 01:32:55 +00:00
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
|
|
|
{
|
|
|
|
int idx;
|
2013-01-23 03:52:07 +00:00
|
|
|
GdkPixbuf *icon;
|
2013-01-21 01:32:55 +00:00
|
|
|
|
2013-01-23 03:52:07 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_LOC_ICON, &icon, -1);
|
|
|
|
g_object_set(renderer, "pixbuf", icon, NULL);
|
2013-01-21 01:32:55 +00:00
|
|
|
}
|
|
|
|
|
2012-08-08 16:35:38 +00:00
|
|
|
static void nr_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
|
|
|
{
|
|
|
|
int idx, nr;
|
|
|
|
char buffer[40];
|
2012-08-30 00:24:15 +00:00
|
|
|
struct dive *dive;
|
2012-08-08 16:35:38 +00:00
|
|
|
|
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_NR, &nr, -1);
|
2012-08-30 00:24:15 +00:00
|
|
|
if (idx < 0) {
|
2012-08-08 16:35:38 +00:00
|
|
|
*buffer = '\0';
|
2012-08-30 00:24:15 +00:00
|
|
|
} else {
|
|
|
|
/* make dives that are not in trips stand out */
|
|
|
|
dive = get_dive(idx);
|
|
|
|
if (!DIVE_IN_TRIP(dive))
|
|
|
|
snprintf(buffer, sizeof(buffer), "<b>%d</b>", nr);
|
|
|
|
else
|
|
|
|
snprintf(buffer, sizeof(buffer), "%d", nr);
|
|
|
|
}
|
|
|
|
g_object_set(renderer, "markup", buffer, NULL);
|
2012-08-08 16:35:38 +00:00
|
|
|
}
|
|
|
|
|
2011-12-12 05:28:18 +00:00
|
|
|
/*
|
|
|
|
* Get "maximal" dive gas for a dive.
|
|
|
|
* Rules:
|
|
|
|
* - Trimix trumps nitrox (highest He wins, O2 breaks ties)
|
|
|
|
* - Nitrox trumps air (even if hypoxic)
|
|
|
|
* These are the same rules as the inter-dive sorting rules.
|
|
|
|
*/
|
2012-01-05 16:16:08 +00:00
|
|
|
static void get_dive_gas(struct dive *dive, int *o2_p, int *he_p, int *o2low_p)
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
{
|
|
|
|
int i;
|
2011-12-12 17:20:22 +00:00
|
|
|
int maxo2 = -1, maxhe = -1, mino2 = 1000;
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
|
|
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
2011-12-12 17:20:22 +00:00
|
|
|
cylinder_t *cyl = dive->cylinder + i;
|
|
|
|
struct gasmix *mix = &cyl->gasmix;
|
2011-12-12 05:28:18 +00:00
|
|
|
int o2 = mix->o2.permille;
|
|
|
|
int he = mix->he.permille;
|
|
|
|
|
2011-12-12 17:20:22 +00:00
|
|
|
if (cylinder_none(cyl))
|
|
|
|
continue;
|
|
|
|
if (!o2)
|
2013-01-14 22:53:38 +00:00
|
|
|
o2 = O2_IN_AIR;
|
2011-12-12 17:20:22 +00:00
|
|
|
if (o2 < mino2)
|
|
|
|
mino2 = o2;
|
2011-12-12 05:28:18 +00:00
|
|
|
if (he > maxhe)
|
|
|
|
goto newmax;
|
|
|
|
if (he < maxhe)
|
|
|
|
continue;
|
|
|
|
if (o2 <= maxo2)
|
|
|
|
continue;
|
|
|
|
newmax:
|
|
|
|
maxhe = he;
|
|
|
|
maxo2 = o2;
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
}
|
2011-12-12 17:20:22 +00:00
|
|
|
/* All air? Show/sort as "air"/zero */
|
2013-01-14 22:53:38 +00:00
|
|
|
if (!maxhe && maxo2 == O2_IN_AIR && mino2 == maxo2)
|
2011-12-12 17:20:22 +00:00
|
|
|
maxo2 = mino2 = 0;
|
2012-01-05 16:16:08 +00:00
|
|
|
*o2_p = maxo2;
|
|
|
|
*he_p = maxhe;
|
|
|
|
*o2low_p = mino2;
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
}
|
|
|
|
|
2013-01-02 20:16:42 +00:00
|
|
|
int total_weight(struct dive *dive)
|
2012-08-07 18:24:40 +00:00
|
|
|
{
|
|
|
|
int i, total_grams = 0;
|
|
|
|
|
|
|
|
if (dive)
|
|
|
|
for (i=0; i< MAX_WEIGHTSYSTEMS; i++)
|
|
|
|
total_grams += dive->weightsystem[i].weight.grams;
|
|
|
|
return total_grams;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void weight_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
|
|
|
{
|
|
|
|
int indx, decimals;
|
|
|
|
double value;
|
|
|
|
char buffer[80];
|
|
|
|
struct dive *dive;
|
|
|
|
|
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &indx, -1);
|
|
|
|
dive = get_dive(indx);
|
|
|
|
value = get_weight_units(total_weight(dive), &decimals, NULL);
|
2012-08-10 20:43:16 +00:00
|
|
|
if (value == 0.0)
|
|
|
|
*buffer = '\0';
|
|
|
|
else
|
|
|
|
snprintf(buffer, sizeof(buffer), "%.*f", decimals, value);
|
2012-08-07 18:24:40 +00:00
|
|
|
|
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
|
|
|
}
|
|
|
|
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
static gint nitrox_sort_func(GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter_a,
|
|
|
|
GtkTreeIter *iter_b,
|
|
|
|
gpointer user_data)
|
|
|
|
{
|
|
|
|
int index_a, index_b;
|
|
|
|
struct dive *a, *b;
|
|
|
|
int a_o2, b_o2;
|
|
|
|
int a_he, b_he;
|
2011-12-12 17:20:22 +00:00
|
|
|
int a_o2low, b_o2low;
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
|
|
|
|
gtk_tree_model_get(model, iter_a, DIVE_INDEX, &index_a, -1);
|
|
|
|
gtk_tree_model_get(model, iter_b, DIVE_INDEX, &index_b, -1);
|
|
|
|
a = get_dive(index_a);
|
|
|
|
b = get_dive(index_b);
|
2011-12-12 17:20:22 +00:00
|
|
|
get_dive_gas(a, &a_o2, &a_he, &a_o2low);
|
|
|
|
get_dive_gas(b, &b_o2, &b_he, &b_o2low);
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
|
|
|
|
/* Sort by Helium first, O2 second */
|
2011-12-12 17:20:22 +00:00
|
|
|
if (a_he == b_he) {
|
|
|
|
if (a_o2 == b_o2)
|
|
|
|
return a_o2low - b_o2low;
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
return a_o2 - b_o2;
|
2011-12-12 17:20:22 +00:00
|
|
|
}
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
return a_he - b_he;
|
|
|
|
}
|
|
|
|
|
2011-12-19 02:29:32 +00:00
|
|
|
#define UTF8_ELLIPSIS "\xE2\x80\xA6"
|
|
|
|
|
2011-09-20 02:13:36 +00:00
|
|
|
static void nitrox_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
2011-09-19 20:32:10 +00:00
|
|
|
{
|
2012-08-13 20:09:40 +00:00
|
|
|
int idx, o2, he, o2low;
|
2011-09-19 20:32:10 +00:00
|
|
|
char buffer[80];
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
struct dive *dive;
|
2011-09-19 20:32:10 +00:00
|
|
|
|
2012-08-13 20:09:40 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
|
|
|
|
if (idx < 0) {
|
2012-08-08 16:35:38 +00:00
|
|
|
*buffer = '\0';
|
|
|
|
goto exit;
|
|
|
|
}
|
2012-08-13 20:09:40 +00:00
|
|
|
dive = get_dive(idx);
|
2011-12-12 17:20:22 +00:00
|
|
|
get_dive_gas(dive, &o2, &he, &o2low);
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
o2 = (o2 + 5) / 10;
|
|
|
|
he = (he + 5) / 10;
|
2011-12-12 17:20:22 +00:00
|
|
|
o2low = (o2low + 5) / 10;
|
2011-09-20 02:13:36 +00:00
|
|
|
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
if (he)
|
|
|
|
snprintf(buffer, sizeof(buffer), "%d/%d", o2, he);
|
|
|
|
else if (o2)
|
2011-12-12 17:20:22 +00:00
|
|
|
if (o2 == o2low)
|
|
|
|
snprintf(buffer, sizeof(buffer), "%d", o2);
|
|
|
|
else
|
2011-12-19 02:29:32 +00:00
|
|
|
snprintf(buffer, sizeof(buffer), "%d" UTF8_ELLIPSIS "%d", o2low, o2);
|
2011-09-20 02:13:36 +00:00
|
|
|
else
|
2012-10-19 15:24:00 +00:00
|
|
|
strcpy(buffer, _("air"));
|
2012-08-08 16:35:38 +00:00
|
|
|
exit:
|
2011-09-20 02:13:36 +00:00
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Render the SAC data (integer value of "ml / min") */
|
|
|
|
static void sac_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
|
|
|
{
|
2012-08-08 16:35:38 +00:00
|
|
|
int value, idx;
|
2011-09-20 02:13:36 +00:00
|
|
|
const char *fmt;
|
|
|
|
char buffer[16];
|
|
|
|
double sac;
|
|
|
|
|
2012-08-08 16:35:38 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_SAC, &value, -1);
|
2011-09-20 02:13:36 +00:00
|
|
|
|
2012-08-13 20:09:40 +00:00
|
|
|
if (idx < 0 || !value) {
|
2012-08-08 16:35:38 +00:00
|
|
|
*buffer = '\0';
|
|
|
|
goto exit;
|
2011-09-19 20:32:10 +00:00
|
|
|
}
|
2011-09-20 02:13:36 +00:00
|
|
|
|
|
|
|
sac = value / 1000.0;
|
2013-01-11 01:26:10 +00:00
|
|
|
switch (prefs.units.volume) {
|
2011-09-20 02:13:36 +00:00
|
|
|
case LITER:
|
2011-09-20 16:56:46 +00:00
|
|
|
fmt = "%4.1f";
|
2011-09-20 02:13:36 +00:00
|
|
|
break;
|
|
|
|
case CUFT:
|
|
|
|
fmt = "%4.2f";
|
2011-11-02 04:12:21 +00:00
|
|
|
sac = ml_to_cuft(sac * 1000);
|
2011-09-20 02:13:36 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
snprintf(buffer, sizeof(buffer), fmt, sac);
|
2012-08-08 16:35:38 +00:00
|
|
|
exit:
|
2011-09-20 02:13:36 +00:00
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
2011-09-19 20:32:10 +00:00
|
|
|
}
|
|
|
|
|
2011-09-22 21:02:26 +00:00
|
|
|
/* Render the OTU data (integer value of "OTU") */
|
|
|
|
static void otu_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
|
|
|
{
|
2012-08-08 16:35:38 +00:00
|
|
|
int value, idx;
|
2011-09-22 21:02:26 +00:00
|
|
|
char buffer[16];
|
|
|
|
|
2012-08-08 16:35:38 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_OTU, &value, -1);
|
2011-09-22 21:02:26 +00:00
|
|
|
|
2012-08-13 20:09:40 +00:00
|
|
|
if (idx < 0 || !value)
|
2012-08-08 16:35:38 +00:00
|
|
|
*buffer = '\0';
|
|
|
|
else
|
|
|
|
snprintf(buffer, sizeof(buffer), "%d", value);
|
2011-09-22 21:02:26 +00:00
|
|
|
|
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
|
|
|
}
|
|
|
|
|
2012-12-11 05:18:48 +00:00
|
|
|
/* Render the CNS data (in full %) */
|
|
|
|
static void cns_data_func(GtkTreeViewColumn *col,
|
|
|
|
GtkCellRenderer *renderer,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
|
|
|
{
|
|
|
|
int value, idx;
|
|
|
|
char buffer[16];
|
|
|
|
|
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, DIVE_MAXCNS, &value, -1);
|
|
|
|
|
|
|
|
if (idx < 0 || !value)
|
|
|
|
*buffer = '\0';
|
|
|
|
else
|
|
|
|
snprintf(buffer, sizeof(buffer), "%d%%", value);
|
|
|
|
|
|
|
|
g_object_set(renderer, "text", buffer, NULL);
|
|
|
|
}
|
|
|
|
|
First step in cleaning up cylinder pressure sensor logic
This clarifies/changes the meaning of our "cylinderindex" entry in our
samples. It has been rather confused, because different dive computers
have done things differently, and the naming really hasn't helped.
There are two totally different - and independent - cylinder "indexes":
- the pressure sensor index, which indicates which cylinder the sensor
data is from.
- the "active cylinder" index, which indicates which cylinder we actually
breathe from.
These two values really are totally independent, and have nothing
what-so-ever to do with each other. The sensor index may well be fixed:
many dive computers only support a single pressure sensor (whether
wireless or wired), and the sensor index is thus always zero.
Other dive computers may support multiple pressure sensors, and the gas
switch event may - or may not - indicate that the sensor changed too. A
dive computer might give the sensor data for *all* cylinders it can read,
regardless of which one is the one we're actively breathing. In fact, some
dive computers might give sensor data for not just *your* cylinder, but
your buddies.
This patch renames "cylinderindex" in the samples as "sensor", making it
quite clear that it's about which sensor index the pressure data in the
sample is about.
The way we figure out which is the currently active gas is with an
explicit has change event. If a computer (like the Uemis Zurich) joins the
two concepts together, then a sensor change should also create a gas
switch event. This patch also changes the Uemis importer to do that.
Finally, it should be noted that the plot info works totally separately
from the sample data, and is about what we actually *display*, not about
the sample pressures etc. In the plot info, the "cylinderindex" does in
fact mean the currently active cylinder, and while it is initially set to
match the sensor information from the samples, we then walk the gas change
events and fix it up - and if the active cylinder differs from the sensor
cylinder, we clear the sensor data.
[Dirk Hohndel: this conflicted with some of my recent changes - I think
I merged things correctly...]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
|
|
|
static int active_o2(struct dive *dive, struct divecomputer *dc, duration_t time)
|
|
|
|
{
|
|
|
|
int o2permille = dive->cylinder[0].gasmix.o2.permille;
|
|
|
|
struct event *event = dc->events;
|
|
|
|
|
|
|
|
if (!o2permille)
|
2013-01-14 22:53:38 +00:00
|
|
|
o2permille = O2_IN_AIR;
|
First step in cleaning up cylinder pressure sensor logic
This clarifies/changes the meaning of our "cylinderindex" entry in our
samples. It has been rather confused, because different dive computers
have done things differently, and the naming really hasn't helped.
There are two totally different - and independent - cylinder "indexes":
- the pressure sensor index, which indicates which cylinder the sensor
data is from.
- the "active cylinder" index, which indicates which cylinder we actually
breathe from.
These two values really are totally independent, and have nothing
what-so-ever to do with each other. The sensor index may well be fixed:
many dive computers only support a single pressure sensor (whether
wireless or wired), and the sensor index is thus always zero.
Other dive computers may support multiple pressure sensors, and the gas
switch event may - or may not - indicate that the sensor changed too. A
dive computer might give the sensor data for *all* cylinders it can read,
regardless of which one is the one we're actively breathing. In fact, some
dive computers might give sensor data for not just *your* cylinder, but
your buddies.
This patch renames "cylinderindex" in the samples as "sensor", making it
quite clear that it's about which sensor index the pressure data in the
sample is about.
The way we figure out which is the currently active gas is with an
explicit has change event. If a computer (like the Uemis Zurich) joins the
two concepts together, then a sensor change should also create a gas
switch event. This patch also changes the Uemis importer to do that.
Finally, it should be noted that the plot info works totally separately
from the sample data, and is about what we actually *display*, not about
the sample pressures etc. In the plot info, the "cylinderindex" does in
fact mean the currently active cylinder, and while it is initially set to
match the sensor information from the samples, we then walk the gas change
events and fix it up - and if the active cylinder differs from the sensor
cylinder, we clear the sensor data.
[Dirk Hohndel: this conflicted with some of my recent changes - I think
I merged things correctly...]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
|
|
|
|
|
|
|
for (event = dc->events; event; event = event->next) {
|
|
|
|
if (event->time.seconds > time.seconds)
|
|
|
|
break;
|
|
|
|
if (strcmp(event->name, "gaschange"))
|
|
|
|
continue;
|
|
|
|
o2permille = 10*(event->value & 0xffff);
|
|
|
|
}
|
|
|
|
return o2permille;
|
|
|
|
}
|
|
|
|
|
2013-02-08 06:48:07 +00:00
|
|
|
/* calculate OTU for a dive - this only takes the first diveomputer into account */
|
|
|
|
static int calculate_otu(struct dive *dive)
|
2011-09-22 20:45:53 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
double otu = 0.0;
|
2013-02-08 06:48:07 +00:00
|
|
|
struct divecomputer *dc = &dive->dc;
|
2011-09-22 20:45:53 +00:00
|
|
|
|
2012-11-24 02:51:27 +00:00
|
|
|
for (i = 1; i < dc->samples; i++) {
|
2011-09-22 20:45:53 +00:00
|
|
|
int t;
|
2013-02-02 18:38:51 +00:00
|
|
|
int po2;
|
2012-11-24 02:51:27 +00:00
|
|
|
struct sample *sample = dc->sample + i;
|
2011-09-22 20:45:53 +00:00
|
|
|
struct sample *psample = sample - 1;
|
|
|
|
t = sample->time.seconds - psample->time.seconds;
|
2012-12-21 01:42:10 +00:00
|
|
|
if (sample->po2) {
|
2013-02-02 18:38:51 +00:00
|
|
|
po2 = sample->po2;
|
2012-12-21 01:42:10 +00:00
|
|
|
} else {
|
First step in cleaning up cylinder pressure sensor logic
This clarifies/changes the meaning of our "cylinderindex" entry in our
samples. It has been rather confused, because different dive computers
have done things differently, and the naming really hasn't helped.
There are two totally different - and independent - cylinder "indexes":
- the pressure sensor index, which indicates which cylinder the sensor
data is from.
- the "active cylinder" index, which indicates which cylinder we actually
breathe from.
These two values really are totally independent, and have nothing
what-so-ever to do with each other. The sensor index may well be fixed:
many dive computers only support a single pressure sensor (whether
wireless or wired), and the sensor index is thus always zero.
Other dive computers may support multiple pressure sensors, and the gas
switch event may - or may not - indicate that the sensor changed too. A
dive computer might give the sensor data for *all* cylinders it can read,
regardless of which one is the one we're actively breathing. In fact, some
dive computers might give sensor data for not just *your* cylinder, but
your buddies.
This patch renames "cylinderindex" in the samples as "sensor", making it
quite clear that it's about which sensor index the pressure data in the
sample is about.
The way we figure out which is the currently active gas is with an
explicit has change event. If a computer (like the Uemis Zurich) joins the
two concepts together, then a sensor change should also create a gas
switch event. This patch also changes the Uemis importer to do that.
Finally, it should be noted that the plot info works totally separately
from the sample data, and is about what we actually *display*, not about
the sample pressures etc. In the plot info, the "cylinderindex" does in
fact mean the currently active cylinder, and while it is initially set to
match the sensor information from the samples, we then walk the gas change
events and fix it up - and if the active cylinder differs from the sensor
cylinder, we clear the sensor data.
[Dirk Hohndel: this conflicted with some of my recent changes - I think
I merged things correctly...]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
|
|
|
int o2 = active_o2(dive, dc, sample->time);
|
2013-02-09 00:15:18 +00:00
|
|
|
po2 = o2 / 1000.0 * depth_to_mbar(sample->depth.mm, dive);
|
2012-12-21 01:42:10 +00:00
|
|
|
}
|
2013-02-02 18:38:51 +00:00
|
|
|
if (po2 >= 500)
|
|
|
|
otu += pow((po2 - 500) / 1000.0, 0.83) * t / 30.0;
|
2011-09-22 20:45:53 +00:00
|
|
|
}
|
2011-09-22 21:02:26 +00:00
|
|
|
return otu + 0.5;
|
2011-09-22 20:45:53 +00:00
|
|
|
}
|
2011-09-19 23:11:38 +00:00
|
|
|
/*
|
|
|
|
* Return air usage (in liters).
|
|
|
|
*/
|
|
|
|
static double calculate_airuse(struct dive *dive)
|
|
|
|
{
|
|
|
|
double airuse = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
2011-11-09 15:51:00 +00:00
|
|
|
pressure_t start, end;
|
2011-09-19 23:11:38 +00:00
|
|
|
cylinder_t *cyl = dive->cylinder + i;
|
|
|
|
int size = cyl->type.size.mliter;
|
|
|
|
double kilo_atm;
|
|
|
|
|
|
|
|
if (!size)
|
|
|
|
continue;
|
|
|
|
|
2011-11-09 15:51:00 +00:00
|
|
|
start = cyl->start.mbar ? cyl->start : cyl->sample_start;
|
|
|
|
end = cyl->end.mbar ? cyl->end : cyl->sample_end;
|
|
|
|
kilo_atm = (to_ATM(start) - to_ATM(end)) / 1000.0;
|
2011-09-19 23:11:38 +00:00
|
|
|
|
|
|
|
/* Liters of air at 1 atm == milliliters at 1k atm*/
|
|
|
|
airuse += kilo_atm * size;
|
|
|
|
}
|
|
|
|
return airuse;
|
|
|
|
}
|
|
|
|
|
2013-02-24 18:50:18 +00:00
|
|
|
/*
|
|
|
|
* Calculate how long we were actually under water, and the average
|
|
|
|
* depth while under water.
|
|
|
|
*
|
|
|
|
* This ignores any surface time in the middle of the dive.
|
|
|
|
*/
|
|
|
|
static int calculate_duration(struct dive *dive, struct divecomputer *dc, int *meandepth)
|
|
|
|
{
|
|
|
|
int duration, i;
|
|
|
|
int lasttime, lastdepth, depthtime;
|
|
|
|
|
|
|
|
duration = 0;
|
|
|
|
lasttime = 0;
|
|
|
|
lastdepth = 0;
|
|
|
|
depthtime = 0;
|
|
|
|
for (i = 0; i < dc->samples; i++) {
|
|
|
|
struct sample *sample = dc->sample + i;
|
|
|
|
int time = sample->time.seconds;
|
|
|
|
int depth = sample->depth.mm;
|
|
|
|
|
|
|
|
/* We ignore segments at the surface */
|
|
|
|
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
|
|
|
|
duration += time - lasttime;
|
|
|
|
depthtime += (time - lasttime)*(depth+lastdepth)/2;
|
|
|
|
}
|
|
|
|
lastdepth = depth;
|
|
|
|
lasttime = time;
|
|
|
|
}
|
|
|
|
if (duration) {
|
|
|
|
if (meandepth)
|
|
|
|
*meandepth = depthtime / duration;
|
|
|
|
return duration;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* No samples? */
|
|
|
|
if (meandepth)
|
|
|
|
*meandepth = dive->meandepth.mm;
|
|
|
|
return dive->duration.seconds;
|
|
|
|
}
|
|
|
|
|
2013-02-08 06:48:07 +00:00
|
|
|
/* this only uses the first divecomputer to calculate the SAC rate */
|
|
|
|
static int calculate_sac(struct dive *dive)
|
2011-09-19 20:32:10 +00:00
|
|
|
{
|
2013-02-08 06:48:07 +00:00
|
|
|
struct divecomputer *dc = &dive->dc;
|
2011-09-19 23:11:38 +00:00
|
|
|
double airuse, pressure, sac;
|
2013-02-24 18:50:18 +00:00
|
|
|
int duration, meandepth;
|
2011-09-19 23:11:38 +00:00
|
|
|
|
|
|
|
airuse = calculate_airuse(dive);
|
|
|
|
if (!airuse)
|
2011-11-02 02:56:14 +00:00
|
|
|
return 0;
|
2013-02-24 18:50:18 +00:00
|
|
|
|
|
|
|
duration = calculate_duration(dive, dc, &meandepth);
|
2011-09-19 23:11:38 +00:00
|
|
|
|
2011-11-21 21:23:13 +00:00
|
|
|
/* find and eliminate long surface intervals */
|
2013-02-24 18:50:18 +00:00
|
|
|
if (!duration)
|
|
|
|
return 0;
|
2013-02-08 06:48:07 +00:00
|
|
|
|
Fix up SAC calculations for ATM/bar confusion
We even documented that we did SAC in bar*l/min, but the "S" in SAC
stands for "Surface". So we should normalize SAC rate to surface
pressure, not one bar.
It's a tiny 1% difference, and doesn't actually matter in practice, but
it's noticeable when you want to explicitly test for SAC-rate by
creating a test-dive that averages exactly 10m. Suddenly you don't get
the round numbers you expect.
[ Side note: 10m is not _exactly_ one extra atmosphere according to our
calculations, but it's darn close in sea water: the standard salinity
of 1.03 kg/l together with the standard acceleration of 9.81m/s^2
gives an additional pressure of 1.01 bar, which is within a fraction
of a percent of one ATM.
Of course, divers have likely chosen that value exactly for the math
to come out that way, since the true average salinity of seawater is
actually slightly lower ]
So here's a few test-dives, along with the SAC rate fixup to make them
look right.
(There's also a one-liner to dive.c that makes the duration come out
right if the last sample has a non-zero depth, and the previous sample
did not: one of my original test-dives did the "average 10m depth" by
starting at 0 and ending at 20m, and dive.c got a tiny bit confused
about that ;)
[ The rationale for me testing our SAC rate calculations in the first
place was that on snorkkeli.net user "Poltsi" reported that our SAC rate
calculations differ from the ones that Suunto DM4 reports. So I wanted
to verify that we did things right.
Note that Poltsi reported differences larger than the difference of
BAR/ATM, so this is not the cause. I'll continue to look at this. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-02-24 18:01:18 +00:00
|
|
|
/* Mean pressure in ATM (SAC calculations are in atm*l/min) */
|
2013-02-24 18:50:18 +00:00
|
|
|
pressure = (double) depth_to_mbar(meandepth, dive) / SURFACE_PRESSURE;
|
2011-11-21 21:23:13 +00:00
|
|
|
sac = airuse / pressure * 60 / duration;
|
2011-09-19 23:11:38 +00:00
|
|
|
|
|
|
|
/* milliliters per minute.. */
|
2011-11-02 02:56:14 +00:00
|
|
|
return sac * 1000;
|
2011-09-20 02:13:36 +00:00
|
|
|
}
|
2011-09-19 23:11:38 +00:00
|
|
|
|
2013-01-04 04:45:20 +00:00
|
|
|
/* for now we do this based on the first divecomputer */
|
|
|
|
static void add_dive_to_deco(struct dive *dive)
|
|
|
|
{
|
|
|
|
struct divecomputer *dc = &dive->dc;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!dc)
|
|
|
|
return;
|
2013-02-09 15:41:15 +00:00
|
|
|
for (i = 1; i < dc->samples; i++) {
|
2013-01-04 04:45:20 +00:00
|
|
|
struct sample *psample = dc->sample + i - 1;
|
|
|
|
struct sample *sample = dc->sample + i;
|
|
|
|
int t0 = psample->time.seconds;
|
|
|
|
int t1 = sample->time.seconds;
|
|
|
|
int j;
|
|
|
|
|
|
|
|
for (j = t0; j < t1; j++) {
|
2013-01-08 23:48:23 +00:00
|
|
|
int depth = interpolate(psample->depth.mm, sample->depth.mm, j - t0, t1 - t0);
|
2013-02-09 00:15:18 +00:00
|
|
|
(void) add_segment(depth_to_mbar(depth, dive) / 1000.0,
|
2013-02-02 18:38:51 +00:00
|
|
|
&dive->cylinder[sample->sensor].gasmix, 1, sample->po2, dive);
|
2013-01-04 04:45:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-01-14 04:41:48 +00:00
|
|
|
static int get_divenr(struct dive *dive)
|
|
|
|
{
|
|
|
|
int divenr = -1;
|
|
|
|
while (++divenr < dive_table.nr && get_dive(divenr) != dive)
|
|
|
|
;
|
|
|
|
return divenr;
|
|
|
|
}
|
|
|
|
|
2013-01-14 22:53:38 +00:00
|
|
|
static struct gasmix air = { .o2.permille = O2_IN_AIR };
|
2013-01-04 04:45:20 +00:00
|
|
|
|
|
|
|
/* take into account previous dives until there is a 48h gap between dives */
|
2013-01-05 07:11:42 +00:00
|
|
|
double init_decompression(struct dive *dive)
|
2013-01-04 04:45:20 +00:00
|
|
|
{
|
|
|
|
int i, divenr = -1;
|
2013-01-14 03:37:41 +00:00
|
|
|
unsigned int surface_time;
|
|
|
|
timestamp_t when, lasttime = 0;
|
2013-01-04 04:45:20 +00:00
|
|
|
gboolean deco_init = FALSE;
|
2013-01-14 03:37:41 +00:00
|
|
|
double tissue_tolerance, surface_pressure;
|
2013-01-04 04:45:20 +00:00
|
|
|
|
|
|
|
if (!dive)
|
2013-01-05 07:11:42 +00:00
|
|
|
return 0.0;
|
2013-01-14 04:41:48 +00:00
|
|
|
divenr = get_divenr(dive);
|
2013-01-04 04:45:20 +00:00
|
|
|
when = dive->when;
|
|
|
|
i = divenr;
|
2013-01-14 04:57:52 +00:00
|
|
|
while (i && --i) {
|
2013-01-04 04:45:20 +00:00
|
|
|
struct dive* pdive = get_dive(i);
|
2013-01-14 03:37:41 +00:00
|
|
|
/* we don't want to mix dives from different trips as we keep looking
|
|
|
|
* for how far back we need to go */
|
|
|
|
if (dive->divetrip && pdive->divetrip != dive->divetrip)
|
|
|
|
continue;
|
2013-02-09 15:12:30 +00:00
|
|
|
if (!pdive || pdive->when > when || pdive->when + pdive->duration.seconds + 48 * 60 * 60 < when)
|
2013-01-04 04:45:20 +00:00
|
|
|
break;
|
|
|
|
when = pdive->when;
|
2013-02-09 15:12:30 +00:00
|
|
|
lasttime = when + pdive->duration.seconds;
|
2013-01-04 04:45:20 +00:00
|
|
|
}
|
|
|
|
while (++i < divenr) {
|
|
|
|
struct dive* pdive = get_dive(i);
|
2013-01-14 03:37:41 +00:00
|
|
|
/* again skip dives from different trips */
|
|
|
|
if (dive->divetrip && dive->divetrip != pdive->divetrip)
|
|
|
|
continue;
|
2013-02-08 20:49:12 +00:00
|
|
|
surface_pressure = get_surface_pressure_in_mbar(pdive, TRUE) / 1000.0;
|
2013-01-04 04:45:20 +00:00
|
|
|
if (!deco_init) {
|
|
|
|
clear_deco(surface_pressure);
|
|
|
|
deco_init = TRUE;
|
2013-01-04 19:56:43 +00:00
|
|
|
#if DECO_CALC_DEBUG & 2
|
2013-01-04 04:45:20 +00:00
|
|
|
dump_tissues();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
add_dive_to_deco(pdive);
|
2013-01-04 19:56:43 +00:00
|
|
|
#if DECO_CALC_DEBUG & 2
|
2013-01-04 04:45:20 +00:00
|
|
|
printf("added dive #%d\n", pdive->number);
|
|
|
|
dump_tissues();
|
|
|
|
#endif
|
2013-01-14 03:37:41 +00:00
|
|
|
if (pdive->when > lasttime) {
|
|
|
|
surface_time = pdive->when - lasttime;
|
2013-02-09 15:12:30 +00:00
|
|
|
lasttime = pdive->when + pdive->duration.seconds;
|
2013-02-02 18:38:51 +00:00
|
|
|
tissue_tolerance = add_segment(surface_pressure, &air, surface_time, 0, dive);
|
2013-01-14 03:37:41 +00:00
|
|
|
#if DECO_CALC_DEBUG & 2
|
|
|
|
printf("after surface intervall of %d:%02u\n", FRACTION(surface_time,60));
|
|
|
|
dump_tissues();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* add the final surface time */
|
|
|
|
if (lasttime && dive->when > lasttime) {
|
|
|
|
surface_time = dive->when - lasttime;
|
2013-02-08 20:49:12 +00:00
|
|
|
surface_pressure = get_surface_pressure_in_mbar(dive, TRUE) / 1000.0;
|
2013-02-02 18:38:51 +00:00
|
|
|
tissue_tolerance = add_segment(surface_pressure, &air, surface_time, 0, dive);
|
2013-01-04 19:56:43 +00:00
|
|
|
#if DECO_CALC_DEBUG & 2
|
2013-01-04 04:45:20 +00:00
|
|
|
printf("after surface intervall of %d:%02u\n", FRACTION(surface_time,60));
|
|
|
|
dump_tissues();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
if (!deco_init) {
|
2013-02-08 20:49:12 +00:00
|
|
|
double surface_pressure = get_surface_pressure_in_mbar(dive, TRUE) / 1000.0;
|
2013-01-04 04:45:20 +00:00
|
|
|
clear_deco(surface_pressure);
|
2013-01-04 19:56:43 +00:00
|
|
|
#if DECO_CALC_DEBUG & 2
|
2013-01-04 04:45:20 +00:00
|
|
|
printf("no previous dive\n");
|
|
|
|
dump_tissues();
|
|
|
|
#endif
|
|
|
|
}
|
2013-01-05 07:11:42 +00:00
|
|
|
return tissue_tolerance;
|
2013-01-04 04:45:20 +00:00
|
|
|
}
|
|
|
|
|
2011-11-13 17:29:07 +00:00
|
|
|
void update_cylinder_related_info(struct dive *dive)
|
|
|
|
{
|
2011-11-13 17:51:34 +00:00
|
|
|
if (dive != NULL) {
|
2013-02-08 06:48:07 +00:00
|
|
|
dive->sac = calculate_sac(dive);
|
|
|
|
dive->otu = calculate_otu(dive);
|
2011-11-13 17:29:07 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-09-20 03:06:54 +00:00
|
|
|
static void get_string(char **str, const char *s)
|
|
|
|
{
|
|
|
|
int len;
|
|
|
|
char *n;
|
|
|
|
|
|
|
|
if (!s)
|
|
|
|
s = "";
|
2012-10-02 16:46:25 +00:00
|
|
|
len = g_utf8_strlen(s, -1);
|
2011-11-16 18:29:38 +00:00
|
|
|
if (len > 60)
|
|
|
|
len = 60;
|
2012-10-02 16:46:25 +00:00
|
|
|
n = malloc(len * sizeof(gunichar) + 1);
|
|
|
|
g_utf8_strncpy(n, s, len);
|
2011-09-20 03:06:54 +00:00
|
|
|
*str = n;
|
|
|
|
}
|
|
|
|
|
2011-09-20 02:13:36 +00:00
|
|
|
static void get_location(struct dive *dive, char **str)
|
|
|
|
{
|
2011-09-20 03:06:54 +00:00
|
|
|
get_string(str, dive->location);
|
|
|
|
}
|
2011-09-19 23:11:38 +00:00
|
|
|
|
2011-09-20 03:06:54 +00:00
|
|
|
static void get_cylinder(struct dive *dive, char **str)
|
|
|
|
{
|
|
|
|
get_string(str, dive->cylinder[0].type.description);
|
2011-09-19 20:32:10 +00:00
|
|
|
}
|
|
|
|
|
2012-08-14 23:07:25 +00:00
|
|
|
static void get_suit(struct dive *dive, char **str)
|
|
|
|
{
|
|
|
|
get_string(str, dive->suit);
|
|
|
|
}
|
|
|
|
|
2013-01-28 15:54:30 +00:00
|
|
|
GdkPixbuf *get_gps_icon(void)
|
|
|
|
{
|
2013-02-01 06:25:41 +00:00
|
|
|
return gdk_pixbuf_from_pixdata(&satellite_pixbuf, TRUE, NULL);
|
2013-01-28 15:54:30 +00:00
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static GdkPixbuf *get_gps_icon_for_dive(struct dive *dive)
|
2013-01-23 03:52:07 +00:00
|
|
|
{
|
2013-01-31 03:09:16 +00:00
|
|
|
if (dive_has_gps_location(dive))
|
2013-01-28 15:54:30 +00:00
|
|
|
return get_gps_icon();
|
2013-01-23 03:52:07 +00:00
|
|
|
else
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2011-12-11 20:18:10 +00:00
|
|
|
/*
|
|
|
|
* Set up anything that could have changed due to editing
|
2012-08-13 21:42:55 +00:00
|
|
|
* of dive information; we need to do this for both models,
|
|
|
|
* so we simply call set_one_dive again with the non-current model
|
2011-12-11 20:18:10 +00:00
|
|
|
*/
|
2012-08-13 21:42:55 +00:00
|
|
|
/* forward declaration for recursion */
|
|
|
|
static gboolean set_one_dive(GtkTreeModel *model,
|
|
|
|
GtkTreePath *path,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data);
|
|
|
|
|
2011-09-19 23:41:56 +00:00
|
|
|
static void fill_one_dive(struct dive *dive,
|
|
|
|
GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter)
|
2011-09-07 19:01:37 +00:00
|
|
|
{
|
2012-08-14 23:07:25 +00:00
|
|
|
char *location, *cylinder, *suit;
|
2012-09-03 04:46:48 +00:00
|
|
|
GtkTreeModel *othermodel;
|
2013-01-23 03:52:07 +00:00
|
|
|
GdkPixbuf *icon;
|
2011-09-07 19:01:37 +00:00
|
|
|
|
2011-09-20 03:06:54 +00:00
|
|
|
get_cylinder(dive, &cylinder);
|
2011-09-19 22:52:42 +00:00
|
|
|
get_location(dive, &location);
|
2012-08-14 23:07:25 +00:00
|
|
|
get_suit(dive, &suit);
|
2013-01-28 15:54:30 +00:00
|
|
|
icon = get_gps_icon_for_dive(dive);
|
2012-08-08 16:35:38 +00:00
|
|
|
gtk_tree_store_set(GTK_TREE_STORE(model), iter,
|
2011-10-23 15:50:14 +00:00
|
|
|
DIVE_NR, dive->number,
|
2011-09-19 22:52:42 +00:00
|
|
|
DIVE_LOCATION, location,
|
2013-01-23 03:52:07 +00:00
|
|
|
DIVE_LOC_ICON, icon,
|
2011-09-20 03:06:54 +00:00
|
|
|
DIVE_CYLINDER, cylinder,
|
2011-12-07 19:58:16 +00:00
|
|
|
DIVE_RATING, dive->rating,
|
2011-11-02 02:56:14 +00:00
|
|
|
DIVE_SAC, dive->sac,
|
2011-09-22 21:02:26 +00:00
|
|
|
DIVE_OTU, dive->otu,
|
2012-12-11 05:18:48 +00:00
|
|
|
DIVE_MAXCNS, dive->maxcns,
|
2012-08-07 18:24:40 +00:00
|
|
|
DIVE_TOTALWEIGHT, total_weight(dive),
|
2012-08-14 23:07:25 +00:00
|
|
|
DIVE_SUIT, suit,
|
2011-09-07 19:01:37 +00:00
|
|
|
-1);
|
2012-08-01 19:19:44 +00:00
|
|
|
|
2013-02-09 19:29:59 +00:00
|
|
|
if (icon)
|
2013-02-09 19:48:12 +00:00
|
|
|
g_object_unref(icon);
|
2012-08-01 19:19:44 +00:00
|
|
|
free(location);
|
|
|
|
free(cylinder);
|
2012-08-14 23:07:25 +00:00
|
|
|
free(suit);
|
2012-08-16 17:46:30 +00:00
|
|
|
|
2012-08-30 00:24:15 +00:00
|
|
|
if (model == TREEMODEL(dive_list))
|
2012-09-03 04:46:48 +00:00
|
|
|
othermodel = LISTMODEL(dive_list);
|
2012-08-13 21:42:55 +00:00
|
|
|
else
|
2012-09-03 04:46:48 +00:00
|
|
|
othermodel = TREEMODEL(dive_list);
|
|
|
|
if (othermodel != MODEL(dive_list))
|
2012-08-13 21:42:55 +00:00
|
|
|
/* recursive call */
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_model_foreach(othermodel, set_one_dive, dive);
|
2011-09-19 23:41:56 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean set_one_dive(GtkTreeModel *model,
|
|
|
|
GtkTreePath *path,
|
|
|
|
GtkTreeIter *iter,
|
|
|
|
gpointer data)
|
|
|
|
{
|
2012-08-08 16:35:38 +00:00
|
|
|
int idx;
|
2011-09-19 23:41:56 +00:00
|
|
|
struct dive *dive;
|
|
|
|
|
|
|
|
/* Get the dive number */
|
2012-08-08 16:35:38 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
|
2012-08-13 20:09:40 +00:00
|
|
|
if (idx < 0)
|
|
|
|
return FALSE;
|
2012-08-08 16:35:38 +00:00
|
|
|
dive = get_dive(idx);
|
2011-09-19 23:41:56 +00:00
|
|
|
if (!dive)
|
|
|
|
return TRUE;
|
|
|
|
if (data && dive != data)
|
|
|
|
return FALSE;
|
|
|
|
|
|
|
|
fill_one_dive(dive, model, iter);
|
|
|
|
return dive == data;
|
|
|
|
}
|
|
|
|
|
2011-09-20 17:06:24 +00:00
|
|
|
void flush_divelist(struct dive *dive)
|
2011-09-19 23:41:56 +00:00
|
|
|
{
|
2012-09-03 04:46:48 +00:00
|
|
|
GtkTreeModel *model = MODEL(dive_list);
|
2011-09-07 19:01:37 +00:00
|
|
|
|
2011-09-19 23:41:56 +00:00
|
|
|
gtk_tree_model_foreach(model, set_one_dive, dive);
|
2011-09-07 19:01:37 +00:00
|
|
|
}
|
|
|
|
|
2011-09-20 18:24:15 +00:00
|
|
|
void set_divelist_font(const char *font)
|
|
|
|
{
|
|
|
|
PangoFontDescription *font_desc = pango_font_description_from_string(font);
|
|
|
|
gtk_widget_modify_font(dive_list.tree_view, font_desc);
|
|
|
|
pango_font_description_free(font_desc);
|
|
|
|
}
|
|
|
|
|
2011-09-20 17:06:24 +00:00
|
|
|
void update_dive_list_units(void)
|
2011-08-31 17:46:28 +00:00
|
|
|
{
|
2011-09-07 15:56:47 +00:00
|
|
|
const char *unit;
|
2012-09-03 04:46:48 +00:00
|
|
|
GtkTreeModel *model = MODEL(dive_list);
|
2011-09-07 15:56:47 +00:00
|
|
|
|
2011-11-02 03:13:14 +00:00
|
|
|
(void) get_depth_units(0, NULL, &unit);
|
2011-09-20 17:06:24 +00:00
|
|
|
gtk_tree_view_column_set_title(dive_list.depth, unit);
|
2011-08-31 17:27:58 +00:00
|
|
|
|
2011-11-02 03:13:14 +00:00
|
|
|
(void) get_temp_units(0, &unit);
|
2011-09-20 17:08:27 +00:00
|
|
|
gtk_tree_view_column_set_title(dive_list.temperature, unit);
|
2011-09-20 16:56:46 +00:00
|
|
|
|
2012-08-07 18:24:40 +00:00
|
|
|
(void) get_weight_units(0, NULL, &unit);
|
|
|
|
gtk_tree_view_column_set_title(dive_list.totalweight, unit);
|
|
|
|
|
2011-09-07 19:01:37 +00:00
|
|
|
gtk_tree_model_foreach(model, set_one_dive, NULL);
|
|
|
|
}
|
|
|
|
|
2011-09-27 17:16:40 +00:00
|
|
|
void update_dive_list_col_visibility(void)
|
|
|
|
{
|
2012-12-10 17:20:57 +00:00
|
|
|
gtk_tree_view_column_set_visible(dive_list.cylinder, prefs.visible_cols.cylinder);
|
|
|
|
gtk_tree_view_column_set_visible(dive_list.temperature, prefs.visible_cols.temperature);
|
|
|
|
gtk_tree_view_column_set_visible(dive_list.totalweight, prefs.visible_cols.totalweight);
|
|
|
|
gtk_tree_view_column_set_visible(dive_list.suit, prefs.visible_cols.suit);
|
|
|
|
gtk_tree_view_column_set_visible(dive_list.nitrox, prefs.visible_cols.nitrox);
|
|
|
|
gtk_tree_view_column_set_visible(dive_list.sac, prefs.visible_cols.sac);
|
|
|
|
gtk_tree_view_column_set_visible(dive_list.otu, prefs.visible_cols.otu);
|
2012-12-11 21:09:48 +00:00
|
|
|
gtk_tree_view_column_set_visible(dive_list.maxcns, prefs.visible_cols.maxcns);
|
2011-10-02 20:05:12 +00:00
|
|
|
return;
|
2011-09-27 17:16:40 +00:00
|
|
|
}
|
|
|
|
|
2012-09-20 16:56:48 +00:00
|
|
|
/*
|
|
|
|
* helper functions for dive_trip handling
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef DEBUG_TRIP
|
|
|
|
static void dump_trip_list(void)
|
|
|
|
{
|
2012-11-26 04:06:54 +00:00
|
|
|
dive_trip_t *trip;
|
2012-09-20 16:56:48 +00:00
|
|
|
int i=0;
|
2012-09-20 19:30:58 +00:00
|
|
|
timestamp_t last_time = 0;
|
2012-11-26 04:06:54 +00:00
|
|
|
|
|
|
|
for (trip = dive_trip_list; trip; trip = trip->next) {
|
2012-09-20 20:08:50 +00:00
|
|
|
struct tm tm;
|
2012-11-26 04:06:54 +00:00
|
|
|
utc_mkdate(trip->when, &tm);
|
|
|
|
if (trip->when < last_time)
|
2012-09-20 16:56:48 +00:00
|
|
|
printf("\n\ndive_trip_list OUT OF ORDER!!!\n\n\n");
|
2012-11-10 18:51:03 +00:00
|
|
|
printf("%s trip %d to \"%s\" on %04u-%02u-%02u %02u:%02u:%02u (%d dives - %p)\n",
|
2012-11-26 18:04:14 +00:00
|
|
|
trip->autogen ? "autogen " : "",
|
2012-11-26 04:06:54 +00:00
|
|
|
++i, trip->location,
|
2012-11-10 18:51:03 +00:00
|
|
|
tm.tm_year + 1900, tm.tm_mon+1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec,
|
2012-11-26 04:06:54 +00:00
|
|
|
trip->nrdives, trip);
|
|
|
|
last_time = trip->when;
|
2012-09-20 16:56:48 +00:00
|
|
|
}
|
|
|
|
printf("-----\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* this finds the last trip that at or before the time given */
|
2012-11-26 04:06:54 +00:00
|
|
|
static dive_trip_t *find_matching_trip(timestamp_t when)
|
2012-08-31 23:26:04 +00:00
|
|
|
{
|
2012-11-26 04:06:54 +00:00
|
|
|
dive_trip_t *trip = dive_trip_list;
|
|
|
|
|
|
|
|
if (!trip || trip->when > when) {
|
2012-09-20 03:42:11 +00:00
|
|
|
#ifdef DEBUG_TRIP
|
2012-09-20 16:56:48 +00:00
|
|
|
printf("no matching trip\n");
|
2012-09-20 03:42:11 +00:00
|
|
|
#endif
|
2012-08-31 23:26:04 +00:00
|
|
|
return NULL;
|
2012-09-20 03:42:11 +00:00
|
|
|
}
|
2012-11-26 04:06:54 +00:00
|
|
|
while (trip->next && trip->next->when <= when)
|
2012-08-31 23:26:04 +00:00
|
|
|
trip = trip->next;
|
2012-09-20 03:42:11 +00:00
|
|
|
#ifdef DEBUG_TRIP
|
|
|
|
{
|
2012-09-20 20:08:50 +00:00
|
|
|
struct tm tm;
|
2012-11-26 04:06:54 +00:00
|
|
|
utc_mkdate(trip->when, &tm);
|
2012-11-10 18:51:03 +00:00
|
|
|
printf("found trip %p @ %04d-%02d-%02d %02d:%02d:%02d\n",
|
2012-11-26 04:06:54 +00:00
|
|
|
trip,
|
2012-09-20 20:08:50 +00:00
|
|
|
tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
|
|
|
|
tm.tm_hour, tm.tm_min, tm.tm_sec);
|
2012-09-20 03:42:11 +00:00
|
|
|
}
|
|
|
|
#endif
|
2012-08-31 23:26:04 +00:00
|
|
|
return trip;
|
|
|
|
}
|
|
|
|
|
2012-09-20 16:56:48 +00:00
|
|
|
/* insert the trip into the dive_trip_list - but ensure you don't have
|
|
|
|
* two trips for the same date; but if you have, make sure you don't
|
|
|
|
* keep the one with less information */
|
|
|
|
void insert_trip(dive_trip_t **dive_trip_p)
|
2012-08-31 23:26:04 +00:00
|
|
|
{
|
2012-09-20 16:56:48 +00:00
|
|
|
dive_trip_t *dive_trip = *dive_trip_p;
|
2012-11-26 04:06:54 +00:00
|
|
|
dive_trip_t **p = &dive_trip_list;
|
|
|
|
dive_trip_t *trip;
|
2012-12-06 21:04:37 +00:00
|
|
|
struct dive *divep;
|
2012-11-26 04:06:54 +00:00
|
|
|
|
|
|
|
/* Walk the dive trip list looking for the right location.. */
|
|
|
|
while ((trip = *p) != NULL && trip->when < dive_trip->when)
|
|
|
|
p = &trip->next;
|
|
|
|
|
|
|
|
if (trip && trip->when == dive_trip->when) {
|
|
|
|
if (! trip->location)
|
|
|
|
trip->location = dive_trip->location;
|
2012-12-06 21:04:37 +00:00
|
|
|
if (! trip->notes)
|
|
|
|
trip->notes = dive_trip->notes;
|
|
|
|
divep = dive_trip->dives;
|
|
|
|
while (divep) {
|
|
|
|
add_dive_to_trip(divep, trip);
|
|
|
|
divep = divep->next;
|
|
|
|
}
|
2012-11-26 04:06:54 +00:00
|
|
|
*dive_trip_p = trip;
|
2012-09-20 16:56:48 +00:00
|
|
|
} else {
|
2012-11-26 04:06:54 +00:00
|
|
|
dive_trip->next = trip;
|
|
|
|
*p = dive_trip;
|
2012-09-20 16:56:48 +00:00
|
|
|
}
|
|
|
|
#ifdef DEBUG_TRIP
|
|
|
|
dump_trip_list();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2012-11-10 18:51:03 +00:00
|
|
|
static void delete_trip(dive_trip_t *trip)
|
|
|
|
{
|
2012-11-26 04:06:54 +00:00
|
|
|
dive_trip_t **p, *tmp;
|
2012-11-10 18:51:03 +00:00
|
|
|
|
2012-11-26 02:53:15 +00:00
|
|
|
assert(!trip->dives);
|
2012-11-26 04:06:54 +00:00
|
|
|
|
|
|
|
/* Remove the trip from the list of trips */
|
|
|
|
p = &dive_trip_list;
|
|
|
|
while ((tmp = *p) != NULL) {
|
|
|
|
if (tmp == trip) {
|
|
|
|
*p = trip->next;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
p = &tmp->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* .. and free it */
|
2012-11-10 18:51:03 +00:00
|
|
|
if (trip->location)
|
|
|
|
free(trip->location);
|
2012-12-28 13:43:03 +00:00
|
|
|
if (trip->notes)
|
|
|
|
free(trip->notes);
|
2012-11-10 18:51:03 +00:00
|
|
|
free(trip);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void find_new_trip_start_time(dive_trip_t *trip)
|
2012-11-09 18:46:39 +00:00
|
|
|
{
|
2012-11-26 02:53:15 +00:00
|
|
|
struct dive *dive = trip->dives;
|
|
|
|
timestamp_t when = dive->when;
|
2012-11-10 18:51:03 +00:00
|
|
|
|
2012-11-26 02:53:15 +00:00
|
|
|
while ((dive = dive->next) != NULL) {
|
|
|
|
if (dive->when < when)
|
|
|
|
when = dive->when;
|
2012-11-10 18:51:03 +00:00
|
|
|
}
|
2012-11-26 02:53:15 +00:00
|
|
|
trip->when = when;
|
2012-11-10 18:51:03 +00:00
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static void remove_dive_from_trip(struct dive *dive)
|
2012-11-10 18:51:03 +00:00
|
|
|
{
|
2012-11-26 02:53:15 +00:00
|
|
|
struct dive *next, **pprev;
|
2012-11-10 18:51:03 +00:00
|
|
|
dive_trip_t *trip = dive->divetrip;
|
|
|
|
|
|
|
|
if (!trip)
|
|
|
|
return;
|
2012-11-26 02:53:15 +00:00
|
|
|
|
|
|
|
/* Remove the dive from the trip's list of dives */
|
|
|
|
next = dive->next;
|
|
|
|
pprev = dive->pprev;
|
|
|
|
*pprev = next;
|
|
|
|
if (next)
|
|
|
|
next->pprev = pprev;
|
|
|
|
|
2012-11-10 18:51:03 +00:00
|
|
|
dive->divetrip = NULL;
|
2013-02-19 17:57:54 +00:00
|
|
|
dive->tripflag = NO_TRIP;
|
2012-11-10 18:51:03 +00:00
|
|
|
assert(trip->nrdives > 0);
|
|
|
|
if (!--trip->nrdives)
|
|
|
|
delete_trip(trip);
|
|
|
|
else if (trip->when == dive->when)
|
|
|
|
find_new_trip_start_time(trip);
|
|
|
|
}
|
|
|
|
|
|
|
|
void add_dive_to_trip(struct dive *dive, dive_trip_t *trip)
|
|
|
|
{
|
|
|
|
if (dive->divetrip == trip)
|
|
|
|
return;
|
|
|
|
assert(trip->when);
|
|
|
|
remove_dive_from_trip(dive);
|
|
|
|
trip->nrdives++;
|
|
|
|
dive->divetrip = trip;
|
2012-11-26 04:06:54 +00:00
|
|
|
dive->tripflag = ASSIGNED_TRIP;
|
2012-11-26 02:53:15 +00:00
|
|
|
|
|
|
|
/* Add it to the trip's list of dives*/
|
|
|
|
dive->next = trip->dives;
|
|
|
|
if (dive->next)
|
|
|
|
dive->next->pprev = &dive->next;
|
|
|
|
trip->dives = dive;
|
|
|
|
dive->pprev = &trip->dives;
|
|
|
|
|
2012-11-10 18:51:03 +00:00
|
|
|
if (dive->when && trip->when > dive->when)
|
|
|
|
trip->when = dive->when;
|
2012-11-09 18:46:39 +00:00
|
|
|
}
|
|
|
|
|
2012-09-20 03:42:11 +00:00
|
|
|
static dive_trip_t *create_and_hookup_trip_from_dive(struct dive *dive)
|
2012-08-31 23:26:04 +00:00
|
|
|
{
|
2012-09-20 03:42:11 +00:00
|
|
|
dive_trip_t *dive_trip = calloc(sizeof(dive_trip_t),1);
|
2012-08-31 23:26:04 +00:00
|
|
|
dive_trip->when = dive->when;
|
|
|
|
if (dive->location)
|
|
|
|
dive_trip->location = strdup(dive->location);
|
2012-09-05 20:54:22 +00:00
|
|
|
insert_trip(&dive_trip);
|
2012-11-10 18:51:03 +00:00
|
|
|
|
2012-08-31 23:26:04 +00:00
|
|
|
dive->tripflag = IN_TRIP;
|
2012-11-10 18:51:03 +00:00
|
|
|
add_dive_to_trip(dive, dive_trip);
|
2012-08-31 23:26:04 +00:00
|
|
|
return dive_trip;
|
|
|
|
}
|
|
|
|
|
2012-11-26 04:06:54 +00:00
|
|
|
/*
|
|
|
|
* Walk the dives from the oldest dive, and see if we can autogroup them
|
|
|
|
*/
|
|
|
|
static void autogroup_dives(void)
|
2012-09-10 18:04:58 +00:00
|
|
|
{
|
2012-11-26 04:06:54 +00:00
|
|
|
int i;
|
|
|
|
struct dive *dive, *lastdive = NULL;
|
2012-09-10 18:04:58 +00:00
|
|
|
|
2012-11-26 04:06:54 +00:00
|
|
|
for_each_dive(i, dive) {
|
|
|
|
dive_trip_t *trip;
|
2012-09-10 18:04:58 +00:00
|
|
|
|
2012-11-26 04:06:54 +00:00
|
|
|
if (dive->divetrip) {
|
|
|
|
lastdive = dive;
|
|
|
|
continue;
|
2012-09-10 18:04:58 +00:00
|
|
|
}
|
2012-11-26 04:06:54 +00:00
|
|
|
|
|
|
|
if (!DIVE_NEEDS_TRIP(dive)) {
|
|
|
|
lastdive = NULL;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Do we have a trip we can combine this into? */
|
|
|
|
if (lastdive && dive->when < lastdive->when + TRIP_THRESHOLD) {
|
|
|
|
dive_trip_t *trip = lastdive->divetrip;
|
|
|
|
add_dive_to_trip(dive, trip);
|
|
|
|
if (dive->location && !trip->location)
|
|
|
|
trip->location = strdup(dive->location);
|
|
|
|
lastdive = dive;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
lastdive = dive;
|
|
|
|
trip = create_and_hookup_trip_from_dive(dive);
|
2012-11-26 18:04:14 +00:00
|
|
|
trip->autogen = 1;
|
2012-09-10 18:04:58 +00:00
|
|
|
}
|
2012-11-26 04:06:54 +00:00
|
|
|
|
|
|
|
#ifdef DEBUG_TRIP
|
|
|
|
dump_trip_list();
|
|
|
|
#endif
|
2012-09-10 18:04:58 +00:00
|
|
|
}
|
|
|
|
|
Allow overlapping (and disjoint) dive trips
We used to have the rule that a dive trip has to have all dives in it in
sequential order, even though our XML file really is much more flexible,
and allows arbitrary nesting of dives within a dive trip.
Put another way, the old model had fairly inflexible rules:
- the dive array is sorted by time
- a dive trip is always a contiguous slice of this sorted array
which makes perfect sense when you think of the dive and trip list as a
physical activity by one person, but leads to various very subtle issues
in the general case when there are no guarantees that the user then uses
subsurface that way.
In particular, if you load the XML files of two divers that have
overlapping dive trips, the end result is incredibly messy, and does not
conform to the above model at all.
There's two ways to enforce such conformance:
- disallow that kind of behavior entirely.
This is actually hard. Our XML files aren't date-based, they are
based on XML nesting rules, and even a single XML file can have
nesting that violates the date ordering. With multiple XML files,
it's trivial to do in practice, and while we could just fail at
loading, the failure would have to be a hard failure that leaves the
user no way to use the data at all.
- try to "fix it up" by sorting, splitting, and combining dive trips
automatically.
Dirk had a patch to do this, but it really does destroy the actual
dive data: if you load both mine and Dirk's dive trips, you ended up
with a result that followed the above two technical rules, but that
didn't actually make any *sense*.
So this patch doesn't try to enforce the rules, and instead just changes
them to be more generic:
- the dive array is still sorted by dive time
- a dive trip is just an arbitrary collection of dives.
The relaxed rules means that mixing dives and dive trips for two people
is trivial, and we can easily handle any XML file. The dive trip is
defined by the XML nesting level, and is totally independent of any
date-based sorting.
It does require a few things:
- when we save our dive data, we have to do it hierarchically by dive
trip, not just by walking the dive array linearly.
- similarly, when we create the dive tree model, we can't just blindly
walk the array of dives one by one, we have to look up the correct
trip (parent)
- when we try to merge two dives that are adjacent (by date sorting),
we can't do it if they are in different trips.
but apart from that, nothing else really changes.
NOTE! Despite the new relaxed model, creating totally disjoing dive
trips is not all that easy (nor is there any *reason* for it to be
easty). Our GUI interfaces still are "add dive to trip above" etc, and
the automatic adding of dives to dive trips is obviously still based on
date.
So this does not really change the expected normal usage, the relaxed
data structure rules just mean that we don't need to worry about the odd
cases as much, because we can just let them be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
|
|
|
static void clear_trip_indexes(void)
|
|
|
|
{
|
|
|
|
dive_trip_t *trip;
|
|
|
|
|
|
|
|
for (trip = dive_trip_list; trip != NULL; trip = trip->next)
|
|
|
|
trip->index = 0;
|
|
|
|
}
|
|
|
|
|
2013-01-31 05:56:51 +00:00
|
|
|
/* Select the iter asked for, and set the keyboard focus on it */
|
|
|
|
static void go_to_iter(GtkTreeSelection *selection, GtkTreeIter *iter);
|
2011-09-20 17:06:24 +00:00
|
|
|
static void fill_dive_list(void)
|
2011-09-07 19:01:37 +00:00
|
|
|
{
|
Allow overlapping (and disjoint) dive trips
We used to have the rule that a dive trip has to have all dives in it in
sequential order, even though our XML file really is much more flexible,
and allows arbitrary nesting of dives within a dive trip.
Put another way, the old model had fairly inflexible rules:
- the dive array is sorted by time
- a dive trip is always a contiguous slice of this sorted array
which makes perfect sense when you think of the dive and trip list as a
physical activity by one person, but leads to various very subtle issues
in the general case when there are no guarantees that the user then uses
subsurface that way.
In particular, if you load the XML files of two divers that have
overlapping dive trips, the end result is incredibly messy, and does not
conform to the above model at all.
There's two ways to enforce such conformance:
- disallow that kind of behavior entirely.
This is actually hard. Our XML files aren't date-based, they are
based on XML nesting rules, and even a single XML file can have
nesting that violates the date ordering. With multiple XML files,
it's trivial to do in practice, and while we could just fail at
loading, the failure would have to be a hard failure that leaves the
user no way to use the data at all.
- try to "fix it up" by sorting, splitting, and combining dive trips
automatically.
Dirk had a patch to do this, but it really does destroy the actual
dive data: if you load both mine and Dirk's dive trips, you ended up
with a result that followed the above two technical rules, but that
didn't actually make any *sense*.
So this patch doesn't try to enforce the rules, and instead just changes
them to be more generic:
- the dive array is still sorted by dive time
- a dive trip is just an arbitrary collection of dives.
The relaxed rules means that mixing dives and dive trips for two people
is trivial, and we can easily handle any XML file. The dive trip is
defined by the XML nesting level, and is totally independent of any
date-based sorting.
It does require a few things:
- when we save our dive data, we have to do it hierarchically by dive
trip, not just by walking the dive array linearly.
- similarly, when we create the dive tree model, we can't just blindly
walk the array of dives one by one, we have to look up the correct
trip (parent)
- when we try to merge two dives that are adjacent (by date sorting),
we can't do it if they are in different trips.
but apart from that, nothing else really changes.
NOTE! Despite the new relaxed model, creating totally disjoing dive
trips is not all that easy (nor is there any *reason* for it to be
easty). Our GUI interfaces still are "add dive to trip above" etc, and
the automatic adding of dives to dive trips is obviously still based on
date.
So this does not really change the expected normal usage, the relaxed
data structure rules just mean that we don't need to worry about the odd
cases as much, because we can just let them be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
|
|
|
int i, trip_index = 0;
|
|
|
|
GtkTreeIter iter, parent_iter, lookup, *parent_ptr = NULL;
|
2012-08-13 21:42:55 +00:00
|
|
|
GtkTreeStore *liststore, *treestore;
|
2013-01-23 03:52:07 +00:00
|
|
|
GdkPixbuf *icon;
|
2012-08-22 05:04:24 +00:00
|
|
|
|
2012-11-26 04:06:54 +00:00
|
|
|
/* Do we need to create any dive groups automatically? */
|
|
|
|
if (autogroup)
|
|
|
|
autogroup_dives();
|
2011-09-07 19:01:37 +00:00
|
|
|
|
2012-08-30 00:24:15 +00:00
|
|
|
treestore = TREESTORE(dive_list);
|
|
|
|
liststore = LISTSTORE(dive_list);
|
2011-09-07 19:01:37 +00:00
|
|
|
|
Allow overlapping (and disjoint) dive trips
We used to have the rule that a dive trip has to have all dives in it in
sequential order, even though our XML file really is much more flexible,
and allows arbitrary nesting of dives within a dive trip.
Put another way, the old model had fairly inflexible rules:
- the dive array is sorted by time
- a dive trip is always a contiguous slice of this sorted array
which makes perfect sense when you think of the dive and trip list as a
physical activity by one person, but leads to various very subtle issues
in the general case when there are no guarantees that the user then uses
subsurface that way.
In particular, if you load the XML files of two divers that have
overlapping dive trips, the end result is incredibly messy, and does not
conform to the above model at all.
There's two ways to enforce such conformance:
- disallow that kind of behavior entirely.
This is actually hard. Our XML files aren't date-based, they are
based on XML nesting rules, and even a single XML file can have
nesting that violates the date ordering. With multiple XML files,
it's trivial to do in practice, and while we could just fail at
loading, the failure would have to be a hard failure that leaves the
user no way to use the data at all.
- try to "fix it up" by sorting, splitting, and combining dive trips
automatically.
Dirk had a patch to do this, but it really does destroy the actual
dive data: if you load both mine and Dirk's dive trips, you ended up
with a result that followed the above two technical rules, but that
didn't actually make any *sense*.
So this patch doesn't try to enforce the rules, and instead just changes
them to be more generic:
- the dive array is still sorted by dive time
- a dive trip is just an arbitrary collection of dives.
The relaxed rules means that mixing dives and dive trips for two people
is trivial, and we can easily handle any XML file. The dive trip is
defined by the XML nesting level, and is totally independent of any
date-based sorting.
It does require a few things:
- when we save our dive data, we have to do it hierarchically by dive
trip, not just by walking the dive array linearly.
- similarly, when we create the dive tree model, we can't just blindly
walk the array of dives one by one, we have to look up the correct
trip (parent)
- when we try to merge two dives that are adjacent (by date sorting),
we can't do it if they are in different trips.
but apart from that, nothing else really changes.
NOTE! Despite the new relaxed model, creating totally disjoing dive
trips is not all that easy (nor is there any *reason* for it to be
easty). Our GUI interfaces still are "add dive to trip above" etc, and
the automatic adding of dives to dive trips is obviously still based on
date.
So this does not really change the expected normal usage, the relaxed
data structure rules just mean that we don't need to worry about the odd
cases as much, because we can just let them be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
|
|
|
clear_trip_indexes();
|
|
|
|
|
2011-11-16 18:30:34 +00:00
|
|
|
i = dive_table.nr;
|
|
|
|
while (--i >= 0) {
|
2012-08-22 05:04:24 +00:00
|
|
|
struct dive *dive = get_dive(i);
|
2012-11-26 04:06:54 +00:00
|
|
|
dive_trip_t *trip = dive->divetrip;
|
2012-08-22 05:04:24 +00:00
|
|
|
|
Allow overlapping (and disjoint) dive trips
We used to have the rule that a dive trip has to have all dives in it in
sequential order, even though our XML file really is much more flexible,
and allows arbitrary nesting of dives within a dive trip.
Put another way, the old model had fairly inflexible rules:
- the dive array is sorted by time
- a dive trip is always a contiguous slice of this sorted array
which makes perfect sense when you think of the dive and trip list as a
physical activity by one person, but leads to various very subtle issues
in the general case when there are no guarantees that the user then uses
subsurface that way.
In particular, if you load the XML files of two divers that have
overlapping dive trips, the end result is incredibly messy, and does not
conform to the above model at all.
There's two ways to enforce such conformance:
- disallow that kind of behavior entirely.
This is actually hard. Our XML files aren't date-based, they are
based on XML nesting rules, and even a single XML file can have
nesting that violates the date ordering. With multiple XML files,
it's trivial to do in practice, and while we could just fail at
loading, the failure would have to be a hard failure that leaves the
user no way to use the data at all.
- try to "fix it up" by sorting, splitting, and combining dive trips
automatically.
Dirk had a patch to do this, but it really does destroy the actual
dive data: if you load both mine and Dirk's dive trips, you ended up
with a result that followed the above two technical rules, but that
didn't actually make any *sense*.
So this patch doesn't try to enforce the rules, and instead just changes
them to be more generic:
- the dive array is still sorted by dive time
- a dive trip is just an arbitrary collection of dives.
The relaxed rules means that mixing dives and dive trips for two people
is trivial, and we can easily handle any XML file. The dive trip is
defined by the XML nesting level, and is totally independent of any
date-based sorting.
It does require a few things:
- when we save our dive data, we have to do it hierarchically by dive
trip, not just by walking the dive array linearly.
- similarly, when we create the dive tree model, we can't just blindly
walk the array of dives one by one, we have to look up the correct
trip (parent)
- when we try to merge two dives that are adjacent (by date sorting),
we can't do it if they are in different trips.
but apart from that, nothing else really changes.
NOTE! Despite the new relaxed model, creating totally disjoing dive
trips is not all that easy (nor is there any *reason* for it to be
easty). Our GUI interfaces still are "add dive to trip above" etc, and
the automatic adding of dives to dive trips is obviously still based on
date.
So this does not really change the expected normal usage, the relaxed
data structure rules just mean that we don't need to worry about the odd
cases as much, because we can just let them be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
|
|
|
if (!trip) {
|
|
|
|
parent_ptr = NULL;
|
|
|
|
} else if (!trip->index) {
|
|
|
|
trip->index = ++trip_index;
|
|
|
|
|
|
|
|
/* Create new trip entry */
|
|
|
|
gtk_tree_store_append(treestore, &parent_iter, NULL);
|
|
|
|
parent_ptr = &parent_iter;
|
|
|
|
|
|
|
|
/* a duration of 0 (and negative index) identifies a group */
|
|
|
|
gtk_tree_store_set(treestore, parent_ptr,
|
|
|
|
DIVE_INDEX, -trip_index,
|
|
|
|
DIVE_DATE, trip->when,
|
|
|
|
DIVE_LOCATION, trip->location,
|
|
|
|
DIVE_DURATION, 0,
|
|
|
|
-1);
|
|
|
|
} else {
|
2013-01-02 17:52:43 +00:00
|
|
|
int idx, ok;
|
Allow overlapping (and disjoint) dive trips
We used to have the rule that a dive trip has to have all dives in it in
sequential order, even though our XML file really is much more flexible,
and allows arbitrary nesting of dives within a dive trip.
Put another way, the old model had fairly inflexible rules:
- the dive array is sorted by time
- a dive trip is always a contiguous slice of this sorted array
which makes perfect sense when you think of the dive and trip list as a
physical activity by one person, but leads to various very subtle issues
in the general case when there are no guarantees that the user then uses
subsurface that way.
In particular, if you load the XML files of two divers that have
overlapping dive trips, the end result is incredibly messy, and does not
conform to the above model at all.
There's two ways to enforce such conformance:
- disallow that kind of behavior entirely.
This is actually hard. Our XML files aren't date-based, they are
based on XML nesting rules, and even a single XML file can have
nesting that violates the date ordering. With multiple XML files,
it's trivial to do in practice, and while we could just fail at
loading, the failure would have to be a hard failure that leaves the
user no way to use the data at all.
- try to "fix it up" by sorting, splitting, and combining dive trips
automatically.
Dirk had a patch to do this, but it really does destroy the actual
dive data: if you load both mine and Dirk's dive trips, you ended up
with a result that followed the above two technical rules, but that
didn't actually make any *sense*.
So this patch doesn't try to enforce the rules, and instead just changes
them to be more generic:
- the dive array is still sorted by dive time
- a dive trip is just an arbitrary collection of dives.
The relaxed rules means that mixing dives and dive trips for two people
is trivial, and we can easily handle any XML file. The dive trip is
defined by the XML nesting level, and is totally independent of any
date-based sorting.
It does require a few things:
- when we save our dive data, we have to do it hierarchically by dive
trip, not just by walking the dive array linearly.
- similarly, when we create the dive tree model, we can't just blindly
walk the array of dives one by one, we have to look up the correct
trip (parent)
- when we try to merge two dives that are adjacent (by date sorting),
we can't do it if they are in different trips.
but apart from that, nothing else really changes.
NOTE! Despite the new relaxed model, creating totally disjoing dive
trips is not all that easy (nor is there any *reason* for it to be
easty). Our GUI interfaces still are "add dive to trip above" etc, and
the automatic adding of dives to dive trips is obviously still based on
date.
So this does not really change the expected normal usage, the relaxed
data structure rules just mean that we don't need to worry about the odd
cases as much, because we can just let them be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
|
|
|
GtkTreeModel *model = TREEMODEL(dive_list);
|
2013-01-02 17:52:43 +00:00
|
|
|
|
|
|
|
parent_ptr = NULL;
|
|
|
|
ok = gtk_tree_model_get_iter_first(model, &lookup);
|
|
|
|
while (ok) {
|
|
|
|
gtk_tree_model_get(model, &lookup, DIVE_INDEX, &idx, -1);
|
|
|
|
if (idx == -trip->index) {
|
|
|
|
parent_ptr = &lookup;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
ok = gtk_tree_model_iter_next(model, &lookup);
|
|
|
|
}
|
2012-08-22 05:04:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* store dive */
|
2011-11-13 17:29:07 +00:00
|
|
|
update_cylinder_related_info(dive);
|
2012-08-22 05:04:24 +00:00
|
|
|
gtk_tree_store_append(treestore, &iter, parent_ptr);
|
2013-01-28 15:54:30 +00:00
|
|
|
icon = get_gps_icon_for_dive(dive);
|
2012-08-13 21:42:55 +00:00
|
|
|
gtk_tree_store_set(treestore, &iter,
|
2011-09-19 19:25:16 +00:00
|
|
|
DIVE_INDEX, i,
|
2011-10-23 15:50:14 +00:00
|
|
|
DIVE_NR, dive->number,
|
2011-09-19 19:25:16 +00:00
|
|
|
DIVE_DATE, dive->when,
|
2013-02-09 04:44:04 +00:00
|
|
|
DIVE_DEPTH, dive->maxdepth,
|
2013-02-09 15:12:30 +00:00
|
|
|
DIVE_DURATION, dive->duration.seconds,
|
2012-08-13 21:42:55 +00:00
|
|
|
DIVE_LOCATION, dive->location,
|
2013-01-23 03:52:07 +00:00
|
|
|
DIVE_LOC_ICON, icon,
|
2012-08-13 21:42:55 +00:00
|
|
|
DIVE_RATING, dive->rating,
|
2013-02-09 15:41:15 +00:00
|
|
|
DIVE_TEMPERATURE, dive->watertemp.mkelvin,
|
2012-08-13 21:42:55 +00:00
|
|
|
DIVE_SAC, 0,
|
|
|
|
-1);
|
2013-02-09 19:29:59 +00:00
|
|
|
if (icon)
|
2013-02-09 19:48:12 +00:00
|
|
|
g_object_unref(icon);
|
2012-08-13 21:42:55 +00:00
|
|
|
gtk_tree_store_append(liststore, &iter, NULL);
|
|
|
|
gtk_tree_store_set(liststore, &iter,
|
2011-09-19 19:25:16 +00:00
|
|
|
DIVE_INDEX, i,
|
2011-10-23 15:50:14 +00:00
|
|
|
DIVE_NR, dive->number,
|
2011-09-19 19:25:16 +00:00
|
|
|
DIVE_DATE, dive->when,
|
2013-02-09 04:44:04 +00:00
|
|
|
DIVE_DEPTH, dive->maxdepth,
|
2013-02-09 15:12:30 +00:00
|
|
|
DIVE_DURATION, dive->duration.seconds,
|
2012-08-08 16:35:38 +00:00
|
|
|
DIVE_LOCATION, dive->location,
|
2013-01-23 03:52:07 +00:00
|
|
|
DIVE_LOC_ICON, icon,
|
2012-08-08 16:35:38 +00:00
|
|
|
DIVE_RATING, dive->rating,
|
2013-02-09 15:41:15 +00:00
|
|
|
DIVE_TEMPERATURE, dive->watertemp.mkelvin,
|
2012-08-07 18:24:40 +00:00
|
|
|
DIVE_TOTALWEIGHT, 0,
|
2012-08-14 23:07:25 +00:00
|
|
|
DIVE_SUIT, dive->suit,
|
2011-09-19 20:32:10 +00:00
|
|
|
DIVE_SAC, 0,
|
2011-08-31 17:27:58 +00:00
|
|
|
-1);
|
|
|
|
}
|
2011-09-07 19:01:37 +00:00
|
|
|
|
2011-09-20 17:06:24 +00:00
|
|
|
update_dive_list_units();
|
2012-09-20 22:31:39 +00:00
|
|
|
if (amount_selected == 0 && gtk_tree_model_get_iter_first(MODEL(dive_list), &iter)) {
|
2011-09-22 15:19:34 +00:00
|
|
|
GtkTreeSelection *selection;
|
2012-08-13 22:07:38 +00:00
|
|
|
|
2012-08-14 04:11:09 +00:00
|
|
|
/* select the last dive (and make sure it's an actual dive that is selected) */
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &selected_dive, -1);
|
|
|
|
first_leaf(MODEL(dive_list), &iter, &selected_dive);
|
2011-09-22 15:19:34 +00:00
|
|
|
selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
|
2013-01-31 05:56:51 +00:00
|
|
|
go_to_iter(selection, &iter);
|
2011-09-22 15:19:34 +00:00
|
|
|
}
|
2011-08-31 17:27:58 +00:00
|
|
|
}
|
|
|
|
|
2013-02-19 21:46:37 +00:00
|
|
|
static void restore_tree_state(void);
|
|
|
|
|
2011-09-20 17:06:24 +00:00
|
|
|
void dive_list_update_dives(void)
|
2011-08-31 17:27:58 +00:00
|
|
|
{
|
2013-01-23 21:19:58 +00:00
|
|
|
dive_table.preexisting = dive_table.nr;
|
2012-08-30 00:24:15 +00:00
|
|
|
gtk_tree_store_clear(TREESTORE(dive_list));
|
|
|
|
gtk_tree_store_clear(LISTSTORE(dive_list));
|
2011-09-20 17:06:24 +00:00
|
|
|
fill_dive_list();
|
2013-02-19 21:46:37 +00:00
|
|
|
restore_tree_state();
|
2011-09-06 03:50:52 +00:00
|
|
|
repaint_dive();
|
2011-09-05 19:12:58 +00:00
|
|
|
}
|
|
|
|
|
2012-12-29 06:04:43 +00:00
|
|
|
static gint dive_nr_sort(GtkTreeModel *model,
|
|
|
|
GtkTreeIter *iter_a,
|
|
|
|
GtkTreeIter *iter_b,
|
|
|
|
gpointer user_data)
|
|
|
|
{
|
|
|
|
int idx_a, idx_b;
|
|
|
|
timestamp_t when_a, when_b;
|
|
|
|
struct dive *a, *b;
|
2013-01-25 23:55:18 +00:00
|
|
|
dive_trip_t *tripa = NULL, *tripb = NULL;
|
2012-12-29 06:04:43 +00:00
|
|
|
|
|
|
|
gtk_tree_model_get(model, iter_a, DIVE_INDEX, &idx_a, DIVE_DATE, &when_a, -1);
|
|
|
|
gtk_tree_model_get(model, iter_b, DIVE_INDEX, &idx_b, DIVE_DATE, &when_b, -1);
|
|
|
|
|
|
|
|
if (idx_a < 0) {
|
|
|
|
a = NULL;
|
2013-02-19 15:59:18 +00:00
|
|
|
tripa = find_trip_by_idx(idx_a);
|
2012-12-29 06:04:43 +00:00
|
|
|
} else {
|
|
|
|
a = get_dive(idx_a);
|
|
|
|
if (a)
|
|
|
|
tripa = a->divetrip;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (idx_b < 0) {
|
|
|
|
b = NULL;
|
2013-02-19 15:59:18 +00:00
|
|
|
tripb = find_trip_by_idx(idx_b);
|
2012-12-29 06:04:43 +00:00
|
|
|
} else {
|
|
|
|
b = get_dive(idx_b);
|
|
|
|
if (b)
|
|
|
|
tripb = b->divetrip;
|
|
|
|
}
|
|
|
|
|
2013-01-07 22:12:07 +00:00
|
|
|
/*
|
|
|
|
* Compare dive dates within the same trip (or when there
|
|
|
|
* are no trips involved at all). But if we have two
|
|
|
|
* different trips use the trip dates for comparison
|
|
|
|
*/
|
|
|
|
if (tripa != tripb) {
|
|
|
|
if (tripa)
|
|
|
|
when_a = tripa->when;
|
|
|
|
if (tripb)
|
|
|
|
when_b = tripb->when;
|
|
|
|
}
|
|
|
|
return when_a - when_b;
|
2012-12-29 06:04:43 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
static struct divelist_column {
|
|
|
|
const char *header;
|
|
|
|
data_func_t data;
|
|
|
|
sort_func_t sort;
|
|
|
|
unsigned int flags;
|
|
|
|
int *visible;
|
2012-01-05 16:16:08 +00:00
|
|
|
} dl_column[] = {
|
2012-12-29 06:04:43 +00:00
|
|
|
[DIVE_NR] = { "#", nr_data_func, dive_nr_sort, ALIGN_RIGHT },
|
2012-10-11 00:42:59 +00:00
|
|
|
[DIVE_DATE] = { N_("Date"), date_data_func, NULL, ALIGN_LEFT },
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
[DIVE_RATING] = { UTF8_BLACKSTAR, star_data_func, NULL, ALIGN_LEFT },
|
2012-10-11 00:42:59 +00:00
|
|
|
[DIVE_DEPTH] = { N_("ft"), depth_data_func, NULL, ALIGN_RIGHT },
|
|
|
|
[DIVE_DURATION] = { N_("min"), duration_data_func, NULL, ALIGN_RIGHT },
|
2012-12-10 17:20:57 +00:00
|
|
|
[DIVE_TEMPERATURE] = { UTF8_DEGREE "F", temperature_data_func, NULL, ALIGN_RIGHT, &prefs.visible_cols.temperature },
|
|
|
|
[DIVE_TOTALWEIGHT] = { N_("lbs"), weight_data_func, NULL, ALIGN_RIGHT, &prefs.visible_cols.totalweight },
|
|
|
|
[DIVE_SUIT] = { N_("Suit"), NULL, NULL, ALIGN_LEFT, &prefs.visible_cols.suit },
|
|
|
|
[DIVE_CYLINDER] = { N_("Cyl"), NULL, NULL, 0, &prefs.visible_cols.cylinder },
|
|
|
|
[DIVE_NITROX] = { "O" UTF8_SUBSCRIPT_2 "%", nitrox_data_func, nitrox_sort_func, 0, &prefs.visible_cols.nitrox },
|
|
|
|
[DIVE_SAC] = { N_("SAC"), sac_data_func, NULL, 0, &prefs.visible_cols.sac },
|
|
|
|
[DIVE_OTU] = { N_("OTU"), otu_data_func, NULL, 0, &prefs.visible_cols.otu },
|
2012-12-11 21:09:48 +00:00
|
|
|
[DIVE_MAXCNS] = { N_("maxCNS"), cns_data_func, NULL, 0, &prefs.visible_cols.maxcns },
|
2013-01-23 03:52:07 +00:00
|
|
|
[DIVE_LOCATION] = { N_("Location"), NULL, NULL, ALIGN_LEFT },
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static GtkTreeViewColumn *divelist_column(struct DiveList *dl, struct divelist_column *col)
|
2011-09-20 04:39:15 +00:00
|
|
|
{
|
2012-01-05 16:16:08 +00:00
|
|
|
int index = col - &dl_column[0];
|
2012-10-11 13:03:10 +00:00
|
|
|
const char *title = _(col->header);
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
data_func_t data_func = col->data;
|
|
|
|
sort_func_t sort_func = col->sort;
|
|
|
|
unsigned int flags = col->flags;
|
|
|
|
int *visible = col->visible;
|
|
|
|
GtkWidget *tree_view = dl->tree_view;
|
2012-08-13 22:07:38 +00:00
|
|
|
GtkTreeStore *treemodel = dl->treemodel;
|
|
|
|
GtkTreeStore *listmodel = dl->listmodel;
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
GtkTreeViewColumn *ret;
|
|
|
|
|
|
|
|
if (visible && !*visible)
|
2011-12-11 19:40:17 +00:00
|
|
|
flags |= INVISIBLE;
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
ret = tree_view_column(tree_view, index, title, data_func, flags);
|
2012-08-13 22:07:38 +00:00
|
|
|
if (sort_func) {
|
|
|
|
/* the sort functions are needed in the corresponding models */
|
2012-12-29 06:04:43 +00:00
|
|
|
if (index == DIVE_NR)
|
2012-08-13 22:07:38 +00:00
|
|
|
gtk_tree_sortable_set_sort_func(GTK_TREE_SORTABLE(treemodel), index, sort_func, NULL, NULL);
|
|
|
|
else
|
|
|
|
gtk_tree_sortable_set_sort_func(GTK_TREE_SORTABLE(listmodel), index, sort_func, NULL, NULL);
|
|
|
|
}
|
Add capability of custom sorts to divelist columns
.. and use this for the nitrox column, which can now be more complex
than just a single number.
The rule for the "nitrox" column is now:
- we look up the highest Oxygen and Helium mix for the dive
(Note: we look them up independently, so if you have a EAN50 deco
bottle, and a 20% Helium low-oxygen bottle for the deep portion, then
we'll consider the dive to be a "50% Oxygen, 20% Helium" dive, even
though you obviously never used that combination at the same time)
- we sort by Helium first, Oxygen second. So a dive with a 10% Helium
mix is considered to be "stronger" than a 50% Nitrox mix.
- If Helium is non-zero, we show "O2/He", otherwise we show just "O2"
(or "air"). So "21/20" means "21% oxygen, 20% Helium", while "40"
means "Ean 40".
- I got rid of the decimals. We save them, and you can see them in the
dive equipment details, but for the dive list we just use rounded
percentages.
Let's see how many bugs I introduced. I don't actually have any trimix
dives, but I edited a few for (very limited) testing.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-11 22:38:58 +00:00
|
|
|
return ret;
|
2011-09-20 04:39:15 +00:00
|
|
|
}
|
|
|
|
|
2011-09-22 17:28:57 +00:00
|
|
|
/*
|
|
|
|
* This is some crazy crap. The only way to get default focus seems
|
|
|
|
* to be to grab focus as the widget is being shown the first time.
|
|
|
|
*/
|
|
|
|
static void realize_cb(GtkWidget *tree_view, gpointer userdata)
|
|
|
|
{
|
|
|
|
gtk_widget_grab_focus(tree_view);
|
|
|
|
}
|
|
|
|
|
2012-08-18 18:41:11 +00:00
|
|
|
/*
|
|
|
|
* Double-clicking on a group entry will expand a collapsed group
|
|
|
|
* and vice versa.
|
|
|
|
*/
|
|
|
|
static void collapse_expand(GtkTreeView *tree_view, GtkTreePath *path)
|
|
|
|
{
|
|
|
|
if (!gtk_tree_view_row_expanded(tree_view, path))
|
|
|
|
gtk_tree_view_expand_row(tree_view, path, FALSE);
|
|
|
|
else
|
|
|
|
gtk_tree_view_collapse_row(tree_view, path);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Double-click on a dive list */
|
2011-11-19 15:11:56 +00:00
|
|
|
static void row_activated_cb(GtkTreeView *tree_view,
|
|
|
|
GtkTreePath *path,
|
|
|
|
GtkTreeViewColumn *column,
|
2012-08-13 21:42:55 +00:00
|
|
|
gpointer userdata)
|
2011-11-19 15:11:56 +00:00
|
|
|
{
|
|
|
|
int index;
|
|
|
|
GtkTreeIter iter;
|
|
|
|
|
2012-09-03 04:46:48 +00:00
|
|
|
if (!gtk_tree_model_get_iter(MODEL(dive_list), &iter, path))
|
2011-11-19 15:11:56 +00:00
|
|
|
return;
|
2012-08-18 18:41:11 +00:00
|
|
|
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &index, -1);
|
2012-08-13 20:09:40 +00:00
|
|
|
/* a negative index is special for the "group by date" entries */
|
2012-08-18 18:41:11 +00:00
|
|
|
if (index < 0) {
|
|
|
|
collapse_expand(tree_view, path);
|
|
|
|
return;
|
|
|
|
}
|
2012-11-04 19:35:59 +00:00
|
|
|
edit_dive_info(get_dive(index), FALSE);
|
2011-11-19 15:11:56 +00:00
|
|
|
}
|
|
|
|
|
2012-06-28 01:09:26 +00:00
|
|
|
void add_dive_cb(GtkWidget *menuitem, gpointer data)
|
2012-06-27 20:11:54 +00:00
|
|
|
{
|
|
|
|
struct dive *dive;
|
|
|
|
|
|
|
|
dive = alloc_dive();
|
|
|
|
if (add_new_dive(dive)) {
|
|
|
|
record_dive(dive);
|
Add special download modes to force updates from the divecomputer
This will hopefully not be something we need often, but if we improve
support for a divecomputer (either in libdivecomputer or in our native
Uemis code or even in the way we handle (and potentially discard) events),
then it is extremely useful to be able to say "re-download things
from the divecomputer and for things that were not edited in Subsurface,
don't try to merge the data (which gives BAD results if for example you
fixed a bug in the depth calculation in libdivecomputer) but instead
simply take the samples, the events and some of the other unedited data
straight from the download".
This commit implements just that - a "force download" checkbox in the
download dialog that makes us reimport all dives from the dive computer,
even the ones we already have, and an "always prefer downloaded dive"
checkbox that then tells Subsurface not to merge but simply to take the
data from the downloaded dive - without overwriting the things we have
already edited in Subsurface (like location, buddy, equipment, etc).
This, as a precaution, refuses to merge dives that don't have identical
start times. So if you have edited the date / time of a dive or if you
have previously merged your dive with a different dive computer (and
therefore modified samples and events) you are out of luck.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-11-11 13:29:26 +00:00
|
|
|
report_dives(TRUE, FALSE);
|
2012-06-27 20:11:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
free(dive);
|
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static void edit_trip_cb(GtkWidget *menuitem, GtkTreePath *path)
|
2012-08-31 23:26:04 +00:00
|
|
|
{
|
2013-02-19 15:59:18 +00:00
|
|
|
int idx;
|
2012-08-31 23:26:04 +00:00
|
|
|
GtkTreeIter iter;
|
2012-09-20 03:42:11 +00:00
|
|
|
dive_trip_t *dive_trip;
|
2012-08-31 23:26:04 +00:00
|
|
|
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
|
2013-02-19 15:59:18 +00:00
|
|
|
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
|
|
|
|
dive_trip = find_trip_by_idx(idx);
|
2012-08-31 23:26:04 +00:00
|
|
|
if (edit_trip(dive_trip))
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_store_set(STORE(dive_list), &iter, DIVE_LOCATION, dive_trip->location, -1);
|
2012-08-31 23:26:04 +00:00
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static void edit_selected_dives_cb(GtkWidget *menuitem, gpointer data)
|
2012-08-15 22:21:34 +00:00
|
|
|
{
|
2012-08-21 22:37:38 +00:00
|
|
|
edit_multi_dive_info(NULL);
|
2012-08-15 22:21:34 +00:00
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static void edit_dive_from_path_cb(GtkWidget *menuitem, GtkTreePath *path)
|
2012-08-31 23:26:04 +00:00
|
|
|
{
|
2012-09-07 17:58:36 +00:00
|
|
|
struct dive *dive = dive_from_path(path);
|
2012-08-31 23:26:04 +00:00
|
|
|
|
|
|
|
edit_multi_dive_info(dive);
|
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static void edit_dive_when_cb(GtkWidget *menuitem, struct dive *dive)
|
2012-12-10 21:16:17 +00:00
|
|
|
{
|
|
|
|
GtkWidget *dialog, *cal, *h, *m;
|
|
|
|
timestamp_t when;
|
|
|
|
|
|
|
|
guint yval, mval, dval;
|
|
|
|
int success;
|
|
|
|
struct tm tm;
|
|
|
|
|
|
|
|
if (!dive)
|
|
|
|
return;
|
|
|
|
|
|
|
|
when = dive->when;
|
|
|
|
utc_mkdate(when, &tm);
|
|
|
|
dialog = create_date_time_widget(&tm, &cal, &h, &m);
|
|
|
|
|
|
|
|
gtk_widget_show_all(dialog);
|
|
|
|
success = gtk_dialog_run(GTK_DIALOG(dialog)) == GTK_RESPONSE_ACCEPT;
|
|
|
|
if (!success) {
|
|
|
|
gtk_widget_destroy(dialog);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
memset(&tm, 0, sizeof(tm));
|
|
|
|
gtk_calendar_get_date(GTK_CALENDAR(cal), &yval, &mval, &dval);
|
|
|
|
tm.tm_year = yval;
|
|
|
|
tm.tm_mon = mval;
|
|
|
|
tm.tm_mday = dval;
|
|
|
|
tm.tm_hour = gtk_spin_button_get_value(GTK_SPIN_BUTTON(h));
|
|
|
|
tm.tm_min = gtk_spin_button_get_value(GTK_SPIN_BUTTON(m));
|
|
|
|
|
|
|
|
gtk_widget_destroy(dialog);
|
|
|
|
when = utc_mktime(&tm);
|
|
|
|
if (dive->when != when) {
|
2012-12-16 06:40:16 +00:00
|
|
|
/* if this is the only dive in the trip, just change the trip time */
|
|
|
|
if (dive->divetrip && dive->divetrip->nrdives == 1)
|
|
|
|
dive->divetrip->when = when;
|
|
|
|
/* if this is suddenly before the start of the trip, remove it from the trip */
|
|
|
|
else if (dive->divetrip && dive->divetrip->when > when)
|
|
|
|
remove_dive_from_trip(dive);
|
|
|
|
else if (find_matching_trip(when) != dive->divetrip)
|
|
|
|
remove_dive_from_trip(dive);
|
2012-12-10 21:16:17 +00:00
|
|
|
dive->when = when;
|
|
|
|
mark_divelist_changed(TRUE);
|
|
|
|
report_dives(FALSE, FALSE);
|
|
|
|
dive_list_update_dives();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-01-17 18:59:43 +00:00
|
|
|
#if HAVE_OSM_GPS_MAP
|
2013-01-15 21:45:18 +00:00
|
|
|
static void show_gps_location_cb(GtkWidget *menuitem, struct dive *dive)
|
|
|
|
{
|
2013-01-28 15:54:30 +00:00
|
|
|
show_gps_location(dive, NULL);
|
2013-01-15 21:45:18 +00:00
|
|
|
}
|
2013-01-17 18:59:43 +00:00
|
|
|
#endif
|
2013-01-15 21:45:18 +00:00
|
|
|
|
2013-01-23 03:52:07 +00:00
|
|
|
gboolean icon_click_cb(GtkWidget *w, GdkEventButton *event, gpointer data)
|
|
|
|
{
|
|
|
|
#if HAVE_OSM_GPS_MAP
|
2013-01-23 15:48:59 +00:00
|
|
|
GtkTreePath *path = NULL;
|
2013-01-23 03:52:07 +00:00
|
|
|
GtkTreeIter iter;
|
|
|
|
GtkTreeViewColumn *col;
|
|
|
|
int idx;
|
|
|
|
struct dive *dive;
|
|
|
|
|
|
|
|
/* left click ? */
|
2013-01-23 15:48:59 +00:00
|
|
|
if (event->button == 1 &&
|
|
|
|
gtk_tree_view_get_path_at_pos(GTK_TREE_VIEW(dive_list.tree_view), event->x, event->y, &path, &col, NULL, NULL)) {
|
2013-01-23 03:52:07 +00:00
|
|
|
/* is it the icon column ? (we passed the correct column in when registering the callback) */
|
|
|
|
if (col == data) {
|
|
|
|
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
|
|
|
|
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
|
|
|
|
dive = get_dive(idx);
|
2013-01-31 03:09:16 +00:00
|
|
|
if (dive && dive_has_gps_location(dive))
|
2013-01-28 15:54:30 +00:00
|
|
|
show_gps_location(dive, NULL);
|
2013-01-23 03:52:07 +00:00
|
|
|
}
|
2013-01-23 15:48:59 +00:00
|
|
|
if (path)
|
|
|
|
gtk_tree_path_free(path);
|
2013-01-23 03:52:07 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/* keep processing the click */
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
2013-02-01 08:28:33 +00:00
|
|
|
static void save_as_cb(GtkWidget *menuitem, struct dive *dive)
|
|
|
|
{
|
|
|
|
GtkWidget *dialog;
|
|
|
|
char *filename = NULL;
|
|
|
|
|
|
|
|
dialog = gtk_file_chooser_dialog_new(_("Save File As"),
|
|
|
|
GTK_WINDOW(main_window),
|
|
|
|
GTK_FILE_CHOOSER_ACTION_SAVE,
|
|
|
|
GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
|
|
|
|
GTK_STOCK_SAVE, GTK_RESPONSE_ACCEPT,
|
|
|
|
NULL);
|
|
|
|
gtk_file_chooser_set_do_overwrite_confirmation(GTK_FILE_CHOOSER(dialog), TRUE);
|
|
|
|
|
|
|
|
if (gtk_dialog_run(GTK_DIALOG(dialog)) == GTK_RESPONSE_ACCEPT) {
|
|
|
|
filename = gtk_file_chooser_get_filename(GTK_FILE_CHOOSER(dialog));
|
|
|
|
}
|
|
|
|
gtk_widget_destroy(dialog);
|
|
|
|
|
|
|
|
if (filename){
|
|
|
|
set_filename(filename, TRUE);
|
|
|
|
save_dives_logic(filename, TRUE);
|
|
|
|
g_free(filename);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-08-19 03:06:04 +00:00
|
|
|
static void expand_all_cb(GtkWidget *menuitem, GtkTreeView *tree_view)
|
|
|
|
{
|
|
|
|
gtk_tree_view_expand_all(tree_view);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void collapse_all_cb(GtkWidget *menuitem, GtkTreeView *tree_view)
|
|
|
|
{
|
|
|
|
gtk_tree_view_collapse_all(tree_view);
|
|
|
|
}
|
|
|
|
|
2013-02-19 19:30:17 +00:00
|
|
|
/* Move a top-level dive into the trip above it */
|
|
|
|
static void merge_dive_into_trip_above_cb(GtkWidget *menuitem, GtkTreePath *path)
|
2012-08-31 23:26:04 +00:00
|
|
|
{
|
|
|
|
int idx;
|
2012-09-20 03:42:11 +00:00
|
|
|
struct dive *dive;
|
2013-02-19 19:30:17 +00:00
|
|
|
dive_trip_t *trip;
|
2012-08-31 23:26:04 +00:00
|
|
|
|
2013-02-19 19:30:17 +00:00
|
|
|
idx = get_path_index(path);
|
2012-08-31 23:26:04 +00:00
|
|
|
dive = get_dive(idx);
|
|
|
|
|
2013-02-19 19:30:17 +00:00
|
|
|
/* Needs to be a dive, and at the top level */
|
|
|
|
if (!dive || dive->divetrip)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Find the "trip above". */
|
2012-09-06 19:43:57 +00:00
|
|
|
for (;;) {
|
2013-02-19 19:30:17 +00:00
|
|
|
if (!gtk_tree_path_prev(path))
|
|
|
|
return;
|
|
|
|
idx = get_path_index(path);
|
|
|
|
trip = find_trip_by_idx(idx);
|
|
|
|
if (trip)
|
2012-09-06 19:43:57 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2013-02-19 19:30:17 +00:00
|
|
|
add_dive_to_trip(dive, trip);
|
|
|
|
if (dive->selected) {
|
|
|
|
for_each_dive(idx, dive) {
|
|
|
|
if (!dive->selected)
|
|
|
|
continue;
|
|
|
|
add_dive_to_trip(dive, trip);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
trip->expanded = 1;
|
|
|
|
dive_list_update_dives();
|
|
|
|
mark_divelist_changed(TRUE);
|
2012-08-31 23:26:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void insert_trip_before_cb(GtkWidget *menuitem, GtkTreePath *path)
|
|
|
|
{
|
2013-02-19 19:06:41 +00:00
|
|
|
int idx;
|
|
|
|
struct dive *dive;
|
|
|
|
dive_trip_t *trip;
|
|
|
|
|
|
|
|
idx = get_path_index(path);
|
|
|
|
dive = get_dive(idx);
|
|
|
|
if (!dive)
|
|
|
|
return;
|
|
|
|
trip = create_and_hookup_trip_from_dive(dive);
|
|
|
|
if (dive->selected) {
|
|
|
|
for_each_dive(idx, dive) {
|
|
|
|
if (!dive->selected)
|
|
|
|
continue;
|
|
|
|
add_dive_to_trip(dive, trip);
|
2012-09-07 17:58:36 +00:00
|
|
|
}
|
|
|
|
}
|
2013-02-19 19:06:41 +00:00
|
|
|
trip->expanded = 1;
|
|
|
|
dive_list_update_dives();
|
2012-09-13 18:43:20 +00:00
|
|
|
mark_divelist_changed(TRUE);
|
2012-08-31 23:26:04 +00:00
|
|
|
}
|
|
|
|
|
2012-09-05 20:31:56 +00:00
|
|
|
static void remove_from_trip_cb(GtkWidget *menuitem, GtkTreePath *path)
|
|
|
|
{
|
|
|
|
struct dive *dive;
|
|
|
|
int idx;
|
|
|
|
|
2013-02-19 18:19:40 +00:00
|
|
|
idx = get_path_index(path);
|
2013-01-29 21:10:46 +00:00
|
|
|
if (idx < 0)
|
2012-09-05 20:31:56 +00:00
|
|
|
return;
|
|
|
|
dive = get_dive(idx);
|
|
|
|
|
2013-02-19 18:19:40 +00:00
|
|
|
if (dive->selected) {
|
|
|
|
/* remove all the selected dives */
|
|
|
|
for_each_dive(idx, dive) {
|
|
|
|
if (!dive->selected)
|
|
|
|
continue;
|
|
|
|
remove_dive_from_trip(dive);
|
|
|
|
}
|
2012-09-05 20:31:56 +00:00
|
|
|
} else {
|
|
|
|
/* just remove the dive the mouse pointer is on */
|
2013-02-19 18:19:40 +00:00
|
|
|
remove_dive_from_trip(dive);
|
2012-09-05 20:31:56 +00:00
|
|
|
}
|
2013-02-19 18:19:40 +00:00
|
|
|
dive_list_update_dives();
|
2012-09-13 18:43:20 +00:00
|
|
|
mark_divelist_changed(TRUE);
|
2012-09-05 20:31:56 +00:00
|
|
|
}
|
|
|
|
|
2013-02-19 17:57:54 +00:00
|
|
|
static void remove_trip(GtkTreePath *trippath)
|
2012-08-31 23:26:04 +00:00
|
|
|
{
|
2013-02-19 17:57:54 +00:00
|
|
|
int idx, i;
|
|
|
|
dive_trip_t *trip;
|
2012-09-20 03:42:11 +00:00
|
|
|
struct dive *dive;
|
2012-08-31 23:26:04 +00:00
|
|
|
|
2013-02-19 18:19:40 +00:00
|
|
|
idx = get_path_index(trippath);
|
2013-02-19 17:57:54 +00:00
|
|
|
trip = find_trip_by_idx(idx);
|
|
|
|
if (!trip)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for_each_dive(i, dive) {
|
|
|
|
if (dive->divetrip != trip)
|
|
|
|
continue;
|
2012-11-10 18:51:03 +00:00
|
|
|
remove_dive_from_trip(dive);
|
2012-08-31 23:26:04 +00:00
|
|
|
}
|
2013-02-19 17:57:54 +00:00
|
|
|
|
|
|
|
dive_list_update_dives();
|
|
|
|
|
2012-09-04 03:36:46 +00:00
|
|
|
#ifdef DEBUG_TRIP
|
|
|
|
dump_trip_list();
|
|
|
|
#endif
|
2012-08-31 23:26:04 +00:00
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static void remove_trip_cb(GtkWidget *menuitem, GtkTreePath *trippath)
|
2012-09-03 04:48:30 +00:00
|
|
|
{
|
2012-10-23 15:39:45 +00:00
|
|
|
int success;
|
|
|
|
GtkWidget *dialog;
|
|
|
|
|
|
|
|
dialog = gtk_dialog_new_with_buttons(_("Remove Trip"),
|
|
|
|
GTK_WINDOW(main_window),
|
|
|
|
GTK_DIALOG_DESTROY_WITH_PARENT,
|
|
|
|
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
|
|
|
|
GTK_STOCK_CANCEL, GTK_RESPONSE_REJECT,
|
|
|
|
NULL);
|
|
|
|
|
|
|
|
gtk_widget_show_all(dialog);
|
|
|
|
success = gtk_dialog_run(GTK_DIALOG(dialog)) == GTK_RESPONSE_ACCEPT;
|
|
|
|
gtk_widget_destroy(dialog);
|
|
|
|
if (!success)
|
|
|
|
return;
|
|
|
|
|
2013-02-19 17:57:54 +00:00
|
|
|
remove_trip(trippath);
|
2012-09-13 18:43:20 +00:00
|
|
|
mark_divelist_changed(TRUE);
|
2012-09-03 04:48:30 +00:00
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static void merge_trips_cb(GtkWidget *menuitem, GtkTreePath *trippath)
|
2012-08-31 23:26:04 +00:00
|
|
|
{
|
|
|
|
GtkTreePath *prevpath;
|
2012-12-04 20:48:32 +00:00
|
|
|
GtkTreeIter thistripiter, prevtripiter;
|
2012-09-03 04:46:48 +00:00
|
|
|
GtkTreeModel *tm = MODEL(dive_list);
|
2012-12-04 20:48:32 +00:00
|
|
|
dive_trip_t *thistrip, *prevtrip;
|
2012-09-20 00:35:52 +00:00
|
|
|
timestamp_t when;
|
2012-08-31 23:26:04 +00:00
|
|
|
|
|
|
|
/* this only gets called when we are on a trip and there is another trip right before */
|
|
|
|
prevpath = gtk_tree_path_copy(trippath);
|
|
|
|
gtk_tree_path_prev(prevpath);
|
|
|
|
gtk_tree_model_get_iter(tm, &thistripiter, trippath);
|
|
|
|
gtk_tree_model_get(tm, &thistripiter, DIVE_DATE, &when, -1);
|
2012-12-04 20:48:32 +00:00
|
|
|
thistrip = find_matching_trip(when);
|
2012-08-31 23:26:04 +00:00
|
|
|
gtk_tree_model_get_iter(tm, &prevtripiter, prevpath);
|
|
|
|
gtk_tree_model_get(tm, &prevtripiter, DIVE_DATE, &when, -1);
|
|
|
|
prevtrip = find_matching_trip(when);
|
2012-12-04 20:48:32 +00:00
|
|
|
/* move dives from trip */
|
2012-12-06 21:04:37 +00:00
|
|
|
assert(thistrip != prevtrip);
|
2012-12-04 20:48:32 +00:00
|
|
|
while (thistrip->dives)
|
|
|
|
add_dive_to_trip(thistrip->dives, prevtrip);
|
|
|
|
dive_list_update_dives();
|
2012-09-13 18:43:20 +00:00
|
|
|
mark_divelist_changed(TRUE);
|
2012-08-31 23:26:04 +00:00
|
|
|
}
|
|
|
|
|
2012-09-28 22:16:31 +00:00
|
|
|
/* this implements the mechanics of removing the dive from the table,
|
|
|
|
* but doesn't deal with updating dive trips, etc */
|
2012-11-11 06:49:19 +00:00
|
|
|
void delete_single_dive(int idx)
|
2012-09-07 20:09:29 +00:00
|
|
|
{
|
2012-09-28 22:16:31 +00:00
|
|
|
int i;
|
|
|
|
struct dive *dive = get_dive(idx);
|
|
|
|
if (!dive)
|
|
|
|
return; /* this should never happen */
|
2012-11-10 18:51:03 +00:00
|
|
|
remove_dive_from_trip(dive);
|
2012-09-07 20:09:29 +00:00
|
|
|
for (i = idx; i < dive_table.nr - 1; i++)
|
|
|
|
dive_table.dives[i] = dive_table.dives[i+1];
|
2013-01-23 21:19:58 +00:00
|
|
|
dive_table.dives[--dive_table.nr] = NULL;
|
2012-09-20 22:31:39 +00:00
|
|
|
if (dive->selected)
|
|
|
|
amount_selected--;
|
Small changes in the memory management when dive-merging
This patch makes a couple of modifications:
1) divelist.c:delete_single_dive() now tries to free all memory associated
with a dive, such as the string values for divemaster, location, notes &
etc.
2) dive.c:merge_text(), now always makes a copy in memory for the returned
string - either combined or one of the two which are passed
to the function.
The reason for the above two changes is that when (say) importing the same
data over and over, technically a merge will occur for the contained dives,
but mapped pointers can go out of scope.
main.c:report_dives() calls try_to_merge() and if succeeds the two dives
that were merged are deleted from the table. when we delete a dive,
we now make sure all string data is cleared with it, but also in the actual merge
itself, which precedes, copies of the merged texts are made (with merge_text()),
so that the new, resulted dive has his own text allocations.
Signed-off-by: Lubomir I. Ivanov <neolit123@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-24 01:53:25 +00:00
|
|
|
/* free all allocations */
|
2012-11-24 02:51:27 +00:00
|
|
|
free(dive->dc.sample);
|
Small changes in the memory management when dive-merging
This patch makes a couple of modifications:
1) divelist.c:delete_single_dive() now tries to free all memory associated
with a dive, such as the string values for divemaster, location, notes &
etc.
2) dive.c:merge_text(), now always makes a copy in memory for the returned
string - either combined or one of the two which are passed
to the function.
The reason for the above two changes is that when (say) importing the same
data over and over, technically a merge will occur for the contained dives,
but mapped pointers can go out of scope.
main.c:report_dives() calls try_to_merge() and if succeeds the two dives
that were merged are deleted from the table. when we delete a dive,
we now make sure all string data is cleared with it, but also in the actual merge
itself, which precedes, copies of the merged texts are made (with merge_text()),
so that the new, resulted dive has his own text allocations.
Signed-off-by: Lubomir I. Ivanov <neolit123@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-24 01:53:25 +00:00
|
|
|
if (dive->location)
|
|
|
|
free((void *)dive->location);
|
|
|
|
if (dive->notes)
|
|
|
|
free((void *)dive->notes);
|
|
|
|
if (dive->divemaster)
|
|
|
|
free((void *)dive->divemaster);
|
|
|
|
if (dive->buddy)
|
|
|
|
free((void *)dive->buddy);
|
|
|
|
if (dive->suit)
|
|
|
|
free((void *)dive->suit);
|
2012-09-07 20:09:29 +00:00
|
|
|
free(dive);
|
2012-09-22 22:03:19 +00:00
|
|
|
}
|
|
|
|
|
2012-11-11 06:49:19 +00:00
|
|
|
void add_single_dive(int idx, struct dive *dive)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
dive_table.nr++;
|
2012-11-11 10:00:27 +00:00
|
|
|
if (dive->selected)
|
|
|
|
amount_selected++;
|
2012-11-11 06:49:19 +00:00
|
|
|
for (i = idx; i < dive_table.nr ; i++) {
|
|
|
|
struct dive *tmp = dive_table.dives[i];
|
|
|
|
dive_table.dives[i] = dive;
|
|
|
|
dive = tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-09-28 22:16:31 +00:00
|
|
|
static gboolean restore_node_state(GtkTreeModel *model, GtkTreePath *path, GtkTreeIter *iter, gpointer data)
|
2012-09-22 22:03:19 +00:00
|
|
|
{
|
2012-09-28 22:16:31 +00:00
|
|
|
int idx;
|
|
|
|
struct dive *dive;
|
2012-12-27 00:57:12 +00:00
|
|
|
dive_trip_t *trip;
|
2012-09-28 22:16:31 +00:00
|
|
|
GtkTreeView *tree_view = GTK_TREE_VIEW(dive_list.tree_view);
|
|
|
|
GtkTreeSelection *selection = gtk_tree_view_get_selection(tree_view);
|
2012-09-23 13:28:23 +00:00
|
|
|
|
2013-02-19 15:59:18 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
|
2012-09-28 22:16:31 +00:00
|
|
|
if (idx < 0) {
|
2013-02-19 15:59:18 +00:00
|
|
|
trip = find_trip_by_idx(idx);
|
2012-12-27 00:57:12 +00:00
|
|
|
if (trip && trip->expanded)
|
2012-09-28 22:16:31 +00:00
|
|
|
gtk_tree_view_expand_row(tree_view, path, FALSE);
|
2012-12-27 00:57:12 +00:00
|
|
|
if (trip && trip->selected)
|
2012-09-28 22:16:31 +00:00
|
|
|
gtk_tree_selection_select_iter(selection, iter);
|
|
|
|
} else {
|
|
|
|
dive = get_dive(idx);
|
2012-12-27 00:57:12 +00:00
|
|
|
if (dive && dive->selected)
|
2012-09-28 22:16:31 +00:00
|
|
|
gtk_tree_selection_select_iter(selection, iter);
|
|
|
|
}
|
|
|
|
/* continue foreach */
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* restore expanded and selected state */
|
2013-02-19 21:46:37 +00:00
|
|
|
static void restore_tree_state(void)
|
2012-09-28 22:16:31 +00:00
|
|
|
{
|
|
|
|
gtk_tree_model_foreach(MODEL(dive_list), restore_node_state, NULL);
|
2012-09-22 22:03:19 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* called when multiple dives are selected and one of these is right-clicked for delete */
|
|
|
|
static void delete_selected_dives_cb(GtkWidget *menuitem, GtkTreePath *path)
|
|
|
|
{
|
2012-09-23 13:28:23 +00:00
|
|
|
int i;
|
2012-09-28 22:16:31 +00:00
|
|
|
struct dive *dive;
|
2012-10-23 15:39:45 +00:00
|
|
|
int success;
|
|
|
|
GtkWidget *dialog;
|
|
|
|
char *dialog_title;
|
|
|
|
|
|
|
|
if (!amount_selected)
|
|
|
|
return;
|
|
|
|
if (amount_selected == 1)
|
|
|
|
dialog_title = _("Delete dive");
|
|
|
|
else
|
|
|
|
dialog_title = _("Delete dives");
|
|
|
|
|
|
|
|
dialog = gtk_dialog_new_with_buttons(dialog_title,
|
|
|
|
GTK_WINDOW(main_window),
|
|
|
|
GTK_DIALOG_DESTROY_WITH_PARENT,
|
|
|
|
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
|
|
|
|
GTK_STOCK_CANCEL, GTK_RESPONSE_REJECT,
|
|
|
|
NULL);
|
|
|
|
|
|
|
|
gtk_widget_show_all(dialog);
|
|
|
|
success = gtk_dialog_run(GTK_DIALOG(dialog)) == GTK_RESPONSE_ACCEPT;
|
|
|
|
gtk_widget_destroy(dialog);
|
|
|
|
if (!success)
|
|
|
|
return;
|
2012-09-23 13:28:23 +00:00
|
|
|
|
2012-09-28 22:16:31 +00:00
|
|
|
/* walk the dive list in chronological order */
|
|
|
|
for (i = 0; i < dive_table.nr; i++) {
|
|
|
|
dive = get_dive(i);
|
|
|
|
if (!dive)
|
|
|
|
continue;
|
2012-11-17 21:04:31 +00:00
|
|
|
if (!dive->selected)
|
|
|
|
continue;
|
2012-09-28 22:16:31 +00:00
|
|
|
/* now remove the dive from the table and free it. also move the iterator back,
|
|
|
|
* so that we don't skip a dive */
|
|
|
|
delete_single_dive(i);
|
|
|
|
i--;
|
|
|
|
}
|
2012-09-22 22:03:19 +00:00
|
|
|
dive_list_update_dives();
|
2012-09-29 11:27:06 +00:00
|
|
|
|
|
|
|
/* if no dives are selected at this point clear the display widgets */
|
|
|
|
if (!amount_selected) {
|
|
|
|
selected_dive = 0;
|
|
|
|
process_selected_dives();
|
|
|
|
clear_stats_widgets();
|
|
|
|
clear_equipment_widgets();
|
|
|
|
show_dive_info(NULL);
|
|
|
|
}
|
2012-09-22 22:03:19 +00:00
|
|
|
mark_divelist_changed(TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* this gets called with path pointing to a dive, either in the top level
|
|
|
|
* or as part of a trip */
|
|
|
|
static void delete_dive_cb(GtkWidget *menuitem, GtkTreePath *path)
|
|
|
|
{
|
2012-09-28 22:16:31 +00:00
|
|
|
int idx;
|
|
|
|
GtkTreeIter iter;
|
2012-10-23 15:39:45 +00:00
|
|
|
int success;
|
|
|
|
GtkWidget *dialog;
|
|
|
|
|
|
|
|
dialog = gtk_dialog_new_with_buttons(_("Delete dive"),
|
|
|
|
GTK_WINDOW(main_window),
|
|
|
|
GTK_DIALOG_DESTROY_WITH_PARENT,
|
|
|
|
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
|
|
|
|
GTK_STOCK_CANCEL, GTK_RESPONSE_REJECT,
|
|
|
|
NULL);
|
|
|
|
|
|
|
|
gtk_widget_show_all(dialog);
|
|
|
|
success = gtk_dialog_run(GTK_DIALOG(dialog)) == GTK_RESPONSE_ACCEPT;
|
|
|
|
gtk_widget_destroy(dialog);
|
|
|
|
if (!success)
|
|
|
|
return;
|
2012-09-22 22:03:19 +00:00
|
|
|
|
2012-09-28 22:16:31 +00:00
|
|
|
if (!gtk_tree_model_get_iter(MODEL(dive_list), &iter, path))
|
|
|
|
return;
|
2012-09-22 22:03:19 +00:00
|
|
|
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
|
2012-09-28 22:16:31 +00:00
|
|
|
delete_single_dive(idx);
|
|
|
|
dive_list_update_dives();
|
2012-09-13 18:43:20 +00:00
|
|
|
mark_divelist_changed(TRUE);
|
2012-09-07 20:09:29 +00:00
|
|
|
}
|
|
|
|
|
2012-11-11 06:49:19 +00:00
|
|
|
static void merge_dive_index(int i, struct dive *a)
|
|
|
|
{
|
|
|
|
struct dive *b = get_dive(i+1);
|
|
|
|
struct dive *res;
|
|
|
|
|
Add special download modes to force updates from the divecomputer
This will hopefully not be something we need often, but if we improve
support for a divecomputer (either in libdivecomputer or in our native
Uemis code or even in the way we handle (and potentially discard) events),
then it is extremely useful to be able to say "re-download things
from the divecomputer and for things that were not edited in Subsurface,
don't try to merge the data (which gives BAD results if for example you
fixed a bug in the depth calculation in libdivecomputer) but instead
simply take the samples, the events and some of the other unedited data
straight from the download".
This commit implements just that - a "force download" checkbox in the
download dialog that makes us reimport all dives from the dive computer,
even the ones we already have, and an "always prefer downloaded dive"
checkbox that then tells Subsurface not to merge but simply to take the
data from the downloaded dive - without overwriting the things we have
already edited in Subsurface (like location, buddy, equipment, etc).
This, as a precaution, refuses to merge dives that don't have identical
start times. So if you have edited the date / time of a dive or if you
have previously merged your dive with a different dive computer (and
therefore modified samples and events) you are out of luck.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-11-11 13:29:26 +00:00
|
|
|
res = merge_dives(a, b, b->when - a->when, FALSE);
|
2012-11-11 06:49:19 +00:00
|
|
|
if (!res)
|
|
|
|
return;
|
|
|
|
|
|
|
|
add_single_dive(i, res);
|
|
|
|
delete_single_dive(i+1);
|
|
|
|
delete_single_dive(i+1);
|
|
|
|
|
|
|
|
dive_list_update_dives();
|
|
|
|
mark_divelist_changed(TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void merge_dives_cb(GtkWidget *menuitem, void *unused)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct dive *dive;
|
|
|
|
|
|
|
|
for_each_dive(i, dive) {
|
|
|
|
if (dive->selected) {
|
|
|
|
merge_dive_index(i, dive);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Called if there are exactly two selected dives and the dive at idx is one of them */
|
|
|
|
static void add_dive_merge_label(int idx, GtkMenuShell *menu)
|
|
|
|
{
|
2012-11-11 14:02:50 +00:00
|
|
|
struct dive *a, *b;
|
2012-11-11 06:49:19 +00:00
|
|
|
GtkWidget *menuitem;
|
|
|
|
|
|
|
|
/* The other selected dive must be next to it.. */
|
2012-11-11 14:02:50 +00:00
|
|
|
a = get_dive(idx);
|
|
|
|
b = get_dive(idx+1);
|
|
|
|
if (!b || !b->selected) {
|
|
|
|
b = a;
|
|
|
|
a = get_dive(idx-1);
|
|
|
|
if (!a || !a->selected)
|
|
|
|
return;
|
|
|
|
}
|
2012-11-11 06:49:19 +00:00
|
|
|
|
|
|
|
/* .. and they had better be in the same dive trip */
|
2012-11-11 14:02:50 +00:00
|
|
|
if (a->divetrip != b->divetrip)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* .. and if the surface interval is excessive, you must be kidding us */
|
2013-02-09 15:12:30 +00:00
|
|
|
if (b->when > a->when + a->duration.seconds + 30*60)
|
2012-11-11 06:49:19 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
/* If so, we can add a "merge dive" menu entry */
|
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Merge dives"));
|
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(merge_dives_cb), NULL);
|
|
|
|
gtk_menu_shell_append(menu, menuitem);
|
|
|
|
}
|
|
|
|
|
2012-08-31 23:26:04 +00:00
|
|
|
static void popup_divelist_menu(GtkTreeView *tree_view, GtkTreeModel *model, int button, GdkEventButton *event)
|
2012-06-27 20:11:54 +00:00
|
|
|
{
|
2012-07-29 10:15:04 +00:00
|
|
|
GtkWidget *menu, *menuitem, *image;
|
2012-10-11 00:42:59 +00:00
|
|
|
char editplurallabel[] = N_("Edit dives");
|
|
|
|
char editsinglelabel[] = N_("Edit dive");
|
|
|
|
char *editlabel;
|
|
|
|
char deleteplurallabel[] = N_("Delete dives");
|
|
|
|
char deletesinglelabel[] = N_("Delete dive");
|
|
|
|
char *deletelabel;
|
2012-09-04 03:51:09 +00:00
|
|
|
GtkTreePath *path, *prevpath, *nextpath;
|
|
|
|
GtkTreeIter iter, previter, nextiter;
|
|
|
|
int idx, previdx, nextidx;
|
2012-08-31 23:26:04 +00:00
|
|
|
struct dive *dive;
|
|
|
|
|
2013-01-29 18:06:08 +00:00
|
|
|
if (!event || !gtk_tree_view_get_path_at_pos(tree_view, event->x, event->y, &path, NULL, NULL, NULL))
|
2012-08-31 23:26:04 +00:00
|
|
|
return;
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_model_get_iter(MODEL(dive_list), &iter, path);
|
|
|
|
gtk_tree_model_get(MODEL(dive_list), &iter, DIVE_INDEX, &idx, -1);
|
2012-06-27 20:11:54 +00:00
|
|
|
|
|
|
|
menu = gtk_menu_new();
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_image_menu_item_new_with_label(_("Add dive"));
|
2012-07-29 10:15:04 +00:00
|
|
|
image = gtk_image_new_from_stock(GTK_STOCK_ADD, GTK_ICON_SIZE_MENU);
|
|
|
|
gtk_image_menu_item_set_image(GTK_IMAGE_MENU_ITEM(menuitem), image);
|
2012-08-13 21:42:55 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(add_dive_cb), NULL);
|
2012-06-27 20:11:54 +00:00
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
2012-08-31 23:26:04 +00:00
|
|
|
|
|
|
|
if (idx < 0) {
|
|
|
|
/* mouse pointer is on a trip summary entry */
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Edit Trip Summary"));
|
2012-08-31 23:26:04 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_trip_cb), path);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
prevpath = gtk_tree_path_copy(path);
|
|
|
|
if (gtk_tree_path_prev(prevpath) &&
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_model_get_iter(MODEL(dive_list), &previter, prevpath)) {
|
|
|
|
gtk_tree_model_get(MODEL(dive_list), &previter, DIVE_INDEX, &previdx, -1);
|
2012-08-31 23:26:04 +00:00
|
|
|
if (previdx < 0) {
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Merge trip with trip above"));
|
2012-08-31 23:26:04 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(merge_trips_cb), path);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
}
|
|
|
|
}
|
2012-09-04 03:51:09 +00:00
|
|
|
nextpath = gtk_tree_path_copy(path);
|
|
|
|
gtk_tree_path_next(nextpath);
|
|
|
|
if (gtk_tree_model_get_iter(MODEL(dive_list), &nextiter, nextpath)) {
|
|
|
|
gtk_tree_model_get(MODEL(dive_list), &nextiter, DIVE_INDEX, &nextidx, -1);
|
|
|
|
if (nextidx < 0) {
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Merge trip with trip below"));
|
2012-09-04 03:51:09 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(merge_trips_cb), nextpath);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
}
|
|
|
|
}
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Remove Trip"));
|
2012-08-31 23:26:04 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(remove_trip_cb), path);
|
2012-08-15 22:21:34 +00:00
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
2012-08-31 23:26:04 +00:00
|
|
|
} else {
|
|
|
|
dive = get_dive(idx);
|
2012-09-22 20:31:55 +00:00
|
|
|
/* if we right click on selected dive(s), edit or delete those */
|
2012-08-31 23:26:04 +00:00
|
|
|
if (dive->selected) {
|
2012-09-22 20:31:55 +00:00
|
|
|
if (amount_selected == 1) {
|
2012-10-11 00:42:59 +00:00
|
|
|
deletelabel = _(deletesinglelabel);
|
|
|
|
editlabel = _(editsinglelabel);
|
2012-12-10 21:16:17 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Edit dive date/time"));
|
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_dive_when_cb), dive);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
2012-10-11 00:42:59 +00:00
|
|
|
} else {
|
|
|
|
deletelabel = _(deleteplurallabel);
|
|
|
|
editlabel = _(editplurallabel);
|
2012-09-22 20:31:55 +00:00
|
|
|
}
|
2013-02-01 08:28:33 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Save as"));
|
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(save_as_cb), dive);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
|
2012-09-22 20:31:55 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(deletelabel);
|
2012-09-22 22:03:19 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(delete_selected_dives_cb), path);
|
2012-09-22 20:31:55 +00:00
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
|
2012-08-31 23:26:04 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(editlabel);
|
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_selected_dives_cb), NULL);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
2012-11-11 06:49:19 +00:00
|
|
|
|
|
|
|
/* Two contiguous selected dives? */
|
|
|
|
if (amount_selected == 2)
|
|
|
|
add_dive_merge_label(idx, GTK_MENU_SHELL(menu));
|
2012-08-31 23:26:04 +00:00
|
|
|
} else {
|
2012-12-10 21:16:17 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Edit dive date/time"));
|
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_dive_when_cb), dive);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
|
2012-10-11 00:42:59 +00:00
|
|
|
deletelabel = _(deletesinglelabel);
|
2012-09-22 20:31:55 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(deletelabel);
|
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(delete_dive_cb), path);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
|
2012-10-11 00:42:59 +00:00
|
|
|
editlabel = _(editsinglelabel);
|
2012-08-31 23:26:04 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(editlabel);
|
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(edit_dive_from_path_cb), path);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
}
|
2013-01-17 18:59:43 +00:00
|
|
|
#if HAVE_OSM_GPS_MAP
|
2013-01-16 20:31:09 +00:00
|
|
|
/* Only offer to show on map if it has a location. */
|
2013-01-31 03:09:16 +00:00
|
|
|
if (dive_has_gps_location(dive)) {
|
2013-01-16 20:31:09 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Show in map"));
|
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(show_gps_location_cb), dive);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
}
|
2013-01-17 18:59:43 +00:00
|
|
|
#endif
|
2012-08-31 23:26:04 +00:00
|
|
|
/* only offer trip editing options when we are displaying the tree model */
|
|
|
|
if (dive_list.model == dive_list.treemodel) {
|
2012-09-10 22:31:01 +00:00
|
|
|
int depth = gtk_tree_path_get_depth(path);
|
|
|
|
int *indices = gtk_tree_path_get_indices(path);
|
2012-09-06 19:43:57 +00:00
|
|
|
/* top level dive or child dive that is not the first child */
|
2012-08-31 23:26:04 +00:00
|
|
|
if (depth == 1 || indices[1] > 0) {
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Create new trip above"));
|
2012-08-31 23:26:04 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(insert_trip_before_cb), path);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
}
|
2012-09-06 19:43:57 +00:00
|
|
|
prevpath = gtk_tree_path_copy(path);
|
|
|
|
/* top level dive with a trip right before it */
|
|
|
|
if (depth == 1 &&
|
|
|
|
gtk_tree_path_prev(prevpath) &&
|
|
|
|
gtk_tree_model_get_iter(MODEL(dive_list), &previter, prevpath) &&
|
|
|
|
gtk_tree_model_iter_n_children(model, &previter)) {
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Add to trip above"));
|
2012-09-06 19:43:57 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(merge_dive_into_trip_above_cb), path);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
}
|
2012-08-31 23:26:04 +00:00
|
|
|
if (DIVE_IN_TRIP(dive)) {
|
2012-09-05 20:31:56 +00:00
|
|
|
if (dive->selected && amount_selected > 1)
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Remove selected dives from trip"));
|
2012-09-05 20:31:56 +00:00
|
|
|
else
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Remove dive from trip"));
|
2012-08-31 23:26:04 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(remove_from_trip_cb), path);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
|
|
|
}
|
|
|
|
}
|
2012-08-15 22:21:34 +00:00
|
|
|
}
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Expand all"));
|
2012-08-19 03:06:04 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(expand_all_cb), tree_view);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
2013-01-15 21:45:18 +00:00
|
|
|
|
2012-10-11 00:42:59 +00:00
|
|
|
menuitem = gtk_menu_item_new_with_label(_("Collapse all"));
|
2012-08-19 03:06:04 +00:00
|
|
|
g_signal_connect(menuitem, "activate", G_CALLBACK(collapse_all_cb), tree_view);
|
|
|
|
gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);
|
2013-01-15 21:45:18 +00:00
|
|
|
|
2012-06-27 20:11:54 +00:00
|
|
|
gtk_widget_show_all(menu);
|
|
|
|
|
|
|
|
gtk_menu_popup(GTK_MENU(menu), NULL, NULL, NULL, NULL,
|
|
|
|
button, gtk_get_current_event_time());
|
|
|
|
}
|
|
|
|
|
2012-08-13 21:42:55 +00:00
|
|
|
static void popup_menu_cb(GtkTreeView *tree_view, gpointer userdata)
|
2012-06-27 20:11:54 +00:00
|
|
|
{
|
2012-09-03 04:46:48 +00:00
|
|
|
popup_divelist_menu(tree_view, MODEL(dive_list), 0, NULL);
|
2012-06-27 20:11:54 +00:00
|
|
|
}
|
|
|
|
|
2012-08-13 21:42:55 +00:00
|
|
|
static gboolean button_press_cb(GtkWidget *treeview, GdkEventButton *event, gpointer userdata)
|
2012-06-27 20:11:54 +00:00
|
|
|
{
|
|
|
|
/* Right-click? Bring up the menu */
|
|
|
|
if (event->type == GDK_BUTTON_PRESS && event->button == 3) {
|
2012-09-03 04:46:48 +00:00
|
|
|
popup_divelist_menu(GTK_TREE_VIEW(treeview), MODEL(dive_list), 3, event);
|
2012-06-27 20:11:54 +00:00
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
2013-02-20 07:50:55 +00:00
|
|
|
/* make sure 'path' is shown in the divelist widget; since set_cursor changes the
|
|
|
|
* selection to be only 'path' we need to let our selection handling callbacks know
|
|
|
|
* that we didn't really mean this */
|
2013-01-31 22:40:54 +00:00
|
|
|
static void scroll_to_path(GtkTreePath *path)
|
|
|
|
{
|
2013-02-20 07:50:55 +00:00
|
|
|
GtkTreeSelection *selection;
|
|
|
|
|
2013-01-31 22:40:54 +00:00
|
|
|
gtk_tree_view_expand_to_path(GTK_TREE_VIEW(dive_list.tree_view), path);
|
|
|
|
gtk_tree_view_scroll_to_cell(GTK_TREE_VIEW(dive_list.tree_view), path, NULL, FALSE, 0, 0);
|
2013-02-20 07:50:55 +00:00
|
|
|
in_set_cursor = TRUE;
|
2013-01-31 22:40:54 +00:00
|
|
|
gtk_tree_view_set_cursor(GTK_TREE_VIEW(dive_list.tree_view), path, NULL, FALSE);
|
2013-02-20 07:50:55 +00:00
|
|
|
in_set_cursor = FALSE;
|
|
|
|
selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
|
|
|
|
gtk_tree_model_foreach(MODEL(dive_list), set_selected, selection);
|
|
|
|
|
2013-01-31 22:40:54 +00:00
|
|
|
}
|
|
|
|
|
2012-08-13 21:53:07 +00:00
|
|
|
/* we need to have a temporary copy of the selected dives while
|
|
|
|
switching model as the selection_cb function keeps getting called
|
2012-08-13 22:07:38 +00:00
|
|
|
when gtk_tree_selection_select_path is called. We also need to
|
|
|
|
keep copies of the sort order so we can restore that as well after
|
|
|
|
switching models. */
|
|
|
|
static gboolean second_call = FALSE;
|
|
|
|
static GtkSortType sortorder[] = { [0 ... DIVELIST_COLUMNS - 1] = GTK_SORT_DESCENDING, };
|
2012-12-29 06:04:43 +00:00
|
|
|
static int lastcol = DIVE_NR;
|
2012-08-13 21:53:07 +00:00
|
|
|
|
|
|
|
/* Check if this dive was selected previously and select it again in the new model;
|
|
|
|
* This is used after we switch models to maintain consistent selections.
|
|
|
|
* We always return FALSE to iterate through all dives */
|
2012-08-20 12:48:07 +00:00
|
|
|
static gboolean set_selected(GtkTreeModel *model, GtkTreePath *path,
|
2012-08-13 21:53:07 +00:00
|
|
|
GtkTreeIter *iter, gpointer data)
|
|
|
|
{
|
|
|
|
GtkTreeSelection *selection = GTK_TREE_SELECTION(data);
|
2012-08-20 12:48:07 +00:00
|
|
|
int idx, selected;
|
|
|
|
struct dive *dive;
|
2012-08-13 21:53:07 +00:00
|
|
|
|
2013-01-31 22:40:54 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
|
2012-08-20 12:48:07 +00:00
|
|
|
if (idx < 0) {
|
2013-02-20 07:50:55 +00:00
|
|
|
/* this is a trip - restore its state */
|
|
|
|
dive_trip_t *trip = find_trip_by_idx(idx);
|
|
|
|
if (trip && trip->expanded)
|
|
|
|
gtk_tree_view_expand_to_path(GTK_TREE_VIEW(dive_list.tree_view), path);
|
|
|
|
if (trip && trip->selected)
|
|
|
|
gtk_tree_selection_select_path(selection, path);
|
|
|
|
} else {
|
|
|
|
dive = get_dive(idx);
|
|
|
|
selected = dive && dive->selected;
|
|
|
|
if (selected) {
|
|
|
|
gtk_tree_view_expand_to_path(GTK_TREE_VIEW(dive_list.tree_view), path);
|
|
|
|
gtk_tree_selection_select_path(selection, path);
|
|
|
|
}
|
2012-08-20 12:48:07 +00:00
|
|
|
}
|
2012-08-13 21:53:07 +00:00
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
2013-01-31 22:40:54 +00:00
|
|
|
static gboolean scroll_to_this(GtkTreeModel *model, GtkTreePath *path,
|
|
|
|
GtkTreeIter *iter, gpointer data)
|
|
|
|
{
|
|
|
|
int idx;
|
|
|
|
struct dive *dive;
|
|
|
|
|
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
|
|
|
|
dive = get_dive(idx);
|
|
|
|
if (dive == current_dive) {
|
|
|
|
scroll_to_path(path);
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void scroll_to_current(GtkTreeModel *model)
|
|
|
|
{
|
|
|
|
if (current_dive)
|
|
|
|
gtk_tree_model_foreach(model, scroll_to_this, current_dive);
|
|
|
|
}
|
|
|
|
|
2012-08-13 22:07:38 +00:00
|
|
|
static void update_column_and_order(int colid)
|
|
|
|
{
|
|
|
|
/* Careful: the index into treecolumns is off by one as we don't have a
|
|
|
|
tree_view column for DIVE_INDEX */
|
|
|
|
GtkTreeViewColumn **treecolumns = &dive_list.nr;
|
|
|
|
|
|
|
|
/* this will trigger a second call into sort_column_change_cb,
|
|
|
|
so make sure we don't start an infinite recursion... */
|
|
|
|
second_call = TRUE;
|
|
|
|
gtk_tree_sortable_set_sort_column_id(GTK_TREE_SORTABLE(dive_list.model), colid, sortorder[colid]);
|
|
|
|
gtk_tree_view_column_set_sort_order(treecolumns[colid - 1], sortorder[colid]);
|
|
|
|
second_call = FALSE;
|
2013-01-31 22:40:54 +00:00
|
|
|
scroll_to_current(GTK_TREE_MODEL(dive_list.model));
|
2012-08-13 22:07:38 +00:00
|
|
|
}
|
|
|
|
|
2012-12-29 06:04:43 +00:00
|
|
|
/* If the sort column is nr (default), show the tree model.
|
2012-08-13 21:42:55 +00:00
|
|
|
For every other sort column only show the list model.
|
2012-08-13 21:53:07 +00:00
|
|
|
If the model changed, inform the new model of the chosen sort column and make
|
2012-08-13 22:07:38 +00:00
|
|
|
sure the same dives are still selected.
|
|
|
|
|
|
|
|
The challenge with this function is that once we change the model
|
|
|
|
we also need to change the sort column again (as it was changed in
|
|
|
|
the other model) and that causes this function to be called
|
|
|
|
recursively - so we need to catch that.
|
|
|
|
*/
|
2012-08-13 21:42:55 +00:00
|
|
|
static void sort_column_change_cb(GtkTreeSortable *treeview, gpointer data)
|
|
|
|
{
|
|
|
|
int colid;
|
|
|
|
GtkSortType order;
|
|
|
|
GtkTreeStore *currentmodel = dive_list.model;
|
|
|
|
|
2013-02-20 13:47:22 +00:00
|
|
|
gtk_widget_grab_focus(dive_list.tree_view);
|
2012-08-13 22:07:38 +00:00
|
|
|
if (second_call)
|
|
|
|
return;
|
|
|
|
|
2012-08-13 21:42:55 +00:00
|
|
|
gtk_tree_sortable_get_sort_column_id(treeview, &colid, &order);
|
2013-01-29 21:10:46 +00:00
|
|
|
if (colid == lastcol) {
|
2012-08-13 22:07:38 +00:00
|
|
|
/* we just changed sort order */
|
|
|
|
sortorder[colid] = order;
|
|
|
|
return;
|
|
|
|
} else {
|
|
|
|
lastcol = colid;
|
|
|
|
}
|
2013-01-29 21:10:46 +00:00
|
|
|
if (colid == DIVE_NR)
|
2012-08-13 21:42:55 +00:00
|
|
|
dive_list.model = dive_list.treemodel;
|
|
|
|
else
|
|
|
|
dive_list.model = dive_list.listmodel;
|
|
|
|
if (dive_list.model != currentmodel) {
|
2012-08-13 21:53:07 +00:00
|
|
|
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
|
|
|
|
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_view_set_model(GTK_TREE_VIEW(dive_list.tree_view), MODEL(dive_list));
|
2012-08-13 22:07:38 +00:00
|
|
|
update_column_and_order(colid);
|
2012-09-03 04:46:48 +00:00
|
|
|
gtk_tree_model_foreach(MODEL(dive_list), set_selected, selection);
|
2012-08-13 22:07:38 +00:00
|
|
|
} else {
|
|
|
|
if (order != sortorder[colid]) {
|
|
|
|
update_column_and_order(colid);
|
|
|
|
}
|
2012-08-13 21:42:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-01-29 10:26:07 +00:00
|
|
|
static void select_dive(int idx)
|
2013-01-29 06:22:31 +00:00
|
|
|
{
|
2013-01-29 10:26:07 +00:00
|
|
|
struct dive *dive = get_dive(idx);
|
2013-01-29 06:22:31 +00:00
|
|
|
if (dive && !dive->selected) {
|
|
|
|
dive->selected = 1;
|
|
|
|
amount_selected++;
|
2013-01-29 10:26:07 +00:00
|
|
|
selected_dive = idx;
|
2013-01-29 06:22:31 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Don't deselect all dives on all selection "change" events
gtk sends the selection change events all the time, for pretty much any
"divelist changed - so selection changed". The expansion of a trip, the
switch to a new model, yadda yadda. But we actually want selections to
be sticky across these events, so we can't just forget all of our old
selection state and repopulate it.
So we re-introduce the "am I allowed to change this row" callback, which
we used to use to create a list of every actual selection that was
changed. But instead of remembering the list (and having the stale
entries issue with that remembered list that caused problems), we now
just use that as a "that *particular* selection cleared" event.
So this callback works as the "which part of the visible, currently
selected state got cleared" notifier, and handles unselection.
Then, when the selection is over, we use the new model of "let's just
traverse the list of things gtk thinks are selected" and use that to
handle new selections in the visible state that gtk actually tracks
well. So that logic handles the new selections.
This way, dives that aren't visible to gtk don't ever get modified: gtk
won't ask about them being selected or not, and gtk won't track them in
its selection logic, so with this model their state never changes for
us.
gtk selections are annoying. They are simple for the case gtk knows
about (ie they are *visually* selected in the GUI), but since we very
much want to track selection across events that change the visual state,
we need to have this insane "impedance match".
Reported-by: Dirk Hohdnel <dirk@hohndel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
|
|
|
static void deselect_dive(int idx)
|
|
|
|
{
|
|
|
|
struct dive *dive = get_dive(idx);
|
|
|
|
if (dive && dive->selected) {
|
|
|
|
dive->selected = 0;
|
|
|
|
amount_selected--;
|
2013-01-29 20:05:30 +00:00
|
|
|
if (selected_dive == idx && amount_selected > 0) {
|
|
|
|
/* pick a different dive as selected */
|
2013-01-29 21:10:46 +00:00
|
|
|
while (--selected_dive >= 0) {
|
2013-01-29 20:05:30 +00:00
|
|
|
dive = get_dive(selected_dive);
|
|
|
|
if (dive && dive->selected)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
selected_dive = idx;
|
2013-01-29 21:10:46 +00:00
|
|
|
while (++selected_dive < dive_table.nr) {
|
2013-01-29 20:05:30 +00:00
|
|
|
dive = get_dive(selected_dive);
|
|
|
|
if (dive && dive->selected)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (amount_selected == 0)
|
|
|
|
selected_dive = -1;
|
Don't deselect all dives on all selection "change" events
gtk sends the selection change events all the time, for pretty much any
"divelist changed - so selection changed". The expansion of a trip, the
switch to a new model, yadda yadda. But we actually want selections to
be sticky across these events, so we can't just forget all of our old
selection state and repopulate it.
So we re-introduce the "am I allowed to change this row" callback, which
we used to use to create a list of every actual selection that was
changed. But instead of remembering the list (and having the stale
entries issue with that remembered list that caused problems), we now
just use that as a "that *particular* selection cleared" event.
So this callback works as the "which part of the visible, currently
selected state got cleared" notifier, and handles unselection.
Then, when the selection is over, we use the new model of "let's just
traverse the list of things gtk thinks are selected" and use that to
handle new selections in the visible state that gtk actually tracks
well. So that logic handles the new selections.
This way, dives that aren't visible to gtk don't ever get modified: gtk
won't ask about them being selected or not, and gtk won't track them in
its selection logic, so with this model their state never changes for
us.
gtk selections are annoying. They are simple for the case gtk knows
about (ie they are *visually* selected in the GUI), but since we very
much want to track selection across events that change the visual state,
we need to have this insane "impedance match".
Reported-by: Dirk Hohdnel <dirk@hohndel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static gboolean modify_selection_cb(GtkTreeSelection *selection, GtkTreeModel *model,
|
Don't deselect all dives on all selection "change" events
gtk sends the selection change events all the time, for pretty much any
"divelist changed - so selection changed". The expansion of a trip, the
switch to a new model, yadda yadda. But we actually want selections to
be sticky across these events, so we can't just forget all of our old
selection state and repopulate it.
So we re-introduce the "am I allowed to change this row" callback, which
we used to use to create a list of every actual selection that was
changed. But instead of remembering the list (and having the stale
entries issue with that remembered list that caused problems), we now
just use that as a "that *particular* selection cleared" event.
So this callback works as the "which part of the visible, currently
selected state got cleared" notifier, and handles unselection.
Then, when the selection is over, we use the new model of "let's just
traverse the list of things gtk thinks are selected" and use that to
handle new selections in the visible state that gtk actually tracks
well. So that logic handles the new selections.
This way, dives that aren't visible to gtk don't ever get modified: gtk
won't ask about them being selected or not, and gtk won't track them in
its selection logic, so with this model their state never changes for
us.
gtk selections are annoying. They are simple for the case gtk knows
about (ie they are *visually* selected in the GUI), but since we very
much want to track selection across events that change the visual state,
we need to have this insane "impedance match".
Reported-by: Dirk Hohdnel <dirk@hohndel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
|
|
|
GtkTreePath *path, gboolean was_selected, gpointer userdata)
|
|
|
|
{
|
|
|
|
int idx;
|
|
|
|
GtkTreeIter iter;
|
|
|
|
|
2013-02-20 07:50:55 +00:00
|
|
|
if (!was_selected || in_set_cursor)
|
Don't deselect all dives on all selection "change" events
gtk sends the selection change events all the time, for pretty much any
"divelist changed - so selection changed". The expansion of a trip, the
switch to a new model, yadda yadda. But we actually want selections to
be sticky across these events, so we can't just forget all of our old
selection state and repopulate it.
So we re-introduce the "am I allowed to change this row" callback, which
we used to use to create a list of every actual selection that was
changed. But instead of remembering the list (and having the stale
entries issue with that remembered list that caused problems), we now
just use that as a "that *particular* selection cleared" event.
So this callback works as the "which part of the visible, currently
selected state got cleared" notifier, and handles unselection.
Then, when the selection is over, we use the new model of "let's just
traverse the list of things gtk thinks are selected" and use that to
handle new selections in the visible state that gtk actually tracks
well. So that logic handles the new selections.
This way, dives that aren't visible to gtk don't ever get modified: gtk
won't ask about them being selected or not, and gtk won't track them in
its selection logic, so with this model their state never changes for
us.
gtk selections are annoying. They are simple for the case gtk knows
about (ie they are *visually* selected in the GUI), but since we very
much want to track selection across events that change the visual state,
we need to have this insane "impedance match".
Reported-by: Dirk Hohdnel <dirk@hohndel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
|
|
|
return TRUE;
|
|
|
|
gtk_tree_model_get_iter(model, &iter, path);
|
2013-02-19 15:59:18 +00:00
|
|
|
gtk_tree_model_get(model, &iter, DIVE_INDEX, &idx, -1);
|
Don't deselect all dives on all selection "change" events
gtk sends the selection change events all the time, for pretty much any
"divelist changed - so selection changed". The expansion of a trip, the
switch to a new model, yadda yadda. But we actually want selections to
be sticky across these events, so we can't just forget all of our old
selection state and repopulate it.
So we re-introduce the "am I allowed to change this row" callback, which
we used to use to create a list of every actual selection that was
changed. But instead of remembering the list (and having the stale
entries issue with that remembered list that caused problems), we now
just use that as a "that *particular* selection cleared" event.
So this callback works as the "which part of the visible, currently
selected state got cleared" notifier, and handles unselection.
Then, when the selection is over, we use the new model of "let's just
traverse the list of things gtk thinks are selected" and use that to
handle new selections in the visible state that gtk actually tracks
well. So that logic handles the new selections.
This way, dives that aren't visible to gtk don't ever get modified: gtk
won't ask about them being selected or not, and gtk won't track them in
its selection logic, so with this model their state never changes for
us.
gtk selections are annoying. They are simple for the case gtk knows
about (ie they are *visually* selected in the GUI), but since we very
much want to track selection across events that change the visual state,
we need to have this insane "impedance match".
Reported-by: Dirk Hohdnel <dirk@hohndel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
|
|
|
if (idx < 0) {
|
2013-02-08 00:28:13 +00:00
|
|
|
int i;
|
|
|
|
struct dive *dive;
|
2013-02-19 15:59:18 +00:00
|
|
|
dive_trip_t *trip = find_trip_by_idx(idx);
|
2013-02-08 00:28:13 +00:00
|
|
|
if (!trip)
|
|
|
|
return TRUE;
|
|
|
|
|
|
|
|
trip->selected = 0;
|
|
|
|
/* If this is expanded, let the gtk selection happen for each dive under it */
|
|
|
|
if (gtk_tree_view_row_expanded(GTK_TREE_VIEW(dive_list.tree_view), path))
|
|
|
|
return TRUE;
|
|
|
|
/* Otherwise, consider each dive under it deselected */
|
|
|
|
for_each_dive(i, dive) {
|
|
|
|
if (dive->divetrip == trip)
|
|
|
|
deselect_dive(i);
|
|
|
|
}
|
Don't deselect all dives on all selection "change" events
gtk sends the selection change events all the time, for pretty much any
"divelist changed - so selection changed". The expansion of a trip, the
switch to a new model, yadda yadda. But we actually want selections to
be sticky across these events, so we can't just forget all of our old
selection state and repopulate it.
So we re-introduce the "am I allowed to change this row" callback, which
we used to use to create a list of every actual selection that was
changed. But instead of remembering the list (and having the stale
entries issue with that remembered list that caused problems), we now
just use that as a "that *particular* selection cleared" event.
So this callback works as the "which part of the visible, currently
selected state got cleared" notifier, and handles unselection.
Then, when the selection is over, we use the new model of "let's just
traverse the list of things gtk thinks are selected" and use that to
handle new selections in the visible state that gtk actually tracks
well. So that logic handles the new selections.
This way, dives that aren't visible to gtk don't ever get modified: gtk
won't ask about them being selected or not, and gtk won't track them in
its selection logic, so with this model their state never changes for
us.
gtk selections are annoying. They are simple for the case gtk knows
about (ie they are *visually* selected in the GUI), but since we very
much want to track selection across events that change the visual state,
we need to have this insane "impedance match".
Reported-by: Dirk Hohdnel <dirk@hohndel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
|
|
|
} else {
|
|
|
|
deselect_dive(idx);
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
2013-01-29 06:22:31 +00:00
|
|
|
/* This gets called for each selected entry after a selection has changed */
|
|
|
|
static void entry_selected(GtkTreeModel *model, GtkTreePath *path, GtkTreeIter *iter, gpointer data)
|
|
|
|
{
|
|
|
|
int idx;
|
|
|
|
|
2013-02-19 15:59:18 +00:00
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
|
2013-01-29 06:22:31 +00:00
|
|
|
if (idx < 0) {
|
|
|
|
int i;
|
|
|
|
struct dive *dive;
|
2013-02-19 15:59:18 +00:00
|
|
|
dive_trip_t *trip = find_trip_by_idx(idx);
|
2013-01-29 06:22:31 +00:00
|
|
|
|
|
|
|
if (!trip)
|
|
|
|
return;
|
|
|
|
trip->selected = 1;
|
2013-02-18 23:35:47 +00:00
|
|
|
|
2013-01-29 06:22:31 +00:00
|
|
|
/* If this is expanded, let the gtk selection happen for each dive under it */
|
2013-02-18 23:35:47 +00:00
|
|
|
if (gtk_tree_view_row_expanded(GTK_TREE_VIEW(dive_list.tree_view), path)) {
|
|
|
|
trip->fixup = 1;
|
2013-01-29 06:22:31 +00:00
|
|
|
return;
|
2013-02-18 23:35:47 +00:00
|
|
|
}
|
|
|
|
|
2013-01-29 06:22:31 +00:00
|
|
|
/* Otherwise, consider each dive under it selected */
|
|
|
|
for_each_dive(i, dive) {
|
|
|
|
if (dive->divetrip == trip)
|
2013-01-29 10:26:07 +00:00
|
|
|
select_dive(i);
|
2013-01-29 06:22:31 +00:00
|
|
|
}
|
2013-02-18 23:35:47 +00:00
|
|
|
trip->fixup = 0;
|
2013-01-29 06:22:31 +00:00
|
|
|
} else {
|
2013-01-29 10:26:07 +00:00
|
|
|
select_dive(idx);
|
2013-01-29 06:22:31 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-02-18 23:35:47 +00:00
|
|
|
static void update_gtk_selection(GtkTreeSelection *selection, GtkTreeModel *model)
|
|
|
|
{
|
|
|
|
GtkTreeIter iter;
|
|
|
|
|
|
|
|
if (!gtk_tree_model_get_iter_first(model, &iter))
|
|
|
|
return;
|
|
|
|
do {
|
|
|
|
GtkTreeIter child;
|
|
|
|
|
|
|
|
if (!gtk_tree_model_iter_children(model, &child, &iter))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
do {
|
|
|
|
int idx;
|
|
|
|
struct dive *dive;
|
|
|
|
dive_trip_t *trip;
|
|
|
|
|
|
|
|
gtk_tree_model_get(model, &child, DIVE_INDEX, &idx, -1);
|
|
|
|
dive = get_dive(idx);
|
|
|
|
if (!dive || !dive->selected)
|
|
|
|
break;
|
|
|
|
trip = dive->divetrip;
|
|
|
|
if (!trip)
|
|
|
|
break;
|
|
|
|
gtk_tree_selection_select_iter(selection, &child);
|
|
|
|
} while (gtk_tree_model_iter_next(model, &child));
|
|
|
|
} while (gtk_tree_model_iter_next(model, &iter));
|
|
|
|
}
|
|
|
|
|
2013-01-29 06:22:31 +00:00
|
|
|
/* this is called when gtk thinks that the selection has changed */
|
|
|
|
static void selection_cb(GtkTreeSelection *selection, GtkTreeModel *model)
|
|
|
|
{
|
2013-02-18 23:35:47 +00:00
|
|
|
int i, fixup;
|
|
|
|
struct dive *dive;
|
|
|
|
|
2013-01-29 06:22:31 +00:00
|
|
|
gtk_tree_selection_selected_foreach(selection, entry_selected, model);
|
|
|
|
|
2013-02-18 23:35:47 +00:00
|
|
|
/*
|
|
|
|
* Go through all the dives, if there is a trip that is selected but no
|
|
|
|
* dives under it are selected, force-select all the dives
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* First, clear "fixup" for any trip that has selected dives */
|
|
|
|
for_each_dive(i, dive) {
|
|
|
|
dive_trip_t *trip = dive->divetrip;
|
|
|
|
if (!trip || !trip->fixup)
|
|
|
|
continue;
|
|
|
|
if (dive->selected || !trip->selected)
|
|
|
|
trip->fixup = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ok, not fixup is only set for trips that are selected
|
|
|
|
* but have no selected dives in them. Select all dives
|
|
|
|
* for such trips.
|
|
|
|
*/
|
|
|
|
fixup = 0;
|
|
|
|
for_each_dive(i, dive) {
|
|
|
|
dive_trip_t *trip = dive->divetrip;
|
|
|
|
if (!trip || !trip->fixup)
|
|
|
|
continue;
|
|
|
|
fixup = 1;
|
|
|
|
select_dive(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ok, we did a forced selection of dives, now we need to update the gtk
|
|
|
|
* view of what is selected too..
|
|
|
|
*/
|
|
|
|
if (fixup)
|
|
|
|
update_gtk_selection(selection, model);
|
|
|
|
|
2013-01-29 06:22:31 +00:00
|
|
|
#if DEBUG_SELECTION_TRACKING
|
|
|
|
dump_selection();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
process_selected_dives();
|
|
|
|
repaint_dive();
|
|
|
|
}
|
|
|
|
|
2011-09-20 17:06:24 +00:00
|
|
|
GtkWidget *dive_list_create(void)
|
2011-09-05 19:12:58 +00:00
|
|
|
{
|
2011-08-31 17:46:28 +00:00
|
|
|
GtkTreeSelection *selection;
|
|
|
|
|
2012-08-13 21:42:55 +00:00
|
|
|
dive_list.listmodel = gtk_tree_store_new(DIVELIST_COLUMNS,
|
|
|
|
G_TYPE_INT, /* index */
|
|
|
|
G_TYPE_INT, /* nr */
|
2012-09-20 00:35:52 +00:00
|
|
|
G_TYPE_INT64, /* Date */
|
2012-08-13 21:42:55 +00:00
|
|
|
G_TYPE_INT, /* Star rating */
|
|
|
|
G_TYPE_INT, /* Depth */
|
|
|
|
G_TYPE_INT, /* Duration */
|
|
|
|
G_TYPE_INT, /* Temperature */
|
2012-08-16 17:46:30 +00:00
|
|
|
G_TYPE_INT, /* Total weight */
|
|
|
|
G_TYPE_STRING, /* Suit */
|
2012-08-13 21:42:55 +00:00
|
|
|
G_TYPE_STRING, /* Cylinder */
|
|
|
|
G_TYPE_INT, /* Nitrox */
|
|
|
|
G_TYPE_INT, /* SAC */
|
|
|
|
G_TYPE_INT, /* OTU */
|
2012-12-11 05:18:48 +00:00
|
|
|
G_TYPE_INT, /* MAXCNS */
|
2013-01-23 03:52:07 +00:00
|
|
|
G_TYPE_STRING, /* Location */
|
|
|
|
GDK_TYPE_PIXBUF /* GPS icon */
|
2012-08-13 21:42:55 +00:00
|
|
|
);
|
|
|
|
dive_list.treemodel = gtk_tree_store_new(DIVELIST_COLUMNS,
|
2011-09-19 19:25:16 +00:00
|
|
|
G_TYPE_INT, /* index */
|
2011-10-23 15:50:14 +00:00
|
|
|
G_TYPE_INT, /* nr */
|
2012-09-20 00:35:52 +00:00
|
|
|
G_TYPE_INT64, /* Date */
|
2011-12-07 19:58:16 +00:00
|
|
|
G_TYPE_INT, /* Star rating */
|
2011-09-20 01:52:23 +00:00
|
|
|
G_TYPE_INT, /* Depth */
|
2011-09-20 02:13:36 +00:00
|
|
|
G_TYPE_INT, /* Duration */
|
|
|
|
G_TYPE_INT, /* Temperature */
|
2012-08-07 18:24:40 +00:00
|
|
|
G_TYPE_INT, /* Total weight */
|
2012-08-14 23:07:25 +00:00
|
|
|
G_TYPE_STRING, /* Suit */
|
2011-09-20 03:06:54 +00:00
|
|
|
G_TYPE_STRING, /* Cylinder */
|
2011-09-20 02:13:36 +00:00
|
|
|
G_TYPE_INT, /* Nitrox */
|
2011-09-22 18:02:28 +00:00
|
|
|
G_TYPE_INT, /* SAC */
|
2011-09-22 21:02:26 +00:00
|
|
|
G_TYPE_INT, /* OTU */
|
2012-12-11 05:18:48 +00:00
|
|
|
G_TYPE_INT, /* MAXCNS */
|
2013-01-23 03:52:07 +00:00
|
|
|
G_TYPE_STRING, /* Location */
|
|
|
|
GDK_TYPE_PIXBUF /* GPS icon */
|
2011-09-19 19:25:16 +00:00
|
|
|
);
|
2012-08-13 21:42:55 +00:00
|
|
|
dive_list.model = dive_list.treemodel;
|
2012-09-03 04:46:48 +00:00
|
|
|
dive_list.tree_view = gtk_tree_view_new_with_model(TREEMODEL(dive_list));
|
2013-01-12 01:07:22 +00:00
|
|
|
set_divelist_font(prefs.divelist_font);
|
2011-09-20 05:01:55 +00:00
|
|
|
|
2011-09-05 19:12:58 +00:00
|
|
|
selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
|
2011-08-31 17:46:28 +00:00
|
|
|
|
2011-10-21 03:59:13 +00:00
|
|
|
gtk_tree_selection_set_mode(GTK_TREE_SELECTION(selection), GTK_SELECTION_MULTIPLE);
|
2011-09-20 03:06:54 +00:00
|
|
|
gtk_widget_set_size_request(dive_list.tree_view, 200, 200);
|
2011-08-31 17:27:58 +00:00
|
|
|
|
2012-10-19 23:31:07 +00:00
|
|
|
/* check if utf8 stars are available as a default OS feature */
|
|
|
|
if (!subsurface_os_feature_available(UTF8_FONT_WITH_STARS))
|
|
|
|
dl_column[3].header = "*";
|
|
|
|
|
2012-01-05 16:16:08 +00:00
|
|
|
dive_list.nr = divelist_column(&dive_list, dl_column + DIVE_NR);
|
|
|
|
dive_list.date = divelist_column(&dive_list, dl_column + DIVE_DATE);
|
|
|
|
dive_list.stars = divelist_column(&dive_list, dl_column + DIVE_RATING);
|
|
|
|
dive_list.depth = divelist_column(&dive_list, dl_column + DIVE_DEPTH);
|
|
|
|
dive_list.duration = divelist_column(&dive_list, dl_column + DIVE_DURATION);
|
|
|
|
dive_list.temperature = divelist_column(&dive_list, dl_column + DIVE_TEMPERATURE);
|
2012-08-07 18:24:40 +00:00
|
|
|
dive_list.totalweight = divelist_column(&dive_list, dl_column + DIVE_TOTALWEIGHT);
|
2012-08-14 23:07:25 +00:00
|
|
|
dive_list.suit = divelist_column(&dive_list, dl_column + DIVE_SUIT);
|
2012-01-05 16:16:08 +00:00
|
|
|
dive_list.cylinder = divelist_column(&dive_list, dl_column + DIVE_CYLINDER);
|
|
|
|
dive_list.nitrox = divelist_column(&dive_list, dl_column + DIVE_NITROX);
|
|
|
|
dive_list.sac = divelist_column(&dive_list, dl_column + DIVE_SAC);
|
|
|
|
dive_list.otu = divelist_column(&dive_list, dl_column + DIVE_OTU);
|
2012-12-11 05:18:48 +00:00
|
|
|
dive_list.maxcns = divelist_column(&dive_list, dl_column + DIVE_MAXCNS);
|
2012-01-05 16:16:08 +00:00
|
|
|
dive_list.location = divelist_column(&dive_list, dl_column + DIVE_LOCATION);
|
2013-02-20 13:47:23 +00:00
|
|
|
gtk_tree_view_column_set_sort_indicator(dive_list.nr, TRUE);
|
|
|
|
gtk_tree_view_column_set_sort_order(dive_list.nr, GTK_SORT_DESCENDING);
|
2013-01-23 03:52:07 +00:00
|
|
|
/* now add the GPS icon to the location column */
|
|
|
|
tree_view_column_add_pixbuf(dive_list.tree_view, gpsicon_data_func, dive_list.location);
|
2011-09-19 19:56:37 +00:00
|
|
|
|
2011-09-20 17:06:24 +00:00
|
|
|
fill_dive_list();
|
2011-09-07 15:56:47 +00:00
|
|
|
|
2011-09-05 19:12:58 +00:00
|
|
|
g_object_set(G_OBJECT(dive_list.tree_view), "headers-visible", TRUE,
|
2011-09-22 15:17:23 +00:00
|
|
|
"search-column", DIVE_LOCATION,
|
2011-09-04 22:18:58 +00:00
|
|
|
"rules-hint", TRUE,
|
2011-08-31 17:46:28 +00:00
|
|
|
NULL);
|
2011-08-31 17:27:58 +00:00
|
|
|
|
2011-09-22 17:28:57 +00:00
|
|
|
g_signal_connect_after(dive_list.tree_view, "realize", G_CALLBACK(realize_cb), NULL);
|
2012-08-13 21:42:55 +00:00
|
|
|
g_signal_connect(dive_list.tree_view, "row-activated", G_CALLBACK(row_activated_cb), NULL);
|
2012-08-16 23:31:53 +00:00
|
|
|
g_signal_connect(dive_list.tree_view, "row-expanded", G_CALLBACK(row_expanded_cb), NULL);
|
2012-08-20 13:27:04 +00:00
|
|
|
g_signal_connect(dive_list.tree_view, "row-collapsed", G_CALLBACK(row_collapsed_cb), NULL);
|
2012-08-13 21:42:55 +00:00
|
|
|
g_signal_connect(dive_list.tree_view, "button-press-event", G_CALLBACK(button_press_cb), NULL);
|
|
|
|
g_signal_connect(dive_list.tree_view, "popup-menu", G_CALLBACK(popup_menu_cb), NULL);
|
2012-08-20 12:48:07 +00:00
|
|
|
g_signal_connect(selection, "changed", G_CALLBACK(selection_cb), dive_list.model);
|
2012-08-13 21:42:55 +00:00
|
|
|
g_signal_connect(dive_list.listmodel, "sort-column-changed", G_CALLBACK(sort_column_change_cb), NULL);
|
|
|
|
g_signal_connect(dive_list.treemodel, "sort-column-changed", G_CALLBACK(sort_column_change_cb), NULL);
|
2011-08-31 17:27:58 +00:00
|
|
|
|
Don't deselect all dives on all selection "change" events
gtk sends the selection change events all the time, for pretty much any
"divelist changed - so selection changed". The expansion of a trip, the
switch to a new model, yadda yadda. But we actually want selections to
be sticky across these events, so we can't just forget all of our old
selection state and repopulate it.
So we re-introduce the "am I allowed to change this row" callback, which
we used to use to create a list of every actual selection that was
changed. But instead of remembering the list (and having the stale
entries issue with that remembered list that caused problems), we now
just use that as a "that *particular* selection cleared" event.
So this callback works as the "which part of the visible, currently
selected state got cleared" notifier, and handles unselection.
Then, when the selection is over, we use the new model of "let's just
traverse the list of things gtk thinks are selected" and use that to
handle new selections in the visible state that gtk actually tracks
well. So that logic handles the new selections.
This way, dives that aren't visible to gtk don't ever get modified: gtk
won't ask about them being selected or not, and gtk won't track them in
its selection logic, so with this model their state never changes for
us.
gtk selections are annoying. They are simple for the case gtk knows
about (ie they are *visually* selected in the GUI), but since we very
much want to track selection across events that change the visual state,
we need to have this insane "impedance match".
Reported-by: Dirk Hohdnel <dirk@hohndel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-29 19:15:23 +00:00
|
|
|
gtk_tree_selection_set_select_function(selection, modify_selection_cb, NULL, NULL);
|
|
|
|
|
2011-09-05 19:12:58 +00:00
|
|
|
dive_list.container_widget = gtk_scrolled_window_new(NULL, NULL);
|
|
|
|
gtk_scrolled_window_set_policy(GTK_SCROLLED_WINDOW(dive_list.container_widget),
|
2011-09-20 05:09:47 +00:00
|
|
|
GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);
|
2011-09-05 19:12:58 +00:00
|
|
|
gtk_container_add(GTK_CONTAINER(dive_list.container_widget), dive_list.tree_view);
|
2011-08-31 17:27:58 +00:00
|
|
|
|
2011-09-21 04:29:09 +00:00
|
|
|
dive_list.changed = 0;
|
|
|
|
|
2011-09-20 17:06:24 +00:00
|
|
|
return dive_list.container_widget;
|
2011-08-31 17:27:58 +00:00
|
|
|
}
|
2011-09-21 04:29:09 +00:00
|
|
|
|
2012-10-01 22:52:43 +00:00
|
|
|
void dive_list_destroy(void)
|
|
|
|
{
|
|
|
|
gtk_widget_destroy(dive_list.tree_view);
|
2013-02-21 01:07:19 +00:00
|
|
|
g_object_unref(dive_list.treemodel);
|
|
|
|
g_object_unref(dive_list.listmodel);
|
2012-10-01 22:52:43 +00:00
|
|
|
}
|
|
|
|
|
2011-09-21 04:29:09 +00:00
|
|
|
void mark_divelist_changed(int changed)
|
|
|
|
{
|
|
|
|
dive_list.changed = changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
int unsaved_changes()
|
|
|
|
{
|
|
|
|
return dive_list.changed;
|
|
|
|
}
|
2012-09-03 04:48:30 +00:00
|
|
|
|
|
|
|
void remove_autogen_trips()
|
|
|
|
{
|
2012-11-26 03:04:45 +00:00
|
|
|
int i;
|
|
|
|
struct dive *dive;
|
2012-09-03 04:48:30 +00:00
|
|
|
|
2012-11-26 03:04:45 +00:00
|
|
|
for_each_dive(i, dive) {
|
|
|
|
dive_trip_t *trip = dive->divetrip;
|
|
|
|
|
2012-11-26 18:04:14 +00:00
|
|
|
if (trip && trip->autogen)
|
2012-11-26 03:04:45 +00:00
|
|
|
remove_dive_from_trip(dive);
|
2012-09-20 03:42:11 +00:00
|
|
|
}
|
2012-09-03 04:48:30 +00:00
|
|
|
}
|
2013-01-01 16:22:46 +00:00
|
|
|
|
|
|
|
struct iteridx {
|
|
|
|
int idx;
|
|
|
|
GtkTreeIter *iter;
|
|
|
|
};
|
|
|
|
|
|
|
|
static gboolean iter_has_idx(GtkTreeModel *model, GtkTreePath *path,
|
|
|
|
GtkTreeIter *iter, gpointer _data)
|
|
|
|
{
|
|
|
|
struct iteridx *iteridx = _data;
|
|
|
|
int idx;
|
|
|
|
/* Get the dive number */
|
|
|
|
gtk_tree_model_get(model, iter, DIVE_INDEX, &idx, -1);
|
|
|
|
if (idx == iteridx->idx) {
|
|
|
|
iteridx->iter = gtk_tree_iter_copy(iter);
|
|
|
|
return TRUE; /* end foreach */
|
|
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static GtkTreeIter *get_iter_from_idx(int idx)
|
|
|
|
{
|
|
|
|
struct iteridx iteridx = {idx, };
|
|
|
|
gtk_tree_model_foreach(MODEL(dive_list), iter_has_idx, &iteridx);
|
|
|
|
return iteridx.iter;
|
|
|
|
}
|
|
|
|
|
2013-01-29 21:10:46 +00:00
|
|
|
static void scroll_to_selected(GtkTreeIter *iter)
|
2013-01-14 05:10:52 +00:00
|
|
|
{
|
|
|
|
GtkTreePath *treepath;
|
|
|
|
treepath = gtk_tree_model_get_path(MODEL(dive_list), iter);
|
2013-01-31 22:40:54 +00:00
|
|
|
scroll_to_path(treepath);
|
2013-01-14 05:10:52 +00:00
|
|
|
gtk_tree_path_free(treepath);
|
|
|
|
}
|
|
|
|
|
2013-01-31 11:21:53 +00:00
|
|
|
static void go_to_iter(GtkTreeSelection *selection, GtkTreeIter *iter)
|
|
|
|
{
|
|
|
|
gtk_tree_selection_unselect_all(selection);
|
|
|
|
gtk_tree_selection_select_iter(selection, iter);
|
2013-01-31 22:40:54 +00:00
|
|
|
scroll_to_selected(iter);
|
2013-01-31 11:21:53 +00:00
|
|
|
}
|
|
|
|
|
2013-01-14 04:41:48 +00:00
|
|
|
void show_and_select_dive(struct dive *dive)
|
|
|
|
{
|
|
|
|
GtkTreeSelection *selection;
|
|
|
|
GtkTreeIter *iter;
|
|
|
|
struct dive *odive;
|
|
|
|
int i, divenr;
|
|
|
|
|
|
|
|
divenr = get_divenr(dive);
|
|
|
|
if (divenr < 0)
|
|
|
|
/* we failed to find the dive */
|
|
|
|
return;
|
|
|
|
iter = get_iter_from_idx(divenr);
|
|
|
|
selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
|
|
|
|
for_each_dive(i, odive)
|
|
|
|
odive->selected = FALSE;
|
|
|
|
amount_selected = 1;
|
2013-01-31 11:21:53 +00:00
|
|
|
selected_dive = divenr;
|
2013-01-14 04:41:48 +00:00
|
|
|
dive->selected = TRUE;
|
2013-01-31 11:21:53 +00:00
|
|
|
go_to_iter(selection, iter);
|
2013-02-09 19:29:58 +00:00
|
|
|
gtk_tree_iter_free(iter);
|
2013-01-31 05:56:51 +00:00
|
|
|
}
|
|
|
|
|
2013-01-01 16:22:46 +00:00
|
|
|
void select_next_dive(void)
|
|
|
|
{
|
2013-02-09 19:29:58 +00:00
|
|
|
GtkTreeIter *nextiter, *parent = NULL;
|
2013-01-01 16:22:46 +00:00
|
|
|
GtkTreeIter *iter = get_iter_from_idx(selected_dive);
|
|
|
|
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
if (!iter)
|
|
|
|
return;
|
|
|
|
nextiter = gtk_tree_iter_copy(iter);
|
|
|
|
if (!gtk_tree_model_iter_next(MODEL(dive_list), nextiter)) {
|
2013-01-03 02:19:41 +00:00
|
|
|
if (!gtk_tree_model_iter_parent(MODEL(dive_list), nextiter, iter)) {
|
2013-01-01 16:22:46 +00:00
|
|
|
/* we're at the last top level node */
|
2013-02-21 01:07:18 +00:00
|
|
|
goto free_iter;
|
2013-01-03 02:19:41 +00:00
|
|
|
}
|
|
|
|
if (!gtk_tree_model_iter_next(MODEL(dive_list), nextiter)) {
|
2013-01-01 16:22:46 +00:00
|
|
|
/* last trip */
|
2013-02-21 01:07:18 +00:00
|
|
|
goto free_iter;
|
2013-01-01 16:22:46 +00:00
|
|
|
}
|
|
|
|
}
|
2013-01-03 02:19:41 +00:00
|
|
|
gtk_tree_model_get(MODEL(dive_list), nextiter, DIVE_INDEX, &idx, -1);
|
|
|
|
if (idx < 0) {
|
|
|
|
/* need the first child */
|
|
|
|
parent = gtk_tree_iter_copy(nextiter);
|
|
|
|
if (! gtk_tree_model_iter_children(MODEL(dive_list), nextiter, parent))
|
2013-02-21 01:07:18 +00:00
|
|
|
goto free_iter;
|
2013-01-03 02:19:41 +00:00
|
|
|
}
|
2013-01-31 05:56:51 +00:00
|
|
|
go_to_iter(selection, nextiter);
|
2013-02-21 01:07:18 +00:00
|
|
|
free_iter:
|
|
|
|
if (nextiter)
|
|
|
|
gtk_tree_iter_free(nextiter);
|
2013-02-09 19:29:58 +00:00
|
|
|
if (parent)
|
|
|
|
gtk_tree_iter_free(parent);
|
|
|
|
gtk_tree_iter_free(iter);
|
2013-01-01 16:22:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void select_prev_dive(void)
|
|
|
|
{
|
2013-02-09 19:29:58 +00:00
|
|
|
GtkTreeIter previter, *parent = NULL;
|
2013-01-01 16:22:46 +00:00
|
|
|
GtkTreeIter *iter = get_iter_from_idx(selected_dive);
|
|
|
|
GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(dive_list.tree_view));
|
|
|
|
GtkTreePath *treepath;
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
if (!iter)
|
|
|
|
return;
|
|
|
|
treepath = gtk_tree_model_get_path(MODEL(dive_list), iter);
|
|
|
|
if (!gtk_tree_path_prev(treepath)) {
|
|
|
|
if (!gtk_tree_model_iter_parent(MODEL(dive_list), &previter, iter))
|
|
|
|
/* we're at the last top level node */
|
2013-02-21 01:07:18 +00:00
|
|
|
goto free_iter;
|
2013-01-03 02:19:41 +00:00
|
|
|
gtk_tree_path_free(treepath);
|
2013-01-01 16:22:46 +00:00
|
|
|
treepath = gtk_tree_model_get_path(MODEL(dive_list), &previter);
|
|
|
|
if (!gtk_tree_path_prev(treepath))
|
|
|
|
/* first trip */
|
2013-02-21 01:07:18 +00:00
|
|
|
goto free_iter;
|
2013-01-01 16:22:46 +00:00
|
|
|
if (!gtk_tree_model_get_iter(MODEL(dive_list), &previter, treepath))
|
2013-02-21 01:07:18 +00:00
|
|
|
goto free_iter;
|
2013-01-01 16:22:46 +00:00
|
|
|
}
|
2013-01-03 02:19:41 +00:00
|
|
|
if (!gtk_tree_model_get_iter(MODEL(dive_list), &previter, treepath))
|
2013-02-21 01:07:18 +00:00
|
|
|
goto free_iter;
|
2013-01-03 02:19:41 +00:00
|
|
|
gtk_tree_model_get(MODEL(dive_list), &previter, DIVE_INDEX, &idx, -1);
|
|
|
|
if (idx < 0) {
|
|
|
|
/* need the last child */
|
|
|
|
parent = gtk_tree_iter_copy(&previter);
|
|
|
|
if (! gtk_tree_model_iter_nth_child(MODEL(dive_list), &previter, parent,
|
|
|
|
gtk_tree_model_iter_n_children(MODEL(dive_list), parent) - 1))
|
2013-02-21 01:07:18 +00:00
|
|
|
goto free_iter;
|
2013-01-03 02:19:41 +00:00
|
|
|
}
|
2013-01-31 05:56:51 +00:00
|
|
|
go_to_iter(selection, &previter);
|
2013-02-21 01:07:18 +00:00
|
|
|
free_iter:
|
2013-01-14 05:10:52 +00:00
|
|
|
gtk_tree_path_free(treepath);
|
2013-02-09 19:29:58 +00:00
|
|
|
if (parent)
|
|
|
|
gtk_tree_iter_free(parent);
|
|
|
|
gtk_tree_iter_free(iter);
|
2013-01-01 16:22:46 +00:00
|
|
|
}
|